
Using the ScienceLogic API
SL1 version 11.3.0 (Document revision 1)

Table of Contents

Introduction to the ScienceLogic API 6
What is the ScienceLogic API? 7
Accessing the API 7
API Settings 9

HTTP Methods, Headers and Response Formats 11
HTTP Methods 12
HTTP Status Codes 12
SL1-Specific Headers 13
Response Headers 13
Request Headers 14

Response Formats 15
Resources & URIs 16
Available Resources 17
URI Formatting 18
Resource Index Responses 19
Constructing URIs Using a searchspec 21
Filters 21
Options 22
Sorting 23
Specifying a Query String in the Request Body 24

Required Options for Indexes 24
Resource Responses 24
Creating and Updating Resources 26
Asynchronous Operations 26
Links Between Resources 27
Size Limits 27

Authentication and Access Permissions 29
User Access to the API 30
Account Lockouts 30
The _self Resource 31
Audit Logging 31

Custom Attributes 33
Custom Attributes for API Resources 34
Viewing and Adding Custom Attributes 34
Example of How to Add Custom Attributes 37
Editing Custom Attributes 39
Requests to Resources with Custom Attributes 40
Removing Custom Attributes 42

Generating Events Using the API 43
Generating Alerts 44
Defining API Event Policies 45
Defining API Event Policies in the Classic SL1 User Interface 47

Requesting Performance Data in Bulk 49
Resource URIs 50
Specifying the Time Range for a Data Request 52
Specifying Data Fields 53
Fields for Dynamic Application Resources 53
Fields for Port Monitor Resources 53
Fields for Web Content Monitor Resources 55
Fields for SOAP/XML Transaction Monitor Resources 57

Fields for Process Monitor Resources 59
Fields for Windows Service Monitor Resources 60
Fields for Email Round-Trip Monitor Resources 61
Fields for DNS Monitor Resources 62
Fields for File System Resources 63
Fields for Availability Resources 64
Fields for Interface Resources 65
Fields for CBQoS Resources 76

Requesting Data for Specific Devices or Interfaces 83
Filtering Device Resources 83
Filtering Interface Resources 86
Filtering CBQoS Resources 87

Additional Options 88
Responses from Bulk Performance Data Resources 88

Using the Ticket Resource 89
Requirements 91
Getting Started 91
Connecting to the API 92
Viewing a List of Tickets 98
Viewing a List of Tickets and Ticket Details 105
Filtering a List of Tickets 107
Retrieving Information about a Specific Ticket 108
Updating a Ticket 111
Capture Ticket Information in a File 111
Edit the Captured File 113
Use HTTP POST to Update the Ticket with the Edited File 114
Sending Only Changes in the ticket99.json File 117

Creating a New Ticket 117
Capturing an Existing Ticket and Storing the Information in a File 118
Determining the URI for a User Account 118
Editing the Captured File 123
Using the Edited File to Create a New Ticket 125

Viewing Notes for a Ticket 128
Adding a Note to a Ticket 132
Capturing an Existing Note and Storing the Information in a File 133
Editing the Captured File 133
Creating a New Note Using the Edited File 134

Viewing the Attachments for a Ticket 135
Adding an Attachment to a Ticket Note 141

Using the Discovery Resource 144
Requirements 146
Getting Started 146
Connecting to the API 146
Viewing a List of Discovery Sessions 151
Viewing Details about All Discovery Sessions 158
Filtering the List of Discovery Sessions 159
Retrieving Information about a Specific Discovery Session 161
Starting a Discovery Session 163
Viewing a List of All Active Discovery Sessions 165
Retrieving Information about a Specific Active Discovery-Session 167
Viewing Logs for a Discovery Session 168
Stopping a Currently Running Discovery-Session 171

Deleting a Discovery Session 173
Searching Component Trees 174
Searching for All the Components in a Tree 175
Searching for the Direct Children of a Device 177
Searching for the Components in a Sub-Tree 177
Searching for a Component by Unique ID 181

Simple Provisioning System 185
System Design 187
Prerequisites 188
System-Specific Functions 189
Utility Functions (utils.php) 191
Performing Requests 191
Requesting a List of Entities 197
Organization Lookup 200
Creating Entities 201
Deleting Entities 202
Configuring SNMP Credentials 204
Requesting Discovery Session Logs 209
Requesting an Available Data Collection Unit 215
Requesting a List of Referenced Entities 218

User Interface 221
header.php 221
index.php 222
devices.php 223
remove.php 229
provisioning.css 230

Provisioning a Customer (provision_customer.php) 231
Retrieving and Configuring Devices (configure_devices.php) 239
Removing a Customer (delete_customer.php) 252

Available Actions 257
Accounts 260
Account Lockouts 260
Alerts 260
Appliances 261
Assets 261
CBQoS Metrics 263
CBQoS Objects 263
CBQoS Object Types 264
Cleared Events 264
Collection Labels 264
Collection Label Groups 264
Collector Groups 265
Credentials 265
Custom Attributes 267
Dashboards 269
Devices 270
Device Categories 273
Device Classes 273
Device Groups 273
Device Relationships 274
Device Relationship Types 274
Device Templates 275

Discovery Sessions 277
Dynamic Applications 278
Events 292
Event Categories 292
External Contacts 292
File Uploads 293
Interfaces 293
Interface Metrics 294
Interface Tags 294
Monitors 294
Organizations 296
Performance Data 298
PowerPacks 299
Product SKUs 300
Scale Values 300
Schedules 300
Streamer Push Proxy 301
System Patches 301
System Settings 302
System Thresholds 302
Tasks 302
Themes 303
Threshold Overrides 303
Tickets 304
Ticket Categories 305
Ticket Chargeback 306
Ticket Logs 306
Ticket Notes 306
Ticket Queues 307
Ticket States 307
Unit Values 307
User Policies 308
Vendors 308

Chapter

1
Introduction to the ScienceLogic API

Overview

This manual describes the functionality of the ScienceLogic API and is intended for developers who are
responsible for integrating SL1 with external systems. To use this manual, you should have a general
understanding of the HTTP protocol.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

What is the ScienceLogic API? 7

Accessing the API 7

API Settings 9

6

7

What is the ScienceLogic API?

The ScienceLogic API allows external systems to programmatically access data in SL1. The API gives access to
entities in SL1— such as tickets, devices, and collected data — using standard HTTP request/response protocols.
Much like the user interface provides access to SL1 for end users, the API provides access to SL1 for external
systems.

The following SL1 appliances provide access to the API:

l All-In-One Appliances

l Administration Portals

l Database Servers

Accessing the API

This section gives a brief overview of how to communicate with an appliance that provides access to the API. All
communication with the API is handled by HTTPS requests.

A request must include:

l Valid SL1 login credentials. The API uses HTTP authentication methods. The credentials you include in the
HTTP request are validated against the user accounts stored in the system.

l A Resource URI. The URI for the resource (entity) you are performing the request on.

l An HTTP Method. Correlates to the action you would like to perform on the resource.

l An Accept Header. Specifies which format should be used for the response. The API supports
application/xml and application/json formats.

l The base URI of the API. The base URI of the API is the full address of the main API index. The base URI
includes information about the appliance you are using to access the API:

o For Database Servers, Administration Portals, and All-In-One Appliances, the base URI of the API is:

https://<ip-address or hostname of appliance>/api

o For SL1 PowerFlow, the base URI of the API is:

https://<ip-address or hostname of appliance>

What is the ScienceLogic API?

Accessing the API

The response from the API contains:

l An HTTP Status Code. Indicates the result of the request.

l SL1-Specific Status Headers. Contains additional information about the result of a request. This
information supplements the HTTP Status Code.

l XML or JSON data. Information about the requested resource in the format specified in the request.

To familiarize yourself with performing basic requests, you can use a standard web browser:

1. Open a web browser.

NOTE: When you request a resource from the API using a web browser, the API will respond in raw
XML format. Some browsers, including Safari and Internet Explorer, will not display raw XML
correctly. If possible, you should use Mozilla Firefox to perform these steps.

2. Navigate to the base URI of the API for the appliance you are using. The standard authentication window is
displayed.

3. Enter the username and password for a user account in the system. The response for the main resource
index is displayed.

The response contains a list of URIs for the resources that are available through the API:

8

9

Each entry in the list includes:

l The URI of the resource.

l A description of the resource.

NOTE: If you are accessing the API through an Administration Portal, Database Server, or All-In-One
Appliance, the "/api" portion of the base URI is included in all resource URIs returned by the API.

For example, the URI "/organization" has the description "Get/Update/Add/Delete Organizations". To view
information about organizations, append the base URI of the API with the URI for the organization resource:

<base URI>/organization

The index for the organization resource, which contains descriptions and URIs for every organization in the
system, is returned.

The browser handles the required elements of the request in the following ways:

l The credentials you enter are used to authenticate the request. Most browsers will save these credentials so
you need to enter them only once per session.

l You enter the resource URI (/organization) in the browser address bar.

l By default, the browser performs a GET request.

l The browser supplies a default accept header with the request. The default accept header used by Mozilla
Firefox contains "application/xml", one of the two response formats returned by the API.

Although using a web browser is the easiest way to make simple requests, using a browser provides limited
control and functionality. For example, you cannot explicitly perform PUT, POST of DELETE requests with a
browser. A browser will also handle certain aspects of requests and responses, such as automatically following
redirects, differently than they will be handled by integration code. ScienceLogic recommends you use command
line cURL to test requests.

API Settings

The REST API Settings page System > Settings > API allows you to define global parameters that affect the
behavior of the ScienceLogic API.

NOTE: The REST API Settings page is available only to administrator users.

To define or edit the settings in the REST API Settings page:

1. Go to the REST API Settings page System > Settings > API.

2. In the REST API Settings page, edit the values in one or more of the following fields:

API Settings

API Settings

l Internal Request Account. Specify the user account that allows appliances to make API requests
without a password.

l X-EM7-run-as Header Support. Specifies whether administrator users can make API requests using
the permissions of another user without that user's password. Choices are

o Disabled. Administrator users cannot make API requests using the permissions of another user.

o Enabled (Admin only). Administrator users can include the X-EM7-run-as Header to make API
requests using the permissions of another user.

l Logging. Specifies which logs SL1 will write to when tickets are created or updated using the API.
Choices are:

o Transaction Logging Only (System Logs). If a ticket is created or updated using the API, SL1 will
write an entry to the audit log that indicates that a user performed a write-operation using the
API. However, SL1 will not write to the ticket log for the ticket that was created or updated.

o Normal (Ticket and System Logs). If a ticket is created or updated using the API, SL1 will write
to the audit log and to the ticket log for the ticket that was created or updated.

l X-EM7-suppress-logging Header Support. If Normal (Ticket and System Logs) is selected in the
Logging field, this field specifies whether an administrator can use the X-EM7-suppress-logging
header can be used when creating or updating a ticket with the API. If the X-EM7-suppress-logging
header is used when creating or updating a ticket, SL1 will not write to the ticket log for that ticket.

o Disabled. The X-EM7-suppress-logging header cannot be used.

o Enabled (Admin only). The X-EM7-suppress-logging header can be used to stop SL1 from
writing to the ticket log for the ticket that was created or updated.

l Send Notification. When a ticket is created or updated, SL1 can automatically send notification
Emails to the ticket assignee and ticket watchers. This option specifies the conditions under which SL1
will send notification Emails when tickets are created or updated using the API. Choices are:

o Only if X-EM7-send-notification:1 is sent. EM7 will send notification Emails for a ticket only
when the X-EM7-send-notification header is set to 1.

o Sent after every write operation. SL1 will send notification Emails for every API request that
creates or updates a ticket.

3. Select the [Save] button to save changes in this page.

10

Chapter

2
HTTP Methods, Headers and Response

Formats

Overview

This chapter covers how the API uses elements of the HTTP protocol to handle and respond to requests.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

HTTP Methods 12

HTTP Status Codes 12

SL1-Specific Headers 13

Response Formats 15

11

12

HTTP Methods

To perform operations on API resources, you can use one of the following four HTTP methods in your requests.
Each resource has a different set of rules that determines which of the four methods can be used to make
requests.

GET

GET fetches resources. The response to a GET request contains information about the resource you requested.

POST

POST updates an existing resource or creates a new resource:

l To update a resource, use the POST method in a request to a specific instance of a resource. For example,
to update a ticket with ID "1", you would POST JSON or XML data to the following URI:

/ticket/1

If POST is used to update a resource, not all attributes of the resource need to be specified. The API will
update only the attributes specified in the request.

l To create a resource, use the POST method in a request to the index for that resource. For example, to
create a ticket, you would POST JSON or XML data to the following URI:

/ticket

The system creates a unique ID for the new resource. The URI for the new resource is based on the unique
ID for the resource.

PUT

PUT adds or replaces a resource. Unlike POST, PUT will replace an entire resource. PUT requires a specific
resource URI. The result of a PUT request will be consistent if the request is repeated.

DELETE

DELETE removes resources. If a resource allows the DELETE method, a successful DELETE request will remove the
corresponding entry in the ScienceLogic Database.

HTTP Status Codes

The API uses standard HTTP status codes to indicate the general result of a request. Every response from the API
will have one of the following status codes in the header:

HTTP Methods

SL1-Specific Headers

l 200 OK. Indicates that the request was valid and the transaction executed normally.

l 201 Created. Indicates that a new resource was created. 201 Created is not used when a resource is
updated.

l 202 Accepted. Indicates the request was accepted for processing.

l 204 No Content Returned. Indicates the request was successful but the API returned no content. This
response is typical when a file is uploaded via a PUT request.

l 301 Moved Permanently. Indicates that the request was made on a sub-resource, but the sub-resource ID
used in the request URI does not match a sub-resource associated with the main resource. For example, a
GET request was made for an interface (the sub-resource) for a device (the main resource), but the interface
ID in the URI is associated with a different device than the device ID used in the URI.

l 302 Found. Indicates that the request did not include required options or filters. If a response has a 302
Found status code, a "Location" header will be included in the response. The "Location" header will contain
the URI of your request with the default required options or filters included.

l 303 See Other. Indicates that the request is not the preferred means of fetching the resource. If a response
has a 303 See Other status code, a "Location" header will be included in the response. The "Location"
header will contain the URI for the preferred means of fetching the resource.

l 400 Bad Request. Indicates that the XML or JSON posted with the request contained bad syntax or was
missing required fields.

l 401 Unauthorized. Indicates invalid credentials were provided for authentication.

l 403 Forbidden. Indicates that the credentials provided for authentication were valid, but the user is not
permitted to access the resource.

l 404 Not Found. Indicates that there is no resource at the URI specified in the request.

l 405 Method Not Allowed. Indicates that the method used in the request is not permitted with the specified
resource. For example, the DELETE method cannot be used on a ticket resource.

l 406 Method Not Acceptable. Indicates that the accept header included in the request does not allow an
XML or JSON response.

l 415 Unsupported Media Type. Indicates that the content-type provided in a PUT or POST request is not
supported.

l 500 Internal Server Error. Indicates that a general error has occurred with the request that is not described
by another status code. The X-EM7-Status-Message header may contain more information.

l 501 Not Implemented. Indicates that the requested resource is a placeholder for future use.

SL1-Specific Headers

Response Headers

In addition to HTTP status codes, every response from the API includes headers that provide additional details
about the result of a request:

13

14

l X-EM7-Implemented-methods. A comma-delimited list of methods that are supported by the requested
resource. This header is intended to provide information on the actions that can be performed on a given
resource. For example, if you perform a GET request on the /device resource index, X-EM7-Implemented-
methods will contain "GET,POST", the two methods supported by /device. If you perform a GET request on
a specific device (e.g. /device/1), the X-EM7-Implemented-methods header will contain
"GET,POST,PUT,DELETE", because a specific device resource supports all available methods.

l X-EM7-Applicable-resources. A comma-delimited list of base URIs for resources that can be applied to the
requested resource. For example, to start a discovery session through the API, you would POST a specific
/discovery_session resource to the /discovery_session_active resource index; therefore, if you perform a
GET request on the /discovery_session_active resource index, the response will include a X-EM7-
Applicable-resources header of "/discovery_session". For more information on applying resource URIs to
other resources, see the Asynchronous Operations section.

l X-EM7-authenticated-user. The URI of the user account that authenticated the request. If the request
included the X-EM7-run-as header, the X-EM7-authenticated-user will return the run-as user.

l X-EM7-status-code. Typically a human-readable version of the HTTP Status Code. For certain errors, X-
EM7-status-codemight include additional information about why a request was unsuccessful. For
example, if a response has the HTTP Status code "400 Bad Request", the X-EM7-status-codemight be
"FAILED_INPUT_VALIDATION".

l X-EM7-status-message. A human-readable description of the result of a request. The X-EM7-status-
message can contain multiple messages delimited by a newline character (\n). For example, if a response
has the HTTP Status code "302 Found", the X-EM7-status-messagemight be "ticket index requires a limit",
indicating the request was missing the required limit option.

l X-EM7-Last-updated. This header is returned only when requesting device configuration data from the API.
Returns the date and time that at least one value in the returned data changed.

Request Headers

The following ScienceLogic-specific headers can be used when making an API request:

l X-em7-beautify-response. By default, responses from the API use the minimum required amount of
whitespace. If you are making requests using a tool that does not format the output (such as command line
cURL), specify the X-em7-beautify-response header with a value of "1" to request additional whitespace in
the response to make it easier to read.

CAUTION: Using the X-em7-beautify-response:1 header can greatly increase the amount of time
required to process a request. Do not use this header in integration code.

l X-em7-run-as. The X-em7-run-as header can be used by administrator users to execute a request as a
different user. For information about the X-em7-run-as header, see the section on Authentication and
Access Permissions.

SL1-Specific Headers

Response Formats

l X-em7-suppress-logging. If the system is configured to write to an entry in the ticket log when a ticket is
modified via the API, the X-em7-suppress-logging header can be used to modify a ticket via the API
without updating the ticket log. If the X-em7-suppress-logging header with a value of "1" is included in an
API request that modifies a ticket and the request is authenticated by an administrator user, the ticket logs
will not be updated based on the result of the request.

l X-em7-send-notification. When a ticket is created or updated, SL1 can automatically send notification
Emails to the ticket assignee and ticket watchers. If the system is not configured to send notification Emails
when tickets are created or updated using the API, the X-em7-send-notification header can be used to
send notification Emails for a specific request. If the X-em7-send-notification header with a value of "1" is
included in an API request that modifies a ticket, notification Emails will be sent based on the result of the
request.

Response Formats

The API can respond in XML and JSON formats. Use one of the following accept headers in your requests:

l accept: application/json, */*. The API will respond in JSON format. If the accept header is "*/*", the API
will respond with JSON as the default response format; however, it is recommended that you explicitly
accept "application/json" for clarity.

l accept: application/xml, */*. The API will respond in XML format.

If the accept header for a request does not include application/xml, application/json or */*, the API will
respond with a "406 Method Not Acceptable" status code.

The contents of responses are described in the Resources & URIs section.

15

Chapter

3
Resources & URIs

Overview

This chapter covers the available resources for the ScienceLogic API and information about creating and
updating API resources.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Available Resources 17

URI Formatting 18

Resource Index Responses 19

Constructing URIs Using a searchspec 21

Required Options for Indexes 24

Resource Responses 24

Creating and Updating Resources 26

Asynchronous Operations 26

Links Between Resources 27

Size Limits 27

16

17

Available Resources

You can interact with the following entities through the API:

l Accounts

l Account Lockouts

l Alerts

l Appliances

l Assets

l Collector Groups

l CBQoS Objects

l Collection Labels

l Credentials

l Custom Attributes

l Dashboards

l Devices

l Device Categories

l Device Classes

l Device Interfaces

l Device Groups

l Device Relationships

l Device Templates

l Discovery Sessions

l Dynamic Applications

l Events

l Event Categories

l External Contacts

l File Uploads

l Interfaces

l Monitoring Policies

l Organizations

l Performance Data

l PowerPacks

Available Resources

URI Formatting

l Product SKUs

l Schedules

l System Patches

l System Settings

l Tasks

l System Thresholds

l Themes

l Thresholds

l Tickets

l Ticket Categories

l Ticket Chargeback

l Ticket Logs

l Ticket Notes

l Ticket Queues

l Ticket States

l User Policies

l Vendors

NOTE: Some resources support only view access to the corresponding SL1 entity, while other resources
provide support for create, edit, and/or delete operations. For a full listing of all actions that can be
performed through the API, see the Available Actions section.

URI Formatting

All resources have a URI relative to the base URI for the API:

l For Database Servers, Administration Portals, and All-In-One Appliances, the base URI of the API is:

https://<ip-address or hostname of appliance>/api

The full URI for a resource has the following structure:

<base URI of the API><resource-uri>

18

19

For the resource URIs listed in the previous section, the full URI of the index is:

<base URI of the API>/<resource-name>

The URIs for specific resources combine the resource index URI and the unique ID of the specific resource. For
example, the URI for the ticket with ticket ID 1 is:

/ticket/1

Some resources include sub-resources. For example, a note is a sub-resource of a ticket. If a resource includes a
sub-resource, each instance of that resource includes an index for the sub-resource. For example, the index of
notes attached to the ticket with ticket ID 1 is:

/ticket/1/note

And the URI for a specific note attached to ticket 1 is:

/ticket/1/note/<note ID>

NOTE: If you are accessing the API through an Administration Portal, Database Server, or All-In-One
Appliance, the "/api" portion of the base URI is included in all resource URIs returned by the API.

Resource Index Responses

When you perform a GET request using the URI for a resource index, the response includes the following structure
in JSON format:

{

"searchspec":{

"fields":{

"data":[

"field",

.

.

]

Resource Index Responses

Resource Index Responses

},

"options":{

"option name":{

"type":"...",

"description":"...",

"default":"...",

};

.

.

},

},

"total_matched":"X",

"total_returned":"Y",

"result_set":[

{

}

]

}

The XML response for the same request contains the same attributes in a similar structure.

The following sections are included in the response:

l searchspec. Contains filters and options that you can add to the resource index URI.

l total_matched. An integer that indicates the maximum number of resources the index could return in the
result_set. Resources included in this count match the requested filters but might not be included in the
response because of the specified options, or because a required option is missing.

20

21

l total_returned. An integer that indicates the number of resources contained in the result_set.

l result_set. Contains each specific resource that matches the filters included in the request URI.

Constructing URIs Using a searchspec

A GET request for a resource index responds with a "searchspec" section by default. The searchspec indicates the
filters and options that can be added to a resource index URI to limit or change the results contained in the
response. Filters and options are added to the URI as standard GET values:

<resource uri>?<option 1>&<option 2>&<filter 1>&<filter 2>

Any number of options and filters can be added to the URI after the question mark (?), delimited by ampersands
(&).

All resource indexes support an additional option that allows you to specify the sort order. The sort order option
can be included only once in a single request.

Filters

You can filter the results contained in the response using any of the fields contained in the "fields" section of the
searchspec. For basic equality operations, filters have the following syntax:

filter.<field name>=<value to equate>

You can add the following operators before the equals sign (=) to perform different comparisons:

l .min. The specified value is the minimum value for the field. Equivalent to a "greater than or equal to"
operation.

l .max. The specified value is the maximum value for the field. Equivalent to a "less than or equal to"
operation.

l .contains. The field contains the specified value as a sub-string.

l .begins_with. The field begins with the specified value as a sub-string.

l .ends_with. The field ends with the specified value as a sub-string.

l .isnull. The specified value must be 0 or 1. If you specify a value of 0, records that have a non-null value in
the specified field will be returned. If you specify a value of 1, records that have a null (empty) value in the
specified field will be returned.

l .in. The field equates to one of the values given in a list. The value to equate must be in the following list
format:

<value 1>, <value 2>, <value 3>, ...

Constructing URIs Using a searchspec

Constructing URIs Using a searchspec

For example, to request only tickets that have a severity of major or critical (severity > 3), add the following filter
clause to the ticket URI:

filter.severity.min=3

The inverse of a filter can be created by adding ".not" to the filter clause. To request the inverse of the previous
example:

filter.severity.not.min=3

NOTE: If you include multiple filters for the same field in a URI, the API will return only results that match all
the filters for that field (i.e. the API will perform an AND operation).

Options

Every resource index has a set of options that can be added to a request URI to limit or change the results
contained in the response. Each entry in the "options" section of the searchspec has the following attributes:

l type. The data type of the option value. The value you pass for this option must be of this data type.

l description. A description of how the option affects the response.

l default. The default value of the option.

The following options are available on most resource indexes:

l extended_fetch. By default, the result_set will contain only the URI and description for each returned
resource. If extended_fetch is set to 1 in the URI, the response will contain all attributes of all returned
resources.

l hide_filterinfo. If this option is set to 1 in the URI, the response will contain only the result_set.

l limit. The maximum number of resources that should be returned in the response. For example, if you
include "limit=100" in the URI, the first 100 resources are returned in the response.

l offset. After the API has assembled a list of possible resources to include in the response, based on the
specified filters, offset determines which resource will be the first entry in the response list. offset begins at
zero for the first resource, one for the second resource, and so forth. For example, if you include
"limit=5&offset=5" in the /ticket URI, the response contains tickets six through ten from the list of the
possible tickets.

l link_disp_field. If the extended_fetch option is not enabled, you can use the link_disp_field to specify
which field will be used to populate the description for each resource. For example, the default description
of each resource returned by the /account resource index is the username. If you want the description of
each resource returned by the /account resource index to be the primary Email address of each user, set the
link_disp_field option to email.

22

23

NOTE: Although the above options are common to most resource indexes, not all resource indexes support
all of these options.

Use the following syntax to specify an option:

<option name>=<option value>

For example, to request 10 tickets with all attributes returned from the ticketing index, use the following URI:

/ticket?limit=10&extended_fetch=1

Sorting

You can sort the order of results in the response by using the order option. This option is available for every
resource index. The syntax of the order option is:

order.<field name>=<sort order>

Valid values for the sort order are:

l ASC. Sort in ascending order.

l DESC. Sort in descending order

l <value 1>,<value 2>,<value 3>,..,*. Return the records that have value 1 as the value for the field
first, then the records that have value 2 as that value for the field, etc. Any number of specific values can be
specified, followed by an asterisk.

l *,<value 1>,<value 2>,<value 3>,... Return all items that do not have one of the specified values as
the value for the field, then return the records that have value 1 as the value for the field, then the records
that have value 2 as that value for that field, etc. Any number of specific values can be specified.

For example, to sort the response for the /account resource by descending username, include the following
option:

order.user=DESC

For example, to sort the response for the /account resource with the user accounts in organization 2 first, then all
other user accounts, you would include the following option:

order.organization=/api/organization/2,*

Constructing URIs Using a searchspec

Required Options for Indexes

Specifying a Query String in the Request Body

The API accepts a maximum URL size of 8 kb. If you need to perform a GET request with a query string that
includes options and filters that would cause the URL to be larger than 8 kb, you can specify the query string in the
body of the request. To do this:

l Do not include the query string when specifying the URL in the request

l Include the query string in the body of the request, excluding the leading question mark character

l Include the content-type header "content-type:application/x-www-form-urlencoded" in the request

For example, the following cURL request specifies a GET request to the /ticket API that includes options and filters
as part of the URL:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket?limit=100&extended_

fetch=1&filter.severity=3"

The following cURL performs the same request, but specifies the query string in the body of the request and
includes the correct content-type header:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket" -H "content-type:application/x-www-

form-urlencoded" -X GET -d 'limit=100&extended_fetch=1&filter.severity=3'

Required Options for Indexes

When you perform a GET request on some resource indexes, one or more options may be required. If a required
option is missing, the response will contain a "302 Found" Status Code. The "Location:" header in the response
will contain the URI for the resource with the option added. Typically the required option is a limit, which prevents
responses from becoming too large.

Resource Responses

If you perform a GET request using the URI for a specific resource, the response has the following structure in
JSON format:

{

"field":"value",

.

.

24

25

.

"custom_fields":{

},

"sub resource":{

"URI":"...",

"description":"...",

},

.

.

.

}

The XML response for the same request contains the same attributes in a similar structure.

The following sections are included in the response:

l field:value pairs. In the structure shown above, field is the name of an attribute that is common to every
resource of that type, e.g. "severity" for a ticket resource. value is the value of the attribute for this specific
resource.

l custom_fields. Has the same structure as the "field":"value" pairs, but for custom fields specific to this
resource type in this SL1 systems.

l sub resource links. In the structure shown above, sub resource is name of a sub resource associated with
the resource type, e.g. "notes" for a ticket resource. Each sub resource in the response contains a URI for the
sub-resource index and a description of the sub resource.

Resource Responses

Creating and Updating Resources

Creating and Updating Resources

To modify a resource, PUT or POST XML or JSON data to the resource URI.

The XML or JSON you include in a POST or PUT request must have the same format as an XML or JSON
response from a GET request on the same resource. For example, if you:

1. Perform a GET request on a ticket resource and save the response in a file.

2. In the saved file, modify the value in a single field.

3. POST the XML or JSON back to the same ticket URI.

The modified field will be updated in the ticket.

When using POST to update a resource, the XML or JSON can contain only the fields that need to be updated;
any fields you want to remain the same can be removed from the XML or JSON.

To create a new resource using a POST request, you must use the URI of the resource index. The new resource
will be assigned a unique ID. The API returns the URI for the new resource in the response.

In the XML or JSON structure used in a POST request, the format of the data in each field must be identical to the
format the API uses when responding to GET requests. For example:

l Timestamps must be in UNIX timeticks format.

l User passwords must be an MD5 hash of the actual password.

NOTE: If you create a new resource using POST, the API ignores any links to sub-resources included in the
XML or JSON structure. The response contains new URIs for sub-resource indexes.

NOTE: For information on the difference between PUT and POST, see the HTTP Methods, Headers and
Response Formats section.

NOTE: If you use GraphQL for a bulk update, GraphQL will make multiple single calls to the REST API
rather than one bulk call, even if SL1 does not use the bulk capability.

Asynchronous Operations

Asynchronous operations, such as starting a discovery session, can be performed using the POST method with
the "application/em7-resource-uri" content type. The "application/em7-resource-uri" content type is proprietary
to the ScienceLogic API.

26

27

The following actions are performed by POSTing an em7-resource-uri to another resource:

l Starting a discovery session. POST a /discovery_session resource URI to the /discovery_session_active
resource index.

l Applying a device template. POST a /device_template resource URI to a specific /device or /devcie_
group resource.

l Performing a "Save As" operation on a dashboard. POST a /dashboard resource URI to the /dashboard
resource index. All properties of the dashboard are copied, including those that cannot be modified directly
through API requests.

l Installing a PowerPack. POST a /filestore/powerpack resource URI to the /powerpack resource index.

l Registering a Patch. POST a /filestore/system_patch resource URI to the /system_patch resource index.

l Staging a Patch. POST a /system_patch resource URI to the /system_patch_stage resource index.

l Installing a Patch. POST a /system_patch_stage resource URI to the /system_patch_deploy_active
resource index.

For an example of how this content type is used, see the Example: Using the Discovery Resource section.

Links Between Resources

For fields in a resource that refer to another resource, the value for the field is the URI of the other resource. For
example, if you request a ticket resource that is aligned to the System organization, the "organization" field
contains the URI for the resource that represents the System organization:

"organization":"\/organization\/0",

NOTE: This example shows the response from an SL1 PowerFlow in JSON format with the forward slash
characters (/) escaped. If you are accessing the API through an Administration Portal, Database
Server, or All-In-One Appliance, the "/api" portion of the base URI is included in all resource URIs
returned by the API.

If you are creating, updating or replacing a resource that includes links to other resources, ensure that you
include the URI for the other resource in the appropriate fields.

Size Limits

The API has the following limits for URI length and POST content:

l The maximum URI length that can be used in an API request is 8199 characters.

l The maximum size of JSON content that can be included in a POST request to the API is 2 GB.

Links Between Resources

Size Limits

l The maximum size of XML content that can be included in a POST request to the API is 1,000,000
characters.

28

Chapter

4
Authentication and Access Permissions

Overview

This chapter describes the authentication and access permissions needed to use the ScienceLogic API.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

User Access to the API 30

Account Lockouts 30

The _self Resource 31

Audit Logging 31

29

30

User Access to the API

User access to the API is controlled in the same way user access to the Administration Portal is controlled:

l A user can interact only with entities associated with their organizations. Entities are either explicitly aligned
with organizations, aligned with organizations based on the user that created the entity, or are not aligned
with an organization.

l Users of type "Administrator" can perform all actions on all resources, regardless of organization
membership.

l Device groups and dashboards can be configured so that a user must be granted a specific access key to
use that device group or dashboard.

NOTE: The new user interface architecture requires API access for all users; API access is automatically
granted to users. The following API-specific access hooks have been deprecated and removed from
SL1: API: Resource Indexes, API: Server Access, API: Virtual Device.

This chapter describes how the access permissions system applies to the API. For more information on the access
permissions system in SL1, see the Access Permissionsmanual.

NOTE: User accounts that use a SAML provider for authentication cannot perform API requests unless the
authentication profile for that user also includes an EM7 Internal or AD/LDAP authentication
resource.

Account Lockouts

The account lockout functionality applies to API requests (i.e., if an incorrect password is specified in multiple,
sequential API requests for a valid user account, the user account will be locked out). The following settings in the
Behavior Settings page (System > Settings > Behavior) control account lockouts:

l Account Lockout Attempts. Number of times a user can supply incorrect login information (i.e., the
number of consecutive API requests with an incorrect password before a lockout occurs). Choices are 1 time
through 10 times.

l Account Lockout Type. If a user enters incorrect login information multiple times in a row, that user will be
locked out of the user interface. In this field, you can select how the lockout will be applied. Choices are:

o Lockout by IP Address. All login attempts from the IP address will be denied.

o Lockout by Username and IP Address. All login attempts by the username from the IP address will be
denied.

User Access to the API

The _self Resource

o Lockout by Username (default). All login attempts by the username will be denied.

o Disabled. Lockouts are disabled.

l Account Lockout Duration. Specifies how long a user will be locked out of the user interface. Choices are
1 hour through 24 hours, in one-hour increments.

While a user account is locked out, API requests specifying that user will return an HTTP 403 status code with the
following ScienceLogic-specific header values:

X-EM7-status-message: Authentication failed due to lock

X-EM7-status-code: LOCKED

X-EM7-info-message: Authentication temporarily locked due to too many

failed authentication attempts

Account lockouts can be removed via the API using the /access_lock resource. The /access_lock resource
supports the following methods:

Action URI Method

View a list of locked-out user accounts. /access_lock GET

View details about a locked-out user
account.

/access_lock/X GET

Clear a lock on a user account. /access_lock/X DELETE

The _self Resource

User accounts are granted access to their own user account information through the following resource:

/account/_self

This resource returns the equivalent of the standard /account resource for the user that authenticated the request,
even if that user account has not been granted permission to access other /account resources.

Audit Logging

All requests that use a PUT, POST, or DELETE method are included in the audit logs for the user's primary
organization. Organizational audit logs are accessible through the [Logs] tab in theOrganizational Summary
page; a log for all organizations is displayed on the Audit Logs page (System >Monitor > Audit Logs). Each log
message generated by an API request includes the following information:

31

32

1. The date when the request was made.

2. The user account that was used to authenticate the request.

3. The method used in the request.

4. The resource URI the request was made on.

5. The result of the request.

All API audit logs have a Source of "API Server".

Audit Logging

Chapter

5
Custom Attributes

Overview

This chapter describes how to view, add, and edit custom attributes for API resources.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Custom Attributes for API Resources 34

Viewing and Adding Custom Attributes 34

Example of How to Add Custom Attributes 37

Editing Custom Attributes 39

Requests to Resources with Custom Attributes 40

Removing Custom Attributes 42

33

34

Custom Attributes for API Resources

The ScienceLogic API includes resources for adding custom attributes to the following resources:

l /asset

l /device

l The /interface sub-resource under /device resources

l /theme

l /vendor

When you define a custom attribute for a resource:

l For any instance of that resource (e.g., a specific device), you can perform a POST operation specifying a
value for that attribute for that instance.

l If you configure the attribute as a base attribute, the attribute will appear in the list of fields for all instances
of that resource. For example, if you define a custom attribute as a base attribute for the /device resource,
the response to a GET request for any /device/device_id resource includes the custom attribute in the list of
fields.

l If you configure the attribute as an extended attribute, the attribute will appear in the list of fields for
instances of that resource only if a value has been specified for the attribute for that instance. For example,
suppose you define a custom attribute as an extended attribute for the /device resource. The response to a
GET request on the /device resource index with the extended_fetch option enabled will include the custom
attribute only for devices that have a value for that custom attribute.

l GET requests for the resource index can include filter and sort criteria that use that custom attribute.

When you define a value for a custom attribute by performing a POST request to a resource, the value is
available through the API and can be used in dynamic rules for device groups and viewed in the custom table
widget.

Viewing and Adding Custom Attributes

You can view information about the custom attributes for a resource by performing a GET request to one of the
following resource indexes:

l /custom_attribute/asset

l /custom_attribute/device

l /custom_attribute/interface

l /custom_attribute/theme

l /custom_attribute/vendor

l /custom_attribute/_lookup. Allows for searching across all custom attributes for all entity types.

Custom Attributes for API Resources

Viewing and Adding Custom Attributes

NOTE: The "limit" option is required for all resource indexes for custom attributes.

Each resource custom attribute resource index returns a list of custom attributes including the URI for each custom
attribute. URIs for custom attributes are in the following format:

/custom_attribute/<resource type>/<attribute name>

By default, no custom attributes are defined for any of the resources that support custom attributes.

To add a custom attribute for a resource, perform a POST request to either of the following URIs:

l The corresponding /custom_attribute/resource resource index.

l The URI of the custom attribute itself, i.e. /custom_attribute/resource/name.

The body of a POST request to an /custom_attribute/resource resource index must have the following JSON
structure:

{

"name":"attribute name",

"label":"attribute label",

"type":"attribute type",

"index":"attribute index type",

"extended":"attribute extended option"

}

Or the following XML structure:

<custom_attribute>

<name>attribute name</name>

<label>attribute label</label>

<type>attribute type</type>

<index>attribute index type</index>

<extended>attribute extended option</extended>

35

36

</custom_attribute>

The body of a POST request to an /custom_attribute/resource/name resource must have the following JSON
structure:

{

"label":"attribute label",

"type":"attribute type",

"index":"attribute index type",

"extended":"attribute extended option"

}

Or the following XML structure:

<custom_attribute>

<label>attribute label</label>

<type>attribute type</type>

<index>attribute index type</index>

<extended>attribute extended option</extended>

</custom_attribute>

NOTE: You can request example JSON or XML content that must be posted to a /custom_
attribute/resource/name resource by performing a GET request to the following URI: /custom_
attribute/resource/_example.

Where attribute name, attribute label, attribute type, attribute index type, and attribute extended option are
properties of the custom attribute you want to add. Attributes have the following properties:

l name. The name of the custom attribute. Names for custom attributes must conform to XML naming
standards. The attribute name can contain any combination of alphanumeric characters, a period, a dash,
a combining character or an extending character. If you attempt to create a custom attribute with a non-
compliant name, the API will respond with a HTTP 400 Bad Request status.

l label. A human-readable description of the attribute, up to 128 characters in length.

Viewing and Adding Custom Attributes

Example of How to Add Custom Attributes

l type. The data type of the custom attribute. You must specify one of the following two values in the type
field:

o integer. The custom attribute will be used to store signed 64-bit integer values.

o string. The custom attribute will be used to store string values up to 512 characters in length.

l index. You must specify one of the following three values in the index field:

o index. When SL1 creates the database table that stores this custom attribute, the column that stores
this value will be set as an index for the table. Setting index values can speed up queries performed
on the database table, but does not affect which filter or search options will be available for this
custom attribute.

o unique. When SL1 creates the database table that stores this custom attribute, the column that stores
this value will be set as a unique index for the table. The values defined for this custom attribute must
be unique for all resources. For example, if you add a custom attribute called "c-external-id" to the
/custom_attribute/device resource and define the index as unique, the value of "c-external-id" for a
/device/device_id resource cannot be re-used for another /device/device_id resource. Setting index
values can speed up queries performed on the database table, but does not affect which filter or
search options will be available for this custom attribute.

o none. When SL1 creates the database table that stores this custom attribute, the column that stores
this value will not be set as an index or unique index.

l extended. A boolean value. You must specify 0 or 1 in this field:

o 0. The attribute is a "base" attribute. The attribute is displayed in the list of fields for all instances of the
specified resource regardless of whether a value has been specified for the attribute.

o 1. The attribute is an "extended" attribute. The attribute is displayed in the list of fields for an instance
of the specified resource only if a value has been specified for the attribute.

When you add a custom attribute, the default value for all resources where that attribute is now defined is NULL.

Example of How to Add Custom Attributes

Suppose you are integrating SL1 with an external provisioning system and you want to include information from
the external provisioning system in each device record to make searching for devices and generating reports
easier. You could define the following two custom attributes:

l An ID value from the external provisioning system

l A name field from the external provisioning system

To add these custom attributes, you would perform two POST requests with the following JSON structures to the
/custom_attribute/device resource to create the two custom attributes:

Request 1:

{

37

38

"name":"external-id",

"label":"ID from external provisioning system",

"type":"integer",

"index":"unique",

"extended":"0"

}

Request 2:

{

"name":"external-name",

"label":"Name from external provisioning system",

"type":"string",

"index":"none",

"extended":"0"

}

Each request specifies a custom attributes:

l external_id. An integer value that will contain the ID value from the external provisioning system. The index
field is set to unique because all ID values from the external provisioning system will be unique.

l external_name. A string value that will contain the name from the external provisioning system.

The structures look like this in XML format:

Request 1:

<custom_attribute>

<name>external-id</name>

<label>ID from external provisioning system</label>

<type>integer</type>

<index>unique</index>

Example of How to Add Custom Attributes

Editing Custom Attributes

<extended>0</extended>

</custom_attribute>

Request 2:

<custom_attribute>

<name>external-name</name>

<label>Name from external provisioning system</label>

<type>string</type>

<index>none</index>

<extended>0</extended>

</custom_attribute>

Editing Custom Attributes

To edit a custom attribute, perform a POST request to the URI for that attribute. URIs for custom attributes are in
the following format:

/custom_attribute/<resource type>/<attribute name>

The body of a POST request to a /custom_attribute/<resource type>/<attribute name> resource must have the
following JSON structure:

{

"label":"attribute label",

"type":"attribute type",

"index":"attribute index type"

}

Or the following XML structure:

<custom_attribute>

<label>attribute label</label>

39

40

<type>attribute type</type>

<index>attribute index type</index>

</custom_attribute>

NOTE: You cannot update the name or the extended option of a custom attribute.

Requests to Resources with Custom Attributes

When you define a custom attribute for a resource:

l If the attribute is a "base" attribute, the attribute is displayed in the list of fields for all instances of the
specified resource regardless of whether a value has been specified for the attribute.

l If the attribute is an "extended" attribute, the attribute is displayed in the list of fields for an instance of the
specified resource only if a value has been specified for the attribute.

NOTE: To view or define custom attributes, you must prefix the attribute key with c-.

For example, if you created the "external_id" and "external_name" attributes described in the Example of How to
Add Custom Attributes section, both of which are base attributes, the response to a GET request for a
/device/device_id resource would look like this:

{

"name":"em7_ap",

"ip":"10.0.9.50",

"snmp_cred_id":"\/credential\/snmp\/1",

"snmp_w_cred_id":null,

"class_type":"\/device_class\/20036",

"organization":"\/organization\/0",

"auto_update":"1",

"event_suppress_mask":"00:10:00",

"auto_clear":"1",

Requests to Resources with Custom Attributes

#Editing
#Editing

Requests to Resources with Custom Attributes

"log_all":"1",

"daily_port_scan":"1",

"critical_ping":"0",

"scan_all_ips":"0",

"preserve_hostname":"1",

"disable_asset_update":"0",

"date_added":"1320183224",

"c-external-id":"",

"c-external-name":"",

"parent_device":null,

"child_devices":{

},

"state":0,

"notes":{

"URI":"\/device\/2\/note\/?hide_filterinfo=1&limit=1000",

"description":"Notes"

},

.

.

"app_credentials":{

"URI":"\/device\/2\/device_app_credentials",

"description":"Read-only lookup for aligned credentials and the

device-aligned apps that are using them"

}

41

42

}

To define a value for a custom attribute for a specific instance of a resource, you can include the custom attribute
when performing a POST request to that resource. For example, to define a value for the "external-id" attribute for
the device with ID "3", you would POST to following JSON to the /device/3 resource:

{

"ip":"10.0.9.50",

"c-external-id":"4"

}

When you perform a GET request on a resource index, you can use custom attributes in filter and sort criteria. For
example, if you want to perform a GET request on the /device resource index and want to sort the response by the
external-id field, you would request the following URI:

/device?limit=100&order.c-external-id=ASC

If you want to perform a GET request on the /device resource index and want to filter the response to include only
devices that contain the string "server" in the "external-name" field, you would request the following URI:

/device?limit=100&filter.c-external-name.contains=server

Removing Custom Attributes

To remove a custom attribute, perform a DELETE request to the URI for that attribute. URIs for custom attributes
are in the following format:

/custom_attribute/<resource type>/<attribute name>

NOTE: If you want to unalign a custom attribute for an interface, you can perform a PUT action and set the
value to null(lowercase without quotes).

Removing Custom Attributes

Chapter

6
Generating Events Using the API

Overview

The /alert API resource can be used to generate alerts in SL1 that will appear as log messages in the Device Logs
& Messages page, similar to how SL1 processes inbound syslog and trap messages. You can optionally create
one or more event policies that will trigger when an alert generated through the API meets the criteria specified in
the policy.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Generating Alerts 44

Defining API Event Policies 45

43

44

Generating Alerts

To generate an alert, you must perform a POST request to the /alert resource index. The content you POST must
have the following structure:

{

"force_ytype":"0",

"force_yid":"0",

"force_yname":"",

"message":"",

"value":"0",

"threshold":"0",

"message_time":"0",

"aligned_resource":""

}

Supply the following values in each field:

l force_ytype. Optional. The type of sub-entity on a device that you want to associate the alert with. This field
can be set to the following numeric values that represent sub-entity types:

o 1. CPU

o 2. Disk

o 3. File System

o 4. Memory

o 5. Swap

o 6. Hardware Component

o 7. Interface

o 9. Process

o 10. Port

Generating Alerts

Defining API Event Policies

o 11. Windows Service

o 12. Web Content

o 13. Email Monitor

For example, to associate the alert with a specific interface on a device, supply "7" in this field. If you are
not supplying information about a sub-entity, supply 0 (zero) in this field.

l force_yid. Optional. The ID value of the specific sub-entity on the device that you want to associate the alert
with. For example, if you are associating the alert with the interface with ID 2, supply "2" in this field. If you
are not supplying information about a sub-entity, supply 0 (zero) in this field.

l force_yname. Optional. The name of the specific sub-entity on the device that you want to associate the
alert with. For example, if you are associating the alert with the interface called "eth0", supply "eth0" in this
field. If you are not supplying information about a sub-entity, supply en empty string in this field.

NOTE: If an event policy is configured to clear another event policy, an instance of the event is
cleared only when the clearing event has a matching sub-entity type, sub-entity ID, and sub-
entity name.

l message. Enter message text to associate with the alert. If the alert does not match an event, this text will be
displayed in the Device Logs & Messages page. This text will be used to match against the First Match
String and Second Match String values in event policies. If the alert triggers an event, this text will be
substituted for the %M substitution character in the event message.

l value. Optionally, supply the numeric value that triggered the alert. For example, if an alert indicates that
CPU usage is high, you might pass the current CPU usage in this field. If you are not supplying a specific
value, supply 0 (zero) in this field.

l threshold. Optionally, supply the numeric threshold that was exceeded for this alert to be generated. This
threshold can be used in an event policy message by using the %T substitution. If you are not supplying a
specific threshold, supply 0 (zero) in this field.

l message_time. The timestamp to associate with the alert in unix time format. The device log message will
be listed at this date and time. Valid values include a timestamp or an empty string, "0" (zero), or "now", the
latter three of which default to the current timestamp.

l When creating a new API alert, the /api/alert endpoint now allows a custom timestamp. Valid values for
message_time include a timestamp or an empty string, 0, or now, the latter three of which default to the
current timestamp.

l aligned_resource. The relative URI of the device with which you want to associate the alert. For example, to
align the alert with device ID 1, supply /device/1.

Defining API Event Policies

All alerts generated using the /alert resources are matched against event policies of type "API".

45

46

When you create API event policies, the event messages are generated by inserting messages into the main
database. These messages can be inserted by a snippet automation action, a snippet Dynamic Application, or by
a request to the ScienceLogic API.

To define an API event policy:

1. Go to Event Policies page (Events > Event Policies).

2. In the Event Policies page, click the [Create Event Policy] button. The [Policy Description] tab of the
Event Policy Editor appears.

3. On the [Policy Description] tab, enter the following information:

l Policy Name. Type a name for the event policy.

l Enable Event Policy. Turn this toggle on to enable the event policy, or toggle it off to disable the
event policy.

l Policy Description. Type a description of the event policy.

4. Click the [Match Logic] tab, then enter the following information:

l Event Source. Specifies the source for the event. Select API.

5. After selecting and defining your Event Source, enter values in the fields on the right side of theMatch
Logic tab:

l String/Regular Expression. Use this drop-down to select String or Regular Expression.

l Match String. Type a text string or a regular expression to match against the originating log message
field of each alert generated through the API. The event will be generated if the message matches the
Match String and the optional Second Match String values. This string can be up to 512 characters
and length and can be any combination of alpha-numeric and multi-byte characters.

CAUTION: If you do not supply a value in theMatch String field, your event policy will match all alerts
generated through the API.

CAUTION: SL1's expression matching is case-sensitive.

l Second Match String (Optional). Optionally, a second text string or regular expression to match
against the originating log message field of each alert generated through the API. The event will be
generated if the message matches theMatch String and the Second Match String values.

NOTE: The other fields on this page can be used to define specific event behavior or enable advanced event
features. For a description of every option on this page, see the Eventsmanual.

6. Click the [Event Message] tab, then enter the following information:

Defining API Event Policies

Defining API Event Policies

l Event Message. Define the message that appears in the Event Console page or the Viewing
Events page when this event occurs.

NOTE: For more information about the Event Message field and descriptions of the other fields on this
page that can be used to define the event severity, event masking, and other options, see the Events
manual.

7. Optionally, you can click the [Suppression] tab, where you can define specific devices or device groups for
which the event should not appear.

NOTE: For more information about the [Suppression] tab and the fields that appear on this page, see the
Eventsmanual.

8. After entering information in each tab, click [Save] to save your new event policy.

Defining API Event Policies in the Classic SL1 User Interface

All alerts generated using the /alert resources are matched against event policies of type "API".

To create an event policy of type "API" in the classic SL1 user interface:

1. Go to the Event Policy Manager page (Registry > Events > Event Manager).

2. Click the [Create] button. The Event Policy Editor page is displayed.

3. Supply values in the following fields:

l Event Source. Select API.

l Operational State. Select whether the event policy is enabled or disabled.

l Policy Name. Enter a name for your event policy.

l Event Message. Enter the event message that will be displayed in the event console when this event
is generated. You can use the %M (message), %V (value), and %T (threshold) substitution characters
in this field to include information from the API request.

l Policy Description. Enter descriptive text about your event policy. This text is displayed when a user

selects the information icon () for an instance of this event.

NOTE: The Use Modifier checkbox is not applicable to API event policies.

4. Click the [Advanced] tab. The advanced options are displayed.

5. Supply values in the following fields:

47

48

l First Match String. Enter text or a regular expression to match against the message field of each
alert generated through the API. The event will be generated if the message matches the First Match
String and the Second Match String values.

CAUTION: If you do not supply a value in the First Match String field, your event policy will
match all alerts generated through the API.

l Second Match String. Optionally, a second text string or regular expression to match against the
message field of each alert generated through the API. The event will be generated if the message
matches the First Match String and the Second Match String values.

l Match Logic. Specifies whether the First Match String and Second Match String values are
matched as text strings or regular expressions.

NOTE: The other fields on this page can be used to define specific event behavior or enable
advanced event features. For a description of every option on this page, see the Events
manual.

6. Click the [Save] button.

Defining API Event Policies

Chapter

7
Requesting Performance Data in Bulk

Overview

The resources /data_performance, /data_performance_raw, and their sub-resources can be used to request
performance data for multiple devices or interfaces in a single request. This chapter describes how to use these
resources to request performance data.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Resource URIs 50

Specifying the Time Range for a Data Request 52

Specifying Data Fields 53

Requesting Data for Specific Devices or Interfaces 83

Additional Options 88

Responses from Bulk Performance Data Resources 88

49

50

Resource URIs

The following table lists the resource URIs for the resources: /data_performance and /data_performance_raw.

NOTE: For resources that return data, you must specify a timestamp option. If you do not specify a
timespan, the API will return an HTTP 400 (Bad Request) status code.

URI Description

/data_performance Returns a list of URIs for the sub-resources associated
with each available entity type (device and interface).

/data_performance/device Returns a list of URIs that can be used to request device
performance data.

/data_performance/device/dynamic_app Returns normalized (rolled-up) performance data from
one or more Dynamic Applications. The data matches
specified parameters.

/data_performance/device/monitor_port Returns normalized (rolled-up) data from port
monitoring policies. The data matches specified
parameters.

/data_performance/device/monitor_cv Returns normalized (rolled-up) data from web content
monitoring policies. The data matches specified
parameters.

/data_performance/device/monitor_tv Returns normalized (rolled-up) data from
SOAP/XML transaction monitoring policies. The data
matches specified parameters.

/data_performance/device/monitor_process Returns normalized (rolled-up) data from system
process monitoring policies. The data matches
specified parameters.

/data_performance/device/monitor_service Returns normalized (rolled-up) data from Windows
service monitoring policies. The data matches specified
parameters.

/data_performance/device/monitor_email Returns normalized (rolled-up) data from email round-
trip monitoring policies. The data matches specified
parameters.

/data_performance/device/monitor_dns Returns normalized (rolled-up) data from
DNS monitoring policies. The data matches specified
parameters.

Resource URIs

Resource URIs

URI Description

/data_performance/device/filesystem Returns normalized (rolled-up) data from file system
usage policies. The data matches specified
parameters.

/data_performance/device/avail Returns normalized (rolled-up) data about availability
and latency. The data matches specified parameters.

/data_performance/interface Returns normalized (rolled-up) data about interface
utilization. The data matches specified parameters.

/data_performance/cbqos Returns normalized (rolled-up) data for CBQoS
metrics. The data matches specified parameters.

/data_performance_raw Returns a list of URIs for the sub-resources associated
with each available entity type (device and interface).

/data_performance_raw/device Returns a list of URIs that can be used to request raw
performance data for a device.

/data_performance_raw/device/dynamic_app Returns raw performance date from one or more
Dynamic Applications. The data matches specified
parameters.

/data_performance_raw/device/monitor_port Returns raw data from port monitoring policies. The
data matches specified parameters.

/data_performance_raw/device/monitor_cv Returns raw data from web content monitoring policies.
The data matches specified parameters.

/data_performance_raw/device/monitor_tv Returns raw data from SOAP/XML transaction
monitoring policies. The data matches specified
parameters.

/data_performance_raw/device/monitor_process Returns raw data from system process monitoring
policies. The data matches specified parameters.

/data_performance_raw/device/monitor_service Returns raw data from Windows service monitoring
policies. The data matches specified parameters.

/data_performance_raw/device/monitor_email Returns raw data from email round-trip monitoring
policies. The data matches specified parameters.

/data_performance_raw/device/monitor_dns Returns raw data from DNS monitoring policies. The
data matches specified parameters.

/data_performance_raw/device/filesystem Returns raw data about file system usage. The data
matches specified parameters.

/data_performance_raw/device/avail Returns raw data about availability and latency. The
data matches specified parameters.

51

52

URI Description

/data_performance_raw/interface Returns raw data about interface utilization. The data
matches specified parameters.

/data_performance_raw/cbqos Returns raw data for CBQoS metrics. The data matches
specified parameters.

Specifying the Time Range for a Data Request

All requests to sub-resources of /data_performance and /data_performance_raw that return performance data
must specify a time range for the returned data. If you do not specify a time range, the API will return an HTTP
400 (Bad Request) status code.

You can use the following options in the resource URI to specify a time range:

l duration. Specifies the duration of the time range in human-readable shorthand format. A valid value for
this option includes an integer and one of the following characters:

o m. The integer specifies the number of minutes in the time range.

o h. The integer specifies the number of hours in the time range.

o d. The integer specifies the number of days in the time range.

l beginstamp. The UNIX timestamp for the start of the time range.

l endstamp. The UNIX timestamp for the end of the time range.

You must use one of the following combinations of these options:

l Specify a beginstamp and endstamp. The time range starts at the time specified in the beginstamp option
and ends at the time specified in the endstamp option.

l Specify a beginstamp and duration. The time range starts at the time specified in the beginstamp option
and covers the amount of time specified in the duration option.

l Specify a endstamp and duration. The time range covers the amount of time specified in the duration
option ending at the time specified in the endstamp option.

l Specify only the duration option. This is equivalent to specifying an endstamp value of the current time with
the specified duration option.

For the sub-resources of /data_performance, you must also specify a value in the rollup_freq option. Valid
values for this option are:

l hourly. The response will include hourly rollup data.

l daily. The response will include daily rollup data.

Specifying the Time Range for a Data Request

Specifying Data Fields

Specifying Data Fields

If you do not specify a set of data fields in your request, no data will be returned in the response.

To specify data fields, supply a comma-delimited list of fields in the data_fields option. The available data fields
are different for each resource. The available fields for each resource are listed in the options section of the
searchspec returned by the resource.

Fields for Dynamic Application Resources

For the resources /data_performance/device/dynamic_app and /data_performance_
raw/device/dynamic_app , the data_fields option can include the following fields:

Field Description

A presentation object ID.
Presentation object IDs are different for each SL1
system and can be looked up using the /dynamic_app
resource and sub-resources.

The presentation objects for which data sets will be
returned.

A presentation object GUID.
Presentation object GUIDs are the same for all SL1
system and can be looked up using the /dynamic_app
resource and sub-resources.

The presentation objects for which data sets will be
returned.

Fields for Port Monitor Resources

For the resource /data_performance/device/monitor_port , the data_fields option can include the following
fields:

Field Description

avg_d_state The average availability of the port, calculated from the raw data points for the
rollup period. Availability values are either zero (0, unavailable) or one (1,
available); average values will range from zero to one.

max_d_state The value of the single highest availability poll for the port during the rollup period.
Values are either zero (0, unavailable) or one (1, available).

min_d_state The value of the single lowest availability poll for the port during the rollup period.
Values are either zero (0, unavailable) or one (1, available).

sum_d_state The sum of all availability values for the port during the rollup period. Availability
values are either zero (0, unavailable) or one (1, available).

53

54

Field Description

std_d_state The standard deviation of availability values for the port, calculated from the raw
data points for the rollup period.

For the resource /data_performance_raw/device/monitor_port , the data_fields option can include the
following fields :

Field Description

d_state The availability of the port. Availability values are either zero (0, unavailable) or one
(1, available).

Specifying Data Fields

Specifying Data Fields

Fields for Web Content Monitor Resources

For the resource /data_performance/device/monitor_cv, the data_fields option can include the following
fields:

Field Description

min_d_conn_time The lowest connection time, in seconds, of all polls during the rollup period.

max_d_conn_time The highest connection time, in seconds, of all polls during the rollup period.

avg_d_conn_time The average connection time, in seconds, calculated from the raw data points for
the rollup period.

sum_d_conn_time The sum of all connection times, in seconds, during the rollup period.

std_d_conn_time The standard deviation of the connection times, calculated from the raw data points
for the rollup period.

min_d_dl_size The lowest download size, in bytes, of all polls during the rollup period.

max_d_dl_size The highest download size, in bytes, of all polls during the rollup period.

avg_d_dl_size The average download size, in bytes, calculated from the raw data points for the
rollup period.

sum_d_dl_size The sum of all download sizes, in bytes, during the rollup period.

std_d_dl_size The standard deviation of the download sizes, calculated from the raw data points
for the rollup period.

min_d_dl_speed The lowest download speed, in bytes/second, of all polls during the rollup period.

max_d_dl_speed The highest download speed, in bytes/second, of all polls during the rollup period.

avg_d_dl_speed The average download speed, in bytes/second, calculated from the raw data points
for the rollup period.

sum_d_dl_speed The sum of all download speeds, in bytes/second, during the rollup period.

std_d_dl_speed The standard deviation of the download speeds, calculated from the raw data
points for the rollup period.

min_d_ns_time The lowest DNS lookup time, in seconds, of all polls during the rollup period.

max_d_ns_time The highest DNS lookup time, in seconds, of all polls during the rollup period.

avg_d_ns_time The average DNS lookup time, in seconds, calculated from the raw data points for
the rollup period.

sum_d_ns_time The sum of all DNS lookup times, in seconds, during the rollup period.

std_d_ns_time The standard deviation of the DNS lookup times, calculated from the raw data
points for the rollup period.

55

56

Field Description

avg_d_state The average availability of the web page, calculated from the raw data points for
the rollup period. Availability values are either zero (0, unavailable) or one (1,
available); average values will range from zero to one.

max_d_state The value of the single highest availability poll for the web page during the rollup
period. Values are either zero (0, unavailable) or one (1, available).

min_d_state The value of the single lowest availability poll for the web page during the rollup
period. Values are either zero (0, unavailable) or one (1, available).

sum_d_state The sum of all availability values for the web page during the rollup period.
Availability values are either zero (0, unavailable) or one (1, available).

std_d_state The standard deviation of availability values for the web page, calculated from the
raw data points for the rollup period.

min_d_trans_time The lowest transaction time, in seconds, of all polls during the rollup period.

max_d_trans_time The highest transaction time, in seconds, of all polls during the rollup period.

avg_d_trans_time The average transaction time, in seconds, calculated from the raw data points for
the rollup period.

sum_d_trans_time The sum of all transaction times, in seconds, during the rollup period.

std_d_trans_time The standard deviation of the transaction times, calculated from the raw data points
for the rollup period.

For the resource /data_performance_raw/device/monitor_cv, the data_fields option can include the
following fields:

Field Description

d_conn_time The connection time, in seconds.

d_dl_size The download size, in bytes.

d_dl_speed The download speed, in bytes/second.

d_ns_time The DNS lookup time, in seconds.

d_state The availability of the web page. Availability values are either zero (0, unavailable)
or one (1, available).

d_trans_time The transaction time, in seconds.

Specifying Data Fields

Specifying Data Fields

Fields for SOAP/XML Transaction Monitor Resources

For the resource /data_performance/device/monitor_tv, the data_fields option can include the following
fields:

Field Description

min_d_conn_time The lowest connection time, in seconds, of all polls during the rollup period.

max_d_conn_time The highest connection time, in seconds, of all polls during the rollup period.

avg_d_conn_time The average connection time, in seconds, calculated from the raw data points for
the rollup period.

sum_d_conn_time The sum of all connection times, in seconds, during the rollup period.

std_d_conn_time The standard deviation of the connection times, calculated from the raw data points
for the rollup period.

min_d_dl_size The lowest download size, in bytes, of all polls during the rollup period.

max_d_dl_size The highest download size, in bytes, of all polls during the rollup period.

avg_d_dl_size The average download size, in bytes, calculated from the raw data points for the
rollup period.

sum_d_dl_size The sum of all download sizes, in bytes, during the rollup period.

std_d_dl_size The standard deviation of the download sizes, calculated from the raw data points
for the rollup period.

min_d_dl_speed The lowest download speed, in bytes/second, of all polls during the rollup period.

max_d_dl_speed The highest download speed, in bytes/second, of all polls during the rollup period.

avg_d_dl_speed The average download speed, in bytes/second, calculated from the raw data points
for the rollup period.

sum_d_dl_speed The sum of all download speeds, in bytes/second, during the rollup period.

std_d_dl_speed The standard deviation of the download speeds, calculated from the raw data
points for the rollup period.

min_d_ns_time The lowest DNS lookup time, in seconds, of all polls during the rollup period.

max_d_ns_time The highest DNS lookup time, in seconds, of all polls during the rollup period.

avg_d_ns_time The average DNS lookup time, in seconds, calculated from the raw data points for
the rollup period.

sum_d_ns_time The sum of all DNS lookup times, in seconds, during the rollup period.

std_d_ns_time The standard deviation of the DNS lookup times, calculated from the raw data
points for the rollup period.

57

58

Field Description

avg_d_state The average availability of the web service, calculated from the raw data points for
the rollup period. Availability values are either zero (0, unavailable) or one (1,
available); average values will range from zero to one.

max_d_state The value of the single highest availability poll for the web service during the rollup
period. Values are either zero (0, unavailable) or one (1, available).

min_d_state The value of the single lowest availability poll for the web service during the rollup
period. Values are either zero (0, unavailable) or one (1, available).

sum_d_state The sum of all availability values for the web service during the rollup period.
Availability values are either zero (0, unavailable) or one (1, available).

std_d_state The standard deviation of availability values for the web service, calculated from the
raw data points for the rollup period.

min_d_trans_time The lowest transaction time, in seconds, of all polls during the rollup period.

max_d_trans_time The highest transaction time, in seconds, of all polls during the rollup period.

avg_d_trans_time The average transaction time, in seconds, calculated from the raw data points for
the rollup period.

sum_d_trans_time The sum of all transaction times, in seconds, during the rollup period.

std_d_trans_time The standard deviation of the transaction times, calculated from the raw data points
for the rollup period.

For the resource /data_performance_raw/device/monitor_tv, the data_fields option can include the following
fields:

Field Description

d_conn_time The connection time, in seconds.

d_dl_size The download size, in bytes.

d_dl_speed The download speed, in bytes/second.

d_ns_time The DNS lookup time, in seconds.

d_state The availability of the web service. Availability values are either zero (0, unavailable)
or one (1, available).

d_trans_time The transaction time, in seconds.

Specifying Data Fields

Specifying Data Fields

Fields for Process Monitor Resources

For the resource /data_performance/device/monitor_process, the data_fields option can include the
following fields:

Field Description

min_d_check The average availability of the process, calculated from the raw data points for the
rollup period. Availability values are either zero (0, valid process is not running or
illicit process is running) or one (1, valid process is running or illicit process is not
running); average values will range from zero to one.

max_d_check The value of the single highest availability poll for the process during the rollup
period. Values are either zero (0, valid process is not running or illicit process is
running) or one (1, valid process is running or illicit process is not running).

avg_d_check The value of the single lowest availability poll for the process during the rollup
period. Values are either zero (0, valid process is not running or illicit process is
running) or one (1, valid process is running or illicit process is not running).

sum_d_check The sum of all availability values for the process during the rollup period.
Availability values are either zero (0, valid process is not running or illicit process is
running) or one (1, valid process is running or illicit process is not running).

std_d_check The standard deviation of availability values for the process, calculated from the
raw data points for the rollup period.

min_d_counter The average number of instances of the process, calculated from the raw data
points for the rollup period.

max_d_counter The number of instances of the process at the single poll with the highest value.

avg_d_counter The number of instances of the process at the single poll with the loqest value.

sum_d_counter The sum of the number of instances of the process running at each poll during the
rollup period.

std_d_counter The standard deviation of number of instances of the process running, calculated
from the raw data points for the rollup period.

For the resource /data_performance_raw/device/monitor_process, the data_fields option can include the
following fields:

Field Description

d_check The availability of the process. Availability values are either zero (0, valid process is
not running or illicit process is running) or one (1, valid process is running or illicit
process is not running).

d_counter The number of instances of the processes running.

59

60

Fields for Windows Service Monitor Resources

For the resource /data_performance/device/monitor_service, the data_fields option can include the following
fields:

Field Description

avg_d_state The average availability of the service,calculated from the raw data points for the
rollup period. Availability values are either zero (0, valid service is not running or
illicit service is running) or one (1, valid service is running or illicit service is not
running); average values will range from zero to one.

max_d_state The value of the single highest availability poll for the service during the rollup
period. Values are either zero (0, valid service is not running or illicit service is
running) or one (1, valid service is running or illicit process is not running).

min_d_state The value of the single lowest availability poll for the service during the rollup
period. Values are either zero (0, valid service is not running or illicit service is
running) or one (1, valid service is running or illicit service is not running).

sum_d_state The sum of all availability values for the service during the rollup period. Availability
values are either zero (0, valid service is not running or illicit service is running) or
one (1, valid service is running or illicit service is not running).

std_d_state The standard deviation of availability values for the service, calculated from the raw
data points for the rollup period.

For the resource /data_performance_raw/device/monitor_service, the data_fields option can include the
following fields:

Field Description

d_state The availability of the service. Availability values are either zero (0, valid service is
not running or illicit service is running) or one (1, valid service is running or illicit
service is not running).

Specifying Data Fields

Specifying Data Fields

Fields for Email Round-Trip Monitor Resources

For the resource /data_performance/device/monitor_email, the data_fields option can include the following
fields:

Field Description

min_d_rt_time The lowest email round-trip time, in seconds, of all polls during the rollup period.

max_d_rt_time The highest email round-trip time, in seconds, of all polls during the rollup period.

avg_d_rt_time The average email round-trip time, in seconds, calculated from the raw data points
for the rollup period.

sum_d_rt_time The sum of all email round-trip times, in seconds, during the rollup period.

std_d_rt_time The standard deviation of the email round-trip times, calculated from the raw data
points for the rollup period.

min_d_state The value of the single lowest availability poll for the mail process during the rollup
period. Values are either zero (0, email response was not received within the
threshold time) or one (1, email response was received within the threshold time).

max_d_state The value of the single highest availability poll for the mail process during the rollup
period. Values are either zero (0, email response was not received within the
threshold time) or one (1, email response was received within the threshold time).

avg_d_state The average availability of the mail process, calculated from the raw data points for
the rollup period. Availability values are either zero (0, email response was not
received within the threshold time) or one (1, email response was received within the
threshold time); average values will range from zero to one.

sum_d_state The sum of all availability values for the mail process during the rollup period.
Availability values are either zero (0, email response was not received within the
threshold time) or one (1, email response was received within the threshold time).

std_d_state The standard deviation of availability values for the mail process, calculated from
the raw data points for the rollup period.

For the resource /data_performance_raw/device/monitor_email, the data_fields option can include the
following fields:

Field Description

d_rt_time The email round-trip time, in seconds.

d_state The availability of the mail service. Availability values are either zero (0, email
response was not received within the threshold time) or one (1, email response was
received within the threshold time).

61

62

Fields for DNS Monitor Resources

For the resource /data_performance/device/monitor_dns, the data_fields option can include the following
fields:

Field Description

min_d_ns_time The lowest DNS lookup time, in seconds, of all polls during the rollup period.

max_d_ns_time The highest DNS lookup time, in seconds, of all polls during the rollup period.

avg_d_ns_time The average DNS lookup time, in seconds, calculated from the raw data points for
the rollup period.

sum_d_ns_time The sum of all DNS lookup times, in seconds, during the rollup period.

std_d_ns_time The standard deviation of the DNS lookup times, calculated from the raw data
points for the rollup period.

min_d_state The value of the single lowest availability poll for the DNS record during the rollup
period. Values are either zero (0, no response or DNS record does not match the
policy) or one (1, DNS record matches the policy).

max_d_state The value of the single highest availability poll for the DNS record during the rollup
period. Values are either zero (0, no response or DNS record does not match the
policy) or one (1, DNS record matches the policy).

avg_d_state The average availability of the DNS record, calculated from the raw data points for
the rollup period. Availability values are either zero (0, no response or DNS record
does not match the policy) or one (1, DNS record matches the policy); average
values will range from zero to one.

sum_d_state The sum of all availability values for the DNS record during the rollup period.
Availability values are either zero (0, no response or DNS record does not match the
policy) or one (1, DNS record matches the policy).

std_d_state The standard deviation of availability values for the DNS record, calculated from
the raw data points for the rollup period.

For the resource /data_performance_raw/device/monitor_dns, the data_fields option can include the
following fields:

Field Description

d_ns_time The DNS lookup time, in seconds.

d_state The availability of the DNS record. Availability values are either zero (0, no
response or DNS record does not match the policy) or one (1, DNS record matches
the policy).

Specifying Data Fields

Specifying Data Fields

Fields for File System Resources

For the resource /data_performance/device/filesystem, the data_fields option can include the following fields:

Field Description

min_d_used The lowest file system usage, in kilobytes, of all polls during the rollup period.

max_d_used The highest file system usage, in kilobytes, of all polls during the rollup period.

avg_d_used The average file system usage, in kilobytes, calculated from the raw data points for
the rollup period.

sum_d_used The sum of file system usage values, in kilobytes, during the rollup period.

std_d_used The standard deviation of the file system usage values, calculated from the raw data
points for the rollup period.

min_d_used_percent The lowest file system utilization, in percent, of all polls during the rollup period.

max_d_used_percent The highest file system utilization, in percent, of all polls during the rollup period.

avg_d_used_percent The average file system utilization, in percent, calculated from the raw data points
for the rollup period.

sum_d_used_percent The sum of all file system utilization values, in percent, during the rollup period.

sum_d_used_percent The standard deviation of the file system usage values, calculated from the raw data
points for the rollup period.

For the resource /data_performance_raw/device/filesystem, the data_fields option can include the following
fields:

Field Description

d_used File system usage in kilobytes.

d_used_percent File system utilization in percent.

63

64

Fields for Availability Resources

For the resource /data_performance/device/avail, the data_fields option can include the following fields:

Field Description

min_d_check The value of the single lowest availability poll for the device during the rollup
period. Values are either zero (0, unavailable) or one (1, available).

max_d_check The value of the single highest availability poll for the device during the rollup
period. Values are either zero (0, unavailable) or one (1, available).

avg_d_check The average availability of the device, calculated from the raw data points for the
rollup period. Availability values are either zero (0, unavailable) or one (1,
available); average values will range from zero to one.

sum_d_check The sum of all availability values for the device during the rollup period. Availability
values are either zero (0, unavailable) or one (1, available).

std_d_check The standard deviation of availability values for the device, calculated from the raw
data points for the rollup period.

min_d_latency The value of the single lowest latency poll, in milliseconds, for the device during the
rollup period.

max_d_latency The value of the single highest latency poll, in milliseconds, for the device during the
rollup period.

avg_d_latency The average latency of the device, in milliseconds, calculated from the raw data
points for the rollup period.

sum_d_latency The sum of all latency values, in milliseconds, for the device during the rollup
period.

std_d_latency The standard deviation of latency values for the device, calculated from the raw
data points for the rollup period.

For the resource /data_performance_raw/device/avail, the data_fields option can include the following fields:

Field Description

d_check The availability of the device. Availability values are either zero (0, unavailable) or
one (1, available).

d_latency The latency of the device, in milliseconds.

Specifying Data Fields

Specifying Data Fields

Fields for Interface Resources

For the resource /data_performance/interface, the data_fields option can include the following fields for
utilization, error, and discard metrics:

NOTE: A single request to /data_performance/interface cannot include data fields from this list and data
fields for packet metrics.

Field Description

min_d_discards_in The lowest number of discarded inbound packets per poll for the interface during
the rollup period.

max_d_discards_in The highest number of discarded inbound packets per poll for the interface during
the rollup period.

avg_d_discards_in The average number of discarded inbound packets per poll for the interface during
the rollup period.

sum_d_discards_in The total number of discarded inbound packets for the interface during the rollup
period.

std_d_discards_in The standard deviation of discarded inbound packets for the interface, calculated
from the raw data points for the rollup period.

min_d_discards_out The lowest number of discarded outbound packets per poll for the interface during
the rollup period.

max_d_discards_out The highest number of discarded outbound packets per poll for the interface during
the rollup period.

avg_d_discards_out The average number of discarded outbound packets per poll for the interface
during the rollup period.

sum_d_discards_out The total number of discarded outbound packets for the interface during the rollup
period.

std_d_discards_out The standard deviation of discarded outbound packets for the interface, calculated
from the raw data points for the rollup period.

min_d_errors_in The lowest number of inbound packet errors per poll for the interface during the
rollup period.

max_d_errors_in The highest number of inbound packet errors per poll for the interface during the
rollup period.

avg_d_errors_in The average number of inbound packet errors per poll for the interface during the
rollup period.

65

66

Field Description

sum_d_errors_in The total number of inbound packet errors for the interface during the rollup period.

std_d_errors_in The standard deviation of inbound packet errors for the interface, calculated from
the raw data points for the rollup period.

min_d_errors_out The lowest number of outbound packet errors per poll for the interface during the
rollup period.

max_d_errors_out The highest number of outbound packet errors per poll for the interface during the
rollup period.

avg_d_errors_out The average number of outbound packet errors per poll for the interface during the
rollup period.

sum_d_errors_out The total number of outbound packet errors for the interface during the rollup
period.

std_d_errors_out The standard deviation of outbound packet errors for the interface, calculated from
the raw data points for the rollup period.

min_d_octets_in The lowest number of inbound octets per poll for the interface during the rollup
period.

max_d_octets_in The highest number of inbound octets per poll for the interface during the rollup
period.

avg_d_octets_in The average number of inbound octets per poll for the interface during the rollup
period.

sum_d_octets_in The total number of inbound octets for the interface during the rollup period.

std_d_octets_in The standard deviation of inbound octets for the interface, calculated from the raw
data points for the rollup period.

min_d_octets_out The lowest number of outbound octets per poll for the interface during the rollup
period.

max_d_octets_out The highest number of outbound octets per poll for the interface during the rollup
period.

avg_d_octets_out The average number of outbound octets per poll for the interface during the rollup
period.

sum_d_octets_out The total number of outbound octets for the interface during the rollup period.

std_d_octets_out The standard deviation of outbound octets for the interface, calculated from the raw
data points for the rollup period.

min_d_perc_discards_in The lowest percentage of discarded inbound packets per poll for the interface
during the rollup period.

max_d_perc_discards_in The highest percentage of discarded inbound packets per poll for the interface
during the rollup period.

Specifying Data Fields

Specifying Data Fields

Field Description

avg_d_perc_discards_in The average percentage of discarded inbound packets per poll for the interface
during the rollup period.

sum_d_perc_discards_in The sum of all percentages of discarded inbound packets for the interface during
the rollup period.

std_d_perc_discards_in The standard deviation of discarded inbound packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_perc_discards_out The lowest percentage of discarded outbound packets per poll for the interface
during the rollup period.

max_d_perc_discards_out The highest percentage of discarded outbound packets per poll for the interface
during the rollup period.

avg_d_perc_discards_out The average percentage of discarded outbound packets per poll for the interface
during the rollup period.

sum_d_perc_discards_out The sum of all percentages of discarded outbound packets for the interface during
the rollup period.

std_d_perc_discards_out The standard deviation of discarded outbound packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_perc_errors_in The lowest percentage of inbound packet errors per poll for the interface during the
rollup period.

max_d_perc_errors_in The highest percentage of inbound packet errors per poll for the interface during
the rollup period.

avg_d_perc_errors_in The average percentage of inbound packet errors per poll for the interface during
the rollup period.

sum_d_perc_errors_in The sum of all percentages of inbound packet errors for the interface during the
rollup period.

std_d_perc_errors_in The standard deviation of inbound packet errors in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_perc_errors_out The lowest percentage of outbound packet errors per poll for the interface during
the rollup period.

max_d_perc_errors_out The highest percentage of outbound packet errors per poll for the interface during
the rollup period.

avg_d_perc_errors_out The average percentage of outbound packet errors per poll for the interface during
the rollup period.

sum_d_perc_errors_out The sum of all percentages of outbound packet errors for the interface during the
rollup period.

67

68

Field Description

std_d_perc_errors_out The standard deviation of outbound packet errors in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_perc_in The lowest inbound utilization, in percent, per poll for the interface during the rollup
period.

max_d_perc_in The highest inbound utilization, in percent, per poll for the interface during the
rollup period.

avg_d_perc_in The average inbound utilization, in percent, for the interface during the rollup
period.

sum_d_perc_in The sum of all percentage values for inbound utilization for the interface during the
rollup period.

std_d_perc_in The standard deviation of inbound utilization values for the interface, calculated
from the raw data points for the rollup period.

min_d_perc_out The lowest outbound utilization, in percent, per poll for the interface during the
rollup period.

max_d_perc_out The highest outbound utilization, in percent, per poll for the interface during the
rollup period.

avg_d_perc_out The average outbound utilization, in percent, for the interface during the rollup
period.

sum_d_perc_out The sum of all percentage values for outbound utilization for the interface during
the rollup period.

std_d_perc_out The standard deviation of outbound utilization values for the interface, calculated
from the raw data points for the rollup period.

For the resource /data_performance/interface, the data_fields option can include the following fields for
packet metrics:

NOTE: A single request to /data_performance_raw/interface cannot include data fields from this list and
data fields for utilization, error, and discard metrics.

Field Description

min_d_ifp_inbound_
unicast_packets

The lowest number of inbound unicast packets per poll for the interface during the
rollup period.

max_d_ifp_inbound_
unicast_packets

The highest number of inbound unicast packets per poll for the interface during the
rollup period.

Specifying Data Fields

Specifying Data Fields

Field Description

avg_d_ifp_inbound_
unicast_packets

The average number of inbound unicast packets per poll for the interface during the
rollup period.

sum_d_ifp_inbound_
unicast_packets

The total number of inbound unicast packets for the interface during the rollup
period.

std_d_ifp_inbound_
unicast_packets

The standard deviation of inbound unicast packets for the interface, calculated from
the raw data points for the rollup period.

min_d_ifp_inbound_
multicast_packets

The lowest number of inbound multicast packets per poll for the interface during the
rollup period.

max_d_ifp_inbound_
multicast_packets

The highest number of inbound multicast packets per poll for the interface during
the rollup period.

avg_d_ifp_inbound_
multicast_packets

The average number of inbound multicast packets per poll for the interface during
the rollup period.

sum_d_ifp_inbound_
multicast_packets

The total number of inbound multicast packets for the interface during the rollup
period.

std_d_ifp_inbound_
multicast_packets

The standard deviation of inbound multicast packets for the interface, calculated
from the raw data points for the rollup period.

min_d_ifp_inbound_
broadcast_packets

The lowest number of inbound broadcast packets per poll for the interface during
the rollup period.

max_d_ifp_inbound_
broadcast_packets

The highest number of inbound broadcast packets per poll for the interface during
the rollup period.

avg_d_ifp_inbound_
broadcast_packets

The average number of inbound broadcast packets per poll for the interface during
the rollup period.

sum_d_ifp_inbound_
broadcast_packets

The total number of inbound broadcast packets for the interface during the rollup
period.

std_d_ifp_inbound_
broadcast_packets

The standard deviation of inbound broadcast packets for the interface, calculated
from the raw data points for the rollup period.

min_d_ifp_outbound_
unicast_packets

The lowest number of outbound unicast packets per poll for the interface during the
rollup period.

max_d_ifp_outbound_
unicast_packets

The highest number of outbound unicast packets per poll for the interface during
the rollup period.

avg_d_ifp_outbound_
unicast_packets

The average number of outbound unicast packets per poll for the interface during
the rollup period.

sum_d_ifp_outbound_
unicast_packets

The total number of outbound unicast packets for the interface during the rollup
period.

69

70

Field Description

std_d_ifp_outbound_
unicast_packets

The standard deviation of outbound unicast packets for the interface, calculated
from the raw data points for the rollup period.

min_d_ifp_outbound_
multicast_packets

The lowest number of outbound multicast packets per poll for the interface during
the rollup period.

max_d_ifp_outbound_
multicast_packets

The highest number of outbound multicast packets per poll for the interface during
the rollup period.

avg_d_ifp_outbound_
multicast_packets

The average number of outbound multicast packets per poll for the interface during
the rollup period.

sum_d_ifp_outbound_
multicast_packets

The total number of outbound multicast packets for the interface during the rollup
period.

std_d_ifp_outbound_
multicast_packets

The standard deviation of outbound multicast packets for the interface, calculated
from the raw data points for the rollup period.

min_d_ifp_outbound_
broadcast_packets

The lowest number of outbound broadcast packets per poll for the interface during
the rollup period.

max_d_ifp_outbound_
broadcast_packets

The highest number of outbound broadcast packets per poll for the interface during
the rollup period.

avg_d_ifp_outbound_
broadcast_packets

The average number of outbound broadcast packets per poll for the interface
during the rollup period.

sum_d_ifp_outbound_
broadcast_packets

The total number of outbound broadcast packets for the interface during the rollup
period.

std_d_ifp_outbound_
broadcast_packets

The standard deviation of outbound broadcast packets for the interface, calculated
from the raw data points for the rollup period.

min_d_ifp_unicast_perc_
in

The lowest percentage of inbound unicast packets per poll for the interface during
the rollup period.

max_d_ifp_unicast_perc_
in

The highest percentage of inbound unicast packets per poll for the interface during
the rollup period.

avg_d_ifp_unicast_perc_
in

The average percentage of inbound unicast packets per poll for the interface during
the rollup period.

sum_d_ifp_unicast_perc_
in

The sum of all percentages of inbound unicast packets for the interface during the
rollup period.

std_d_ifp_unicast_perc_in The standard deviation of inbound unicast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_ifp_multicast_
perc_in

The lowest percentage of inbound multicast packets per poll for the interface during
the rollup period.

Specifying Data Fields

Specifying Data Fields

Field Description

max_d_ifp_multicast_
perc_in

The highest percentage of inbound multicast packets per poll for the interface
during the rollup period.

avg_d_ifp_multicast_
perc_in

The average percentage of inbound multicast packets per poll for the interface
during the rollup period.

sum_d_ifp_multicast_
perc_in

The sum of all percentages of inbound multicast packets for the interface during the
rollup period.

std_d_ifp_multicast_perc_
in

The standard deviation of inbound multicast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_ifp_broadcast_
perc_in

The lowest percentage of inbound broadcast packets per poll for the interface
during the rollup period.

max_d_ifp_broadcast_
perc_in

The highest percentage of inbound broadcast packets per poll for the interface
during the rollup period.

avg_d_ifp_broadcast_
perc_in

The average percentage of inbound broadcast packets per poll for the interface
during the rollup period.

sum_d_ifp_broadcast_
perc_in

The sum of all percentages of inbound broadcast packets for the interface during
the rollup period.

std_d_ifp_broadcast_
perc_in

The standard deviation of inbound broadcast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_ifp_unicast_perc_
out

The lowest percentage of outbound unicast packets per poll for the interface during
the rollup period.

max_d_ifp_unicast_perc_
out

The highest percentage of outbound unicast packets per poll for the interface
during the rollup period.

avg_d_ifp_unicast_perc_
out

The average percentage of outbound unicast packets per poll for the interface
during the rollup period.

sum_d_ifp_unicast_perc_
out

The sum of all percentages of outbound unicast packets for the interface during the
rollup period.

std_d_ifp_unicast_perc_
out

The standard deviation of outbound unicast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_ifp_multicast_
perc_out

The lowest percentage of outbound multicast packets per poll for the interface
during the rollup period.

max_d_ifp_multicast_
perc_out

The highest percentage of outbound multicast packets per poll for the interface
during the rollup period.

avg_d_ifp_multicast_
perc_out

The average percentage of outbound multicast packets per poll for the interface
during the rollup period.

71

72

Field Description

sum_d_ifp_multicast_
perc_out

The sum of all percentages of outbound multicast packets for the interface during
the rollup period.

std_d_ifp_multicast_perc_
out

The standard deviation of outbound multicast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_ifp_broadcast_
perc_out

The lowest percentage of outbound broadcast packets per poll for the interface
during the rollup period.

max_d_ifp_broadcast_
perc_out

The highest percentage of outbound broadcast packets per poll for the interface
during the rollup period.

avg_d_ifp_broadcast_
perc_out

The average percentage of outbound broadcast packets per poll for the interface
during the rollup period.

sum_d_ifp_broadcast_
perc_out

The sum of all percentages of outbound broadcast packets for the interface during
the rollup period.

std_d_ifp_broadcast_
perc_out

The standard deviation of outbound broadcast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_ifp_inbound_total_
packets

The lowest number of inbound packets per poll for the interface during the rollup
period.

max_d_ifp_inbound_
total_packets

The highest number of inbound packets per poll for the interface during the rollup
period.

avg_d_ifp_inbound_total_
packets

The average number of inbound packets per poll for the interface during the rollup
period.

sum_d_ifp_inbound_
total_packets

The total number of inbound packets for the interface during the rollup period.

std_d_ifp_inbound_total_
packets

The standard deviation of inbound packets for the interface, calculated from the
raw data points for the rollup period.

min_d_ifp_outbound_
total_packets

The lowest number of outbound packets per poll for the interface during the rollup
period.

max_d_ifp_outbound_
total_packets

The highest number of outbound packets per poll for the interface during the rollup
period.

avg_d_ifp_outbound_
total_packets

The average number of outbound packets per poll for the interface during the rollup
period.

sum_d_ifp_outbound_
total_packets

The total number of outbound packets for the interface during the rollup period.

std_d_ifp_outbound_
total_packets

The standard deviation of outbound packets for the interface, calculated from the
raw data points for the rollup period.

Specifying Data Fields

Specifying Data Fields

Field Description

min_d_ifp_unicast_in The lowest inbound unicast packet rate (packets/second) per poll for the interface
during the rollup period.

max_d_ifp_unicast_in The highest inbound unicast packet rate (packets/second) per poll for the interface
during the rollup period.

avg_d_ifp_unicast_in The average inbound unicast packet rate (packets/second) per poll for the interface
during the rollup period.

sum_d_ifp_unicast_in The total of all inbound unicast packet rates (packets/second) for the interface
during the rollup period.

std_d_ifp_unicast_in The standard deviation of inbound unicast packet rates (packets/second) for the
interface, calculated from the raw data points for the rollup period.

min_d_ifp_multicast_in The lowest inbound multicast packet rate (packets/second) per poll for the interface
during the rollup period.

max_d_ifp_multicast_in The highest inbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

avg_d_ifp_multicast_in The average inbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d_ifp_multicast_in The total all inbound multicast packet rates (packets/second) for the interface
during the rollup period.

std_d_ifp_multicast_in The standard deviation of inbound multicast packet rates (packets/second) for the
interface, calculated from the raw data points for the rollup period.

min_d_ifp_broadcast_in The lowest inbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

max_d_ifp_broadcast_in The highest inbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

avg_d_ifp_broadcast_in The average inbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d_ifp_broadcast_in The total of all inbound broadcast rates (packets/second) for the interface during
the rollup period.

std_d_ifp_broadcast_in The standard deviation of inbound broadcast packet rates (packets/second) for the
interface, calculated from the raw data points for the rollup period.

min_d_ifp_unicast_out The lowest outbound unicast packet rate (packets/second) per poll for the interface
during the rollup period.

max_d_ifp_unicast_out The highest outbound unicast packet rate (packets/second) per poll for the interface
during the rollup period.

73

74

Field Description

avg_d_ifp_unicast_out The average outbound unicast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d_ifp_unicast_out The total of all outbound unicast packet rates (packets/second) for the interface
during the rollup period.

std_d_ifp_unicast_out The standard deviation of outbound unicast packet rates (packets/second) for the
interface, calculated from the raw data points for the rollup period.

min_d_ifp_multicast_out The lowest outbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

max_d_ifp_multicast_out The highest outbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

avg_d_ifp_multicast_out The average outbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d_ifp_multicast_out The total all outbound multicast packet rates (packets/second) for the interface
during the rollup period.

std_d_ifp_multicast_out The standard deviation of outbound multicast packet rates (packets/second) for the
interface, calculated from the raw data points for the rollup period.

min_d_ifp_broadcast_out The lowest outbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

max_d_ifp_broadcast_out The highest outbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

avg_d_ifp_broadcast_out The average outbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d_ifp_broadcast_out The total of all outbound broadcast rates (packets/second) for the interface during
the rollup period.

std_d_ifp_broadcast_out The standard deviation of outbound broadcast packet rates (packets/second) for
the interface, calculated from the raw data points for the rollup period.

For the resource /data_performance_raw/interface, the data_fields option can include the following fields for
utilization, error, and discard metrics:

NOTE: A single request to /data_performance_raw/interface cannot include data fields from this list and
data fields for packet metrics.

Specifying Data Fields

Specifying Data Fields

Field Description

d_discards_in The number of inbound packet discards for an interface.

d_discards_out The number of outbound packet discards for an interface.

d_errors_in The number of inbound packet errors for an interface.

d_errors_out The number of outbound packet errors for an interface.

d_octets_in The number of inbound octets for an interface.

d_octets_out The number of outbound octets for an interface.

d_bps_in The inbound utilization for an interface, in bytes per second.

d_bps_out The outbound utilization for an interface, in bytes per second.

d_perc_discards_in The percentage of inbound packets that were discarded for an interface.

d_perc_discards_out The percentage of outbound packets that were discarded for an interface.

d_perc_errors_in The percentage of inbound packets that caused errors for an interface.

d_perc_errors_out The percentage of outbound packets that caused errors for an interface.

d_perc_in The inbound utilization for an interface, in percent.

d_perc_out The outbound utilization for an interface, in percent.

For the resource /data_performance_raw/interface, the data_fields option can include the following fields for
packet metrics:

NOTE: A single request to /data_performance_raw/interface cannot include data fields from this list and
data fields for utilization, error, and discard metrics.

Field Description

d_ifp_inbound_unicast_
packets

The number of inbound unicast packets for an interface.

d_ifp_inbound_multicast_
packets

The number of inbound multicast packets for an interface.

d_ifp_inbound_
broadcast_packets

The number of inbound broadcast packets for an interface.

d_ifp_outbound_unicast_
packets

The number of outbound unicast packets for an interface.

75

76

Field Description

d_ifp_outbound_
multicast_packets

The number of outbound multicast packets for an interface.

d_ifp_outbound_
broadcast_packets

The number of outbound broadcast packets for an interface.

d_ifp_unicast_perc_in The percentage of inbound packets that were unicast for an interface.

d_ifp_multicast_perc_in The percentage of inbound packets that were multicast for an interface.

d_ifp_broadcast_perc_in The percentage of inbound packets that were broadcast for an interface.

d_ifp_unicast_perc_out The percentage of outbound packets that were unicast for an interface.

d_ifp_multicast_perc_out The percentage of outbound packets that were multicast for an interface.

d_ifp_broadcast_perc_out The percentage of outbound packets that were broadcast for an interface.

d_ifp_inbound_total_
packets

The total number of inbound packets for an interface.

d_ifp_outbound_total_
packets

The total number of outbound packets for an interface.

d_ifp_unicast_in The number of inbound unicast packets per second for an interface.

d_ifp_multicast_in The number of inbound multicast packets per second for an interface.

d_ifp_broadcast_in The number of inbound broadcast packets per second for an interface.

d_ifp_unicast_out The number of outbound unicast packets per second for an interface.

d_ifp_multicast_out The number of outbound multicast packets per second for an interface.

d_ifp_broadcast_out The number of outbound broadcast packets per second for an interface.

Fields for CBQoS Resources

For the resource /data_performance/cbqos, the data_fields option can include the following fields:

Field Description

min_classmap_pre_
policy_rate_bits_per_
second

The lowest interface utilization, in bps, before applying the CBQoS policy during the
rollup period.

max_classmap_pre_
policy_rate_bits_per_
second

The highest interface utilization, in bps, before applying the CBQoS policy during
the rollup period.

Specifying Data Fields

Specifying Data Fields

Field Description

avg_classmap_pre_
policy_rate_bits_per_
second

The average interface utilization, in bps, before applying the CBQoS policy during
the rollup period.

sum_classmap_pre_
policy_rate_bits_per_
second

The total interface utilization, in bps, before applying the CBQoS policy during the
rollup period.

std_classmap_pre_policy_
rate_bits_per_second

The standard deviation of the interface utilization values (calculated from the raw
data points for the rollup period), before applying the CBQoS policy .

min_classmap_post_
policy_rate_bits_per_
second

The lowest interface utilization, in bps, after applying the CBQoS policy during the
rollup period.

max_classmap_post_
policy_rate_bits_per_
second

The highest interface utilization, in bps, after applying the CBQoS policy during the
rollup period.

avg_classmap_post_
policy_rate_bits_per_
second

The average interface utilization, in bps, after applying the CBQoS policy during the
rollup period.

sum_classmap_post_
policy_rate_bits_per_
second

The total interface utilization, in bps, after applying the CBQoS policy during the
rollup period.

std_classmap_post_
policy_rate_bits_per_
second

The standard deviation of the interface utilization, in bps (calculated from the raw
data points for the rollup period), after applying the CBQoS policy.

min_classmap_drop_
rate_bits_per_second

The lowest drop rate, in bps, for the class map during the rollup period.

max_classmap_drop_
rate_bits_per_second

The highest drop rate, in bps, for the class map during the rollup period.

avg_classmap_drop_
rate_bits_per_second

The average drop rate, in bps, for the class map during the rollup period.

sum_classmap_drop_
rate_bits_per_second

The total drop rate, in bps, for the class map during the rollup period.

std_classmap_drop_rate_
bits_per_second

The standard deviation of drop rate values (calculated from the raw data points for
the rollup period), in bps, for the class map.

min_classmap_pre_
policy_inbound_bytes

The lowest inbound interface utilization, in bytes, before applying the CBQoS policy
during the rollup period.

max_classmap_pre_
policy_inbound_bytes

The highest inbound interface utilization, in bytes, before applying the CBQoS
policy during the rollup period.

77

78

Field Description

avg_classmap_pre_
policy_inbound_bytes

The average inbound interface utilization, in bytes, before applying the CBQoS
policy during the rollup period.

sum_classmap_pre_
policy_inbound_bytes

The total inbound interface utilization, in bytes, before applying the CBQoS policy
during the rollup period.

std_classmap_pre_policy_
inbound_bytes

The standard deviation of inbound interface utilization values (calculated from the
raw data points for the rollup period), before applying the CBQoS policy.

min_classmap_post_
policy_outbound_bytes

The lowest outbound interface utilization, in bytes, after applying the CBQoS policy
during the rollup period.

max_classmap_post_
policy_outbound_bytes

The highest outbound interface utilization, in bytes, after applying the CBQoS policy
during the rollup period.

avg_classmap_post_
policy_outbound_bytes

The average outbound interface utilization, in bytes, after applying the CBQoS
policy during the rollup period.

sum_classmap_post_
policy_outbound_bytes

The total outbound interface utilization, in bytes, after applying the CBQoS policy
during the rollup period.

std_classmap_post_
policy_outbound_bytes

The standard deviation of outbound interface utilization values (calculated from the
raw data points for the rollup period), after applying the CBQoS policy.

min_policing_
conforming_rate_bits_
per_second

The lowest collected traffic value, in bps, that conformed to the policing policy
during the rollup period.

max_policing_
conforming_rate_bits_
per_second

The highest collected traffic value, in bps, that conformed to the policing policy
during the rollup period.

avg_policing_
conforming_rate_bits_
per_second

The average collected traffic value, in bps, that conformed to the policing policy
during the rollup period.

sum_policing_
conforming_rate_bits_
per_second

The total collected traffic value, in bps, that conformed to the policing policy during
the rollup period.

std_policing_conforming_
rate_bits_per_second

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that conformed to the policing policy.

min_classmap_drops_
bytes

The lowest drop rate, in bytes, for the class map during the rollup period.

max_classmap_drops_
bytes

The highest drop rate, in bytes, for the class map during the rollup period.

avg_classmap_drops_
bytes

The average drop rate, in bytes, for the class map during the rollup period.

Specifying Data Fields

Specifying Data Fields

Field Description

sum_classmap_drops_
bytes

The total drop rate, in bytes, for the class map during the rollup period.

std_classmap_drops_
bytes

The standard deviation (calculated from the raw data points for the rollup period) of
collected drop rate values.

min_policing_non_
conforming_rate_bits_
per_second

The lowest collected traffic value, in bps, that did not conform to the policing policy
during the rollup period.

max_policing_non_
conforming_rate_bits_
per_second

The highest collected traffic value, in bps, that did not conform to the policing policy
during the rollup period.

avg_policing_non_
conforming_rate_bits_
per_second

The average collected traffic value, in bps, that did not conform to the policing
policy during the rollup period.

sum_policing_non_
conforming_rate_bits_
per_second

The total collected traffic value, in bps, that did not conform to the policing policy
during the rollup period.

std_policing_non_
conforming_rate_bits_
per_second

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that did not conform to the policing policy.

min_policing_violation_
rate_bits_per_second

The lowest collected traffic value, in bps, that violated the policing policy during the
rollup period.

max_policing_violation_
rate_bits_per_second

The highest collected traffic value, in bps, that violated the policing policy during
the rollup period.

avg_policing_violation_
rate_bits_per_second

The average collected traffic value, in bps, that violated the policing policy during
the rollup period.

sum_policing_violation_
rate_bits_per_second

The total collected traffic value, in bps, that violated the policing policy during the
rollup period.

std_policing_violation_
rate_bits_per_second

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that violated the policing policy.

min_policing_
conforming_bytes

The lowest collected traffic value, in bytes, that conformed to the policing policy
during the rollup period.

max_policing_
conforming_bytes

The highest collected traffic value, in bytes, that conformed to the policing policy
during the rollup period.

avg_policing_
conforming_bytes

The average collected traffic value, in bytes, that conformed to the policing policy
during the rollup period.

79

80

Field Description

sum_policing_
conforming_bytes

The total collected traffic value, in bytes, that conformed to the policing policy
during the rollup period.

std_policing_conforming_
bytes

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that conformed to the policing policy.

min_policing_non_
conforming_bytes

The lowest collected traffic value, in bytes, that did not conform to the policing
policy during the rollup period.

max_policing_non_
conforming_bytes

The highest collected traffic value, in bytes, that did not conform to the policing
policy during the rollup period.

avg_policing_non_
conforming_bytes

The average collected traffic value, in bytes, that did not conform to the policing
policy during the rollup period.

sum_policing_non_
conforming_bytes

The total collected traffic value, in bytes, that did not conform to the policing policy
during the rollup period.

std_policing_non_
conforming_bytes

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that did not conform to the policing policy.

min_policing_violations_
bytes

The lowest collected traffic value, in bytes, that violated the policing policy during
the rollup period.

max_policing_violations_
bytes

The highest collected traffic value, in bytes, that violated the policing policy during
the rollup period.

avg_policing_violations_
bytes

The average collected traffic value, in bytes, that violated the policing policy during
the rollup period.

sum_policing_violations_
bytes

The total collected traffic value, in bytes, that violated the policing policy during the
rollup period.

std_policing_violations_
bytes

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that violated the policing policy.

min_queueing_discards_
bytes

The lowest discarded traffic, in bytes, for the queueing policy during the rollup
period.

max_queueing_discards_
bytes

The highest discarded traffic, in bytes, for the queueing policy during the rollup
period.

avg_queueing_discards_
bytes

The average discarded traffic, in bytes, for the queueing policy during the rollup
period.

sum_queueing_discards_
bytes

The total discarded traffic, in bytes, for the queueing policy during the rollup period.

std_queueing_discards_
bytes

The standard deviation of collected discarded traffic values (calculated from the raw
data points for the rollup period) for the queueing policy.

Specifying Data Fields

Specifying Data Fields

Field Description

min_queueing_current_
queue_depth_bytes

The lowest queue depth, in bytes, for the queueing policy during the rollup period.

max_queueing_current_
queue_depth_bytes

The highest queue depth, in bytes, for the queueing policy during the rollup period.

avg_queueing_current_
queue_depth_bytes

The average queue depth, in bytes, for the queueing policy during the rollup period.

sum_queueing_current_
queue_depth_bytes

The total queue depth, in bytes, for the queueing policy during the rollup period.

std_queueing_current_
queue_depth_bytes

The standard deviation of collected queue depth values (calculated from the raw
data points for the rollup period) for the queueing policy.

min_classmap_pre_
policy_inbound_
utilization_percent

The lowest inbound interface utilization, in percent, before applying the CBQoS
policy during the rollup period.

max_classmap_pre_
policy_inbound_
utilization_percent

The highest inbound interface utilization, in percent, before applying the CBQoS
policy during the rollup period.

avg_classmap_pre_
policy_inbound_
utilization_percent

The average inbound interface utilization, in percent, before applying the CBQoS
policy during the rollup period.

sum_classmap_pre_
policy_inbound_
utilization_percent

The total inbound interface utilization, in percent, before applying the CBQoS
policy during the rollup period.

std_classmap_pre_policy_
inbound_utilization_
percent

The standard deviation of the percent inbound interface utilization values
(calculated from the raw data points for the rollup period), before applying the
CBQoS policy.

min_classmap_post_
policy_outbound_
utilization_percent

The lowest outbound interface utilization, in percent, after applying the CBQoS
policy during the rollup period.

max_classmap_post_
policy_outbound_
utilization_percent

The highest outbound interface utilization, in percent, after applying the CBQoS
policy during the rollup period.

avg_classmap_post_
policy_outbound_
utilization_percent

The average outbound interface utilization, in percent, after applying the CBQoS
policy during the rollup period.

sum_classmap_post_
policy_outbound_
utilization_percent

The total outbound interface utilization, in percent, after applying the CBQoS policy
during the rollup period.

81

82

Field Description

std_classmap_post_
policy_outbound_
utilization_percent

The standard deviation of the percent outbound interface utilization values
(calculated from the raw data points for the rollup period, after applying the CBQoS
policy.

min_queueing_discard_
rate_bytes_per_second

The lowest discard rate, in bps, for the queueing policy during the rollup period.

max_queueing_discard_
rate_bytes_per_second

The highest discard rate, in bps, for the queueing policy during the rollup period.

avg_queueing_discard_
rate_bytes_per_second

The average discard rate, in bps, for the queueing policy during the rollup period.

sum_queueing_discard_
rate_bytes_per_second

The total discard rate, in bps, for the queueing policy during the rollup period.

std_queueing_discard_
rate_bytes_per_second

The standard deviation of collected discard rate values (calculated from the raw
data points for the rollup period) for the queueing policy.

For the resource /data_performance_raw/cbqos, the data_fields option can include the following fields:

Field Description

classmap_drop_rate_bits_
per_second

The drop rate, in bps, for the class map.

classmap_drops_bytes The drop rate, in bytes, for the class map.

classmap_pre_policy_
rate_bits_per_second

The total interface utilization, in bps, before applying the CBQoS policy.

classmap_post_policy_
rate_bits_per_second

The total interface utilization, in bps, after applying the CBQoS policy.

classmap_pre_policy_
inbound_bytes

The inbound interface utilization, in bps, before applying the CBQoS policy.

classmap_post_policy_
outbound_bytes

The outbound interface utilization, in bps, after applying the CBQoS policy.

classmap_pre_policy_
inbound_utilization_
percent

The inbound interface utilization, in percent, before applying the CBQoS policy.

classmap_post_policy_
outbound_utilization_
percent

The outbound interface utilization, in percent, after applying the CBQoS policy.

Specifying Data Fields

Requesting Data for Specific Devices or Interfaces

Field Description

policing_conforming_
rate_bits_per_second

The total traffic, in bps, that conformed to the policing policy.

policing_non_
conforming_rate_bits_
per_second

The total traffic, in bps, that did not conform to the policing policy.

policing_violation_rate_
bits_per_second

The total traffic, in bps, that violated the policing policy.

policing_conforming_
bytes

The total traffic, in bytes, that conformed to the policing policy.

policing_non_
conforming_bytes

The total traffic, in bytes, that did not conform to the policing policy.

policing_violations_bytes The total traffic, in bytes, that violated the policing policy.

queueing_discards_bytes The discarded traffic, in bytes, for the queueing policy.

queueing_current_queue_
depth_bytes

The queue depth, in bytes, for the queueing policy.

queueing_discard_rate_
bytes_per_second

The discard rate, in bps, for the queueing policy.

Requesting Data for Specific Devices or Interfaces

By default, the sub-resources of /data_performance and /data_performance_raw return data for all devices
or interfaces for which data of the specified type exists.

The default response from the sub-resources of /data_performance and /data_performance_raw include a
searchspec section. The fields section of the searchspec includes a list of attribute values for devices or interfaces.
The attribute values can be used to filter the result. See the chapter on Resources and URIs for information on
how to use these fields to filter results.

Filtering Device Resources

The following fields can be used to filter device data:

Field Description

device Supply numeric values to match against device IDs. The response will include
devices with matching IDs.

83

84

Field Description

device/class_type/class Supply string values to match against Device Class (typically vendors or
manufacturers, e.g. "Cisco Systems"). The response will include devices with a
matching device class.

device/class_type/description Supply string values to match against Device Class descriptions (typically
device models, e.g. "Catalyst 3750"). The response will include devices with a
matching device class.

device/class_type/device_
category/cat_name

Supply string values to match against device categories, e.g.
"Network.Switches". The response will include devices with a matching device
category.

device/class_type/device_
category/guid

Supply string values to match against device category GUIDs. The response
will include devices with a matching device category.

device/class_type/guid Supply string values to match against device class GUIDs. The response will
include devices with a matching device class.

device/merged_class_
type/class

Supply one or more Device Classes (typically vendors or manufacturers, e.g.
"Cisco Systems") to filter on. The response will include physical devices that are
merged with a component device and that component device has matching
device class.

device/merged_class_
type/description

Supply string values to match against Device Class descriptions (typically
device models, e.g. "Catalyst 3750"). The response will include physical
devices that are merged with a component device and that component device
has matching device class.

device/merged_class_
type/device_category/cat_
name

Supply string values to match against device categories, e.g.
"Network.Switches". The response will include physical devices that are
merged with a component device and that component device has matching
device category.

device/merged_class_
type/device_category/guid

Supply string values to match against device category GUIDs. The response
will include physical devices that are merged with a component device and
that component device has matching device category.

device/merged_class_type/guid Supply string values to match against device class GUIDs. The response will
include physical devices that are merged with a component device and that
component device has matching device class.

device/name Supply string values to match against device names. The response will include
devices with matching names.

device/organization Supply URIs to match against organizations. The response will include devices
in the matching organizations.

device/organization/company Supply string values to match against organization names. The response will
include devices in the matching organizations.

Requesting Data for Specific Devices or Interfaces

Requesting Data for Specific Devices or Interfaces

Field Description

idx Supply numeric values to match against:
l For Dynamic Applications, the index values assigned to each time
series. The response will include time series with matching indexes.

l For monitoring policies, the policy IDs. The response will include
monitoring policies with matching IDs.

l For file systems, the file system IDs. The response will include file
systems with matching IDs.

This option is not available for the resources /data_
performance/device/avail or /data_performance_raw/device/avail.

idx_label Supply string values to match against:
l For Dynamic Applications, the labels associated with each time series.
The response will include time series with matching labels.

l For Windows service and system process monitoring policies, the name
of the service or process. The response will include policies with
matching service or process names.

l For email round-trip, web content, and SOAP/XML transaction policies,
the name of the policy. The response will include policies with matching
names.

l For DNS monitoring policies, the DNS record. The response will
include policies that monitor matching DNS records.

l For port monitoring policies, the IP address and port number in the
format ip:port. The response will include policies that monitor a
matching ip:port string.

l For file systems, the file system names. The response will include file
systems with matching names.

This option is not available for the resources /data_
performance/device/avail or /data_performance_raw/device/avail.

ip This option applies only to the resources /data_
performance/device/monitor_port and /data_performance_
raw/device/monitor_port. Supply string values to match against policy
IP addresses. The response will include monitoring policies with matching
IP addresses.

port This option applies only to the resources /data_
performance/device/monitor_port and /data_performance_
raw/device/monitor_port. Supply numeric values to match against policy
port numbers. The response will include monitoring policies with matching
port numbers.

85

86

Filtering Interface Resources

The following fields can be used to filter interface data:

Field Description

device Supply numeric values to match against device IDs. The response will include
interfaces associated with devices with matching IDs.

device/class_type/class Supply string values to match against Device Classes (typically vendors or
manufacturers, e.g. "Cisco Systems"). The response will include interfaces
associated with devices with a matching device class.

device/class_type/description Supply string values to match against Device Class descriptions (typically
device models, e.g. "Catalyst 3750"). The response will include interfaces
associated with devices with a matching device class.

device/class_type/device_
category/cat_name

Supply string values to match against device categories, e.g.
"Network.Switches". The response will include interfaces associated with
devices with a matching device category.

device/class_type/device_
category/guid

Supply string values to match against device category GUIDs. The response
will include interfaces associated with devices with a matching device
category.

device/class_type/guid Supply string values to match against device class GUIDs. The response will
include interfaces associated with devices with a matching device class.

device/merged_class_
type/class

Supply one or more Device Classes (typically vendors or manufacturers, e.g.
"Cisco Systems") to filter on. The response will include interfaces associated
with physical devices that are merged with a component device and that
component device has matching device class.

device/merged_class_
type/description

Supply string values to match against Device Class descriptions (typically
device models, e.g. "Catalyst 3750"). The response will include interfaces
associated with physical devices that are merged with a component device
and that component device has matching device class.

device/merged_class_
type/device_category/cat_
name

Supply string values to match against device categories, e.g.
"Network.Switches". The response will include interfaces associated with
physical devices that are merged with a component device and that
component device has matching device category.

device/merged_class_
type/device_category/guid

Supply string values to match against device category GUIDs. The response
will include interfaces associated with physical devices that are merged with a
component device and that component device has matching device category.

device/merged_class_type/guid Supply string values to match against device class GUIDs. The response will
include interfaces associated with physical devices that are merged with a
component device and that component device has matching device class.

Requesting Data for Specific Devices or Interfaces

Requesting Data for Specific Devices or Interfaces

Field Description

device/name Supply string values to match against device names. The response will include
interfaces associated with devices with matching names.

device/organization Supply URIs to match against organizations. The response will include
interfaces associated with devices in the matching organizations.

device/organization/company Supply string values to match against organization names. The response will
include interfaces associated with devices in the matching organizations.

interface Supply numeric values to match against interface IDs. The response will
include interfaces with matching IDs.

interface/alias Supply string values to match against interface aliases. The response will
include interfaces with matching aliases.

interface/ifDescr Supply string values to match against interface descriptions. The response will
include interfaces with matching descriptions.

interface/name Supply string values to match against interface names. The response will
include interfaces with matching names.

interface/organization Supply string values to match against organization names. The response will
include interfaces in the matching organizations.

interface/tag Supply string values to match against interface tags. The response will include
interfaces with matching tags.

Filtering CBQoS Resources

The fields listed for Interface resources can also be used to filter CBQoS data. The following CBQoS-specific
fields can be used to filter cbqos data:

Field Description

cbqos_object Supply numeric values to match against CBQoS object IDs. The response will
include CBQoS metrics associated with objects with matching IDs. CBQoS objects
can be searched and filtered using the /api/cbqos_object resource index.

cbqos_object/name Supply string values to match against CBQoS object names. The response will
include CBQoS metrics associated with objects with matching names.

cbqos_object/type Supply numeric values to match against CBQoS object types. The response will
include CBQoS metrics associated with objects that have a matching type. CBQoS
object types can be searched and filtered using the /api/cbqos_type resource index.

87

88

Additional Options

The default response from the sub-resources of /data_performance and /data_performance_raw include a
searchspec section. The options section of the searchspec includes a list of options that can be included in a
request. The following option appears in addition to the options described in the Specifying the Time Range for
a Data Request section:

l hide_filterinfo. If this option is set to 1 in the URI, the response will contain only the result_set; the response
will not include the searchpec section.

Responses from Bulk Performance Data Resources

The response from sub-resources of /data_performance and /data_performance_raw that return
performance data include one of the following:

l An HTTP 400 response code and a human-readable message indicating required options were not
included.

l An HTTP 500 response code and a human-readable message indicating that the appliance servicing the
request does not have sufficient memory to generate the requested data set. If you receive this response, you
must split your request in to multiple smaller requests.

l Zero or more data sets that match the options specified in the request. A data set is represented as a JSON
array or an XML structure bounded by <dataset> tags. Each data set represents:

o For interface data, the data from a single interface.

o For CBQoS data, the data from a single interface for a single CBQoS object.

o For Dynamic Application data, the data for a single index (time series) for a device.

o For all other device data, the data from a single device.

Each data set includes:

l The URI of the device, interface (where applicable), and CBQoS metric (where applicable) the data set is
associated with.

l If applicable, the index and index label for the data series.

l The list of field names included for each data point in the data set. This list of fields will include the time
stamp field and the data fields specified in the request options.

l A list of data points. Each data point is a list that includes an entry for each field (time stamp and data fields).
To improve performance, the field names are not included with each data point. The field order for each
data point matches the list of field names that appears at the beginning of each data set.

Additional Options

Example

1
Using the Ticket Resource

Overview

In SL1, a ticket is a request for work. This request can be in response to a problem that needs to be fixed, for
routine maintenance, or for any type of work required by your enterprise. A ticket can be assigned to a specific
user, to inform and remind that user of requests for work.

This chapter describes how to use the API to perform some basic tasks for managing tickets.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Requirements 91

Getting Started 91

Connecting to the API 92

Viewing a List of Tickets 98

Viewing a List of Tickets and Ticket Details 105

Filtering a List of Tickets 107

Retrieving Information about a Specific Ticket 108

Updating a Ticket 111

Creating a New Ticket 117

Viewing Notes for a Ticket 128

Adding a Note to a Ticket 132

89

90

Viewing the Attachments for a Ticket 135

Adding an Attachment to a Ticket Note 141

Requirements

Requirements

l This chapter assumes that you have a working version of cURL installed and can run cURL from a command
prompt. For information on cURL, see http://curl.haxx.se/.

l To connect to the API, you must use HTTPS. If you have not installed or configured a security certificate or if
your appliance uses a self-signed certificate, you must use include the "-k" option each time you execute
cURL. The "-k" option tells cURL to perform the HTTPS connection without checking the security certificate.

l Through the API, you can perform only actions for which you have permission in SL1. To perform the tasks in
this chapter, you must connect to the API using an account (username and password), that account must
have Access Keys that grant the following:

o View tickets and ticket details

o View Ticket Queues

o Edit a ticket

o Create a ticket

o Assign a ticket to a user

o Add a new note to a ticket

Getting Started

l In the examples in this chapter, we will connect to the example Administration Portal with the IP address of
192.168.10.205. To run these examples on your system, you should replace this IP address with the base
URI of the API on the appliance you are using.

l In the examples in this chapter, we will connect to the API using the default account "em7admin" with the
example password "examplepassword". To run these examples on your system, you should replace this
username and password with a valid username and password for your system.

l In the examples in this chapter, we will execute each HTTP request at a shell prompt or command prompt.
However, you can include these requests in a script or program.

CAUTION: The examples in this chapter use the custom-header option "X-em7-beautify-response:1". This
header tells the API to include white-space in a response, to make it easier to read. However, this
header can greatly increase the amount of time required to process a request. ScienceLogic
recommends you use this header only when testing requests. ScienceLogic strongly
discourages you from using this header in integration code.

91

http://curl.haxx.se/

92

Connecting to the API

To connect to the API and view the root directory (with an HTTP GET request), enter the following at the command
prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api"

l curl -v. Executes the cURL request. The -v option tells cURL to use verbose mode (displays all header
information and all status and error messages). In the response, lines that start with ">" include header data
returned by cURL. Lines that start with "<" include header data received by cURL.

l -H 'X-em7-beautify-response:1'. The -H option tells cURL to include an additional header in the request.
In this case, we're including a ScienceLogic custom header that tells the API to include white-space in the
response.

l -u 'em7admin:examplepassword'. The -u option tells cURL to authenticate as a specified user. In our
example, we authenticated as the user "em7admin" with the password "examplepassword".

l "https://192.168.10.205/api". Connect to the specified URL. In our example, we connected to the API at
192.168.10.205.

The response will look like this (however, we've added line numbers for reference):

1) * About to connect() to 192.168.10.205 port 443 (#0)

2) * Trying 192.168.10.205... connected

3) * Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)

4) * Server auth using Basic with user 'em7admin'

5) > GET / HTTP/1.1

6) > Authorization: Basic ZW03YWRtaW46ZW03YWRtaW4=

7) > User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

OpenSSL/0.9.7l zlib/1.2.3

8) > Host: 192.168.10.205

9) > Accept: */*

10) > X-em7-beautify-response:1

11) >

12) < HTTP/1.1 200 OK

Connecting to the API

Connecting to the API

13) < Date: Wed, 25 Aug 2010 15:47:40 GMT

14) < Server: Apache

15) < X-EM7-Implemented-methods: GET

16) < X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

17) < Content-Length: 1451

18) < Content-Type: application/json

19) <

20) [

21) {

22) "URI":"\/account",

23) "description":"Get\/Update\/Add\/Delete User Accounts"

24) },

25) {

26) "URI":"\/alert",

27) "description":"Create Alerts"

28) },

29) {

30) "URI":"\/credential",

31) "description":"View Credentials"

32) },

33) {

34) "URI":"\/device?limit=100",

35) "description":"Get\/Update\/Add\/Delete Devices and Get Collected

Data"

93

94

36) },

37) {

38) "URI":"\/device_group?limit=100",

39) "description":"Get\/Update\/Add\/Delete Device Groups"

40) },

41) {

42) "URI":"\/device_template?limit=100",

43) "description":"Get\/Update\/Add\/Delete Device Templates"

44) },

45) {

46) "URI":"\/discovery_session?limit=100",

47) "description":"Get\/Update\/Add\/Delete Device Discovery Sessions"

48) },

49) {

50) "URI":"\/discovery_session_active?limit=100\/",

51) "description":"View\/Start\/Stop Active Device Discovery Sessions"

52) },

53) {

54) "URI":"\/dynamic_app\/",

55) "description":"Get Dynamic Application Resources"

56) },

57) {

58) "URI":"\/event",

59) "description":"View\/Update\/Clear Events"

Connecting to the API

Connecting to the API

60) },

61) {

62) "URI":"\/monitor",

63) "description":"Get\/Update\/Add\/Delete Monitor Policies"

64) },

65) {

66) "URI":"\/organization",

67) "description":"Get\/Update\/Add\/Delete Organizations"

68) },

69) {

70) "URI":"\/ticket?limit=100",

71) "description":"Get\/Update\/Add\/Delete Tickets"

72) },

73) {

74) "URI":"\/ticket_queue",

75) "description":"Get Ticket Queues"

76) }

77) {

78) "URI":"\/ticket_state?limit=100",

79) "description":"Get\/Update\/Add\/Delete Custom Ticket States"

80) },

81)]

82) Connection #0 to host 192.168.10.205 left intact

83) Closing connection #0

95

96

l Lines 1-4 show cURL trying to connect to and authenticate with the API.

l Lines 5-11 show the HTTP GET request we sent. The initial request performs a GET on the root directory of
the API.

o accept: */*. Specifies that we will use the default accept header. The accept header tells the API how
to format the response. The API can respond in XML or JSON. Because we didn't specify an accept
header, the API will use the default format, which is JSON. If you want to view the response in XML,
you can include the header option "
-H 'Accept:application/xml" in the cURL command.

o X-em7-beautify-response:1. Tells the API to include white-space in the response, for easier
reading.

l Line 12 shows the HTTP version and the HTTP status code for the response.

l Lines 12-19 show the header information for the response.

l Lines 20-81 display the response to the HTTP GET request on the root directory of the API.

The response for the HTTP GET request displays a list of resources. A resource is a functional area in SL1 that you
can access through the API.

You can interact with the following entities through the API:

l Accounts

l Account Lockouts

l Alerts

l Appliances

l Assets

l Collector Groups

l CBQoS Objects

l Collection Labels

l Credentials

l Custom Attributes

l Dashboards

l Devices

l Device Categories

l Device Classes

l Device Interfaces

l Device Groups

l Device Relationships

l Device Templates

Connecting to the API

Connecting to the API

l Discovery Sessions

l Dynamic Applications

l Events

l Event Categories

l External Contacts

l File Uploads

l Interfaces

l Monitoring Policies

l Organizations

l Performance Data

l PowerPacks

l Product SKUs

l Schedules

l System Patches

l System Settings

l Tasks

l System Thresholds

l Themes

l Thresholds

l Tickets

l Ticket Categories

l Ticket Chargeback

l Ticket Logs

l Ticket Notes

l Ticket Queues

l Ticket States

l User Policies

l Vendors

For each resource, the response displays the associated URI for accessing the resource and a description that lists
the actions you can perform on the resource.

For our example, we'll be looking at the ticket resource. The ticket resource uses the following URI and includes
the following description:

69) {

70) "URI":"\/ticket?limit=100",

97

98

71) "description":"Get\/Update\/Add\/Delete Tickets"

72) }

NOTE: The response is in JSON format. Notice that the URI for the ticket includes escaped forward slash
characters ("\/").

Viewing a List of Tickets

In the previous section, we used an HTTP GET request to retrieve information about the root directory of the API.
The response included a list of resources. From the previous response, we learned that we can retrieve
information about tickets.

To access a resource, like ticket, we can append its URI to the URI of the root directory. So to access the resource
ticket, we could enter the following at the command line.

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket"

The response looks like this:

* About to connect() to 192.168.10.205 port 443 (#0)

* Trying 192.168.10.205... connected

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)

* Server auth using Basic with user 'em7admin'

> GET /ticket HTTP/1.1

> Authorization: Basic ZW03YWRtaW46ZW03YWRtaW4=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

OpenSSL/0.9.7l zlib/1.2.3

> Host: 192.168.10.205

> Accept: */*

> em7-beautify-response:1

>

Viewing a List of Tickets

Viewing a List of Tickets

< HTTP/1.1 302 Found

< Date: Wed, 25 Aug 2010 15:48:40 GMT

< Server: Apache

< X-EM7-Implemented-methods: GET,POST

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< Location: /api/ticket?limit=100

< X-EM7-status-message: ticket index requires a limit

< X-EM7-status-code: FOUND

< Content-Length: 833

< Content-Type: application/json

<

{"searchspec":

{"fields":

{"data":["class","severity","status","source","date_create","date_

update","assigned_

to","resolution","cause","escalation","chargeback","date_close","auto_

close","organization","description","opened_by","updated_by","closed_

by","ticket_queue","parent_ticket"]},

"options":

{

"extended_fetch":

{"type":"boolean","description":"Fetch entire resource if 1 (true), or

resource link only if 0 (false)","default":"0"},

"hide_filterinfo":

{"type":"boolean","description":"Suppress filterspec and current filter

info if 1 (true)","default":"0"},

99

100

"limit":

{"type":"int","description":"Number of records to

retrieve","default":"100"},

"offset":

{"type":"int","description":"Specifies the index of the first returned

resource within the entire result set","default":"0"}

}

},

"total_matched":"102","total_returned":0,"result_set":[]}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

The response does not contain the results we wanted, that is, information about the tickets in SL1. Instead, the
response contains:

l HTTP/1.1 302 Found. This status code indicates that ticket resources were found, but our request was
missing required filtering and options.

l Location: /ticket?limit=100. This is a redirect header. Most browsers would automatically redirect our
request to this URI. However, cURL requires an additional option to use redirects.

l "X-EM7-status-message: ticket index requires a limit" and "X-EM7-status-code: FOUND". Human-
readable status messages provided by the API. These messages indicate that our API does include ticket
resources and that our HTTP request was missing the "limit" option.

l "searchspec". The response includes a list of searchspec options. These options allow us to filter the items
(in this case, tickets) that are included in a response.

l "total_matched":"102", "total_returned":"0, "result_set":[]. This line indicates that the request could have
returned 102 tickets, but that our request returned zero tickets.

Let's run the command again with the correct URI that contains the required option. To do this, enter the following
at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket?limit=100"

The response looks like this:

* About to connect() to 192.168.10.205 port 443 (#0)

* Trying 192.168.10.205... connected

Viewing a List of Tickets

Viewing a List of Tickets

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)

* Server auth using Basic with user 'em7admin'

> GET /api/ticket?limit=100 HTTP/1.1

> Authorization: Basic ZW03YWRtaW46ZW03YWRtaW4=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

OpenSSL/0.9.7l zlib/1.2.3

> Host: 192.168.10.205

> Accept: */*

> X-em7-beautify-response:1

>

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 15:49:40 GMT

< Server: Apache

< X-EM7-Implemented-methods: GET,POST

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< Transfer-Encoding: chunked

< Content-Type: application/json

<

{

"searchspec":{

"fields":{

"data":[

"class",

"severity",

101

102

"status",

"source",

"date_create",

"date_update",

"assigned_to",

"resolution",

"cause",

"escalation",

"chargeback",

"date_close",

"auto_close",

"organization",

"description",

"opened_by",

"updated_by",

"closed_by",

"ticket_queue",

"parent_ticket"

]

},

"options":{

"extended_fetch":{

"type":"boolean",

Viewing a List of Tickets

Viewing a List of Tickets

"description":"Fetch entire resource if 1 (true), or resource link only if

0 (false)",

"default":"0"

},

"hide_filterinfo":{

"type":"boolean",

"description":"Suppress filterspec and current filter info if 1 (true)",

"default":"0"

},

"limit":{

"type":"int",

"description":"Number of records to retrieve",

"default":"100"

},

"offset":{

"type":"int",

"description":"Specifies the index of the first returned resource within

the entire result set",

"default":"0"

}

}

},

"total_matched":"102",

"total_returned":100,

"result_set":[

103

104

{

"URI":"\/api\/ticket\/1",

"description":"TICKET FOR ORGANIZATION: Device not responding to critical

ping "

},

{

"URI":"\/api\/ticket\/2",

"description":"TICKET FOR ORGANIZATION: Connection refused to port:

Timeout while requesting http:\/\/www.google.com"

},

[.... REMOVED TICKETS 3-98 FROM response, FOR BREVITY]

{

"URI":"\/api\/ticket\/99",

"description":"Rollback Configuration on Device CustB_2821-1.cisco.com"

},

{

"URI":"\/api\/ticket\/100",

"description":"Physical Memory usage has exceeded threshold: (80%)

currently (99%)"

}

]

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

Viewing a List of Tickets

Viewing a List of Tickets and Ticket Details

Notice that the response includes:

l HTTP/1.1 200 OK. Status code that indicates that our HTTP request was successful.

l An entry for each of the first 100 tickets found. The response includes basic information about the first
100 tickets found (as specified in the "limit" option). For each found ticket, The response includes:

o URI of the ticket, which includes the ticket ID.

NOTE:Our response is in JSON format. Notice that the URI for the ticket includes escaped
forward slash characters ("\/").

o Description text from the ticket.

o To retrieve all information about a ticket, you can use the extended_fetch option. This is described
in the following section.

Viewing a List of Tickets and Ticket Details

We can use the HTTP GET method and the extended_fetch option to retrieve all information about each
returned ticket. If we append "&extended_fetch=1" to our URI, we can retrieve all information about the specified
tickets. To do so, we enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket?limit=100&extended_fetch=1"

For each returned ticket, The response will include something like the following structure:

{

"class":"1",

"severity":"2",

"status":"0",

"source":"43",

"date_create":"2010-01-18 20:12:06",

"date_update":"2010-01-18 20:12:06",

"assigned_to":"\/api\/account\/0",

"resolution":"0",

105

106

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date_close":"0000-00-00 00:00:00",

"auto_close":"0",

"custom_fields":{

},

"organization":"\/api\/organization\/0",

"description":"Rollback Configuration On Device CustB_2821-1.cisco.com",

"opened_by":"\/api\/account\/1",

"updated_by":"\/api\/account\/1",

"closed_by":"\/api\/account\/1",

"ticket_queue":"\/api\/ticket_queue\/8",

"parent_ticket":"\/api\/ticket\/0",

"aligned_resource":null,

"notes":{

"URI":"\/api\/ticket\/99\/note\/?hide_filterinfo=1&limit=1000",

"description":"Notes"

}

}

Notice that the response now includes information about all the ticketing fields.

Also notice that some fields, like organization, include URIs. The URI is a link to a different resource (for example,
an organization resource).

Viewing a List of Tickets and Ticket Details

Filtering a List of Tickets

NOTE:Our response is in JSON format. Notice that these URIs include escaped forward slash characters
("\/").

Filtering a List of Tickets

We can use the fields listed in searchspec to filter the list of tickets that will appear in the response. For the ticket
resource, the searchspec includes:

l class

l severity

l status

l source

l date_create

l date_update

l assigned_to

l resolution

l cause

l escalation

l chargeback

l date_close

l auto_close

l organization

l description

l opened_by

l updated_by

l closed_by

l ticket_queue

l parent_ticket

In our example, we'll filter the list of tickets by severity.

l If we wanted to request only tickets with a severity of "major", we would append "&filter.severity=3" to the
URI for our request. To view tickets of a specific severity, use the format:

o "&filter.severity=number_of_severity"

l If we wanted to view all tickets with a severity of major or higher, we would append "&filter.severity.min=3"
to the URI for our request. You can use the following operators in a filter clause:

107

108

o .not (not equal to)

o .min (greater than or equal to)

o .max (less than or equal to)

o .contains (string comparison)

o .in (is in a list)

To request all tickets with a severity of "major", enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket?limit=100&extended_

fetch=1&filter.severity=3"

The response contains all ticket information for all tickets with a severity of "major".

To request all tickets with a severity equal to or greater than major (major and critical), enter the following at the
command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket?limit=100&extended_

fetch=1&filter.severity.min=3"

The response contains all ticket information for all tickets with a severity of "major" or "critical".

Retrieving Information about a Specific Ticket

We can use the HTTP GET method and the URI for a specific ticket to request information about only that specific
ticket.

NOTE: When you include the URI for a specific ticket, the results automatically include all the information
for the ticket. If you include the URI for a specific ticket, you do not need to include "&extended_
fetch=1"

For example, if we wanted to request information about ticket 99, we could enter the following at the command
prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/99”

The response would look like this:

Retrieving Information about a Specific Ticket

Retrieving Information about a Specific Ticket

* About to connect() to 192.168.10.205 port 443 (#0)

* Trying 192.168.10.205... connected

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)

* Server auth using Basic with user 'em7admin'

> GET /ticket/99 HTTP/1.1

> Authorization: Basic ZW03YWRtaW46ZW03YWRtaW4=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

OpenSSL/0.9.7l zlib/1.2.3

> Host: 192.168.10.205

> Accept: */*

> X-em7-beautify-response:1

>

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 15:51:40 GMT

< Server: Apache

< X-EM7-Implemented-methods: GET,PUT,POST

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: Ticket tid:99 loaded successfully

< X-EM7-status-code: OK

< Content-Length: 812

< Content-Type: application/json

<

{

"class":"1",

109

110

"severity":"2",

"status":"0",

"source":"43",

"date_create":"1263845526",

"date_update":"1263845526",

"assigned_to":"\/api\/account\/0",

"resolution":"0",

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date_close":"0",

"auto_close":"0",

"organization":"\/api\/organization\/0",

"description":"Rollback Configuration On Device CustB_2821-1.cisco.com",

"opened_by":"\/api\/account\/1",

"updated_by":"\/api\/account\/1",

"closed_by":"\/api\/account\/1",

"ticket_queue":"\/api\/ticket_queue\/8",

"parent_ticket":"\/api\/ticket\/0",

"aligned_resource":null,

"custom_fields":{

},

"notes":{

"URI":"\/api\/ticket\/99\/note\/?hide_filterinfo=1&limit=1000",

Retrieving Information about a Specific Ticket

Updating a Ticket

"description":"Notes"

}

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

l Notice the HTTP status message and the ScienceLogic status messages.

l The response includes all the details about the specified ticket.

Updating a Ticket

The easiest way to update a ticket is to:

1. Use an HTTP GET request to capture the ticket's current values and store them in a file.

2. Edit that captured file.

3. Use an HTTP POST method to update the ticket with the contents of the edited file.

In this section, we'll update some values for ticket 99.

Capture Ticket Information in a File

To update a ticket, first we will capture the information from ticket 99 and store it in a file. To do this, enter the
following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/99" > ticket99.json

We have now captured the information from ticket 99 and stored it in the file ticket99.json. The file looks like
this:

{

"class":"1",

"severity":"2",

"status":"0",

"source":"43",

111

112

"date_create":"1263845526",

"date_update":"1263845526",

"assigned_to":"\/api\/account\/0",

"resolution":"0",

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date_close":"0",

"auto_close":"0",

"organization":"\/api\/organization\/0",

"description":"Rollback Configuration On Device CustB_2821-1.cisco.com",

"opened_by":"\/api\/account\/1",

"updated_by":"\/api\/account\/1",

"closed_by":"\/api\/account\/1",

"ticket_queue":"\/api\/ticket_queue\/8",

"parent_ticket":"\/api\/ticket\/0",

"aligned_resource":null,

"custom_fields":{

},

"notes":{

"URI":"\/api\/ticket\/99\/note\/?hide_filterinfo=1&limit=1000",

"description":"Notes"

}

}

Updating a Ticket

Updating a Ticket

Edit the Captured File

To update the ticket, we'll edit one or more values in the file ticket99.json. Let's change the severity (from "2"
(minor) to "4" (critical)) and status (from "0" (open) to "1" (working)) of the ticket and then save our changes to the
file.

NOTE: Do not make changes to the value for notes. This is a sub-resource, which are explained later in this
example.

{

"class":"1",

"severity":"4",

"status":"1",

"source":"43",

"date_create":"1263845526",

"date_update":"1263845526",

"assigned_to":"\/api\/account\/0",

"resolution":"0",

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date_close":"0",

"auto_close":"0",

"organization":"\/api\/organization\/0",

"description":"Rollback Configuration On Device CustB_2821-1.cisco.com",

"opened_by":"\/api\/account\/1",

"updated_by":"\/api\/account\/1",

113

114

"closed_by":"\/api\/account\/1",

"ticket_queue":"\/api\/ticket_queue\/8",

"parent_ticket":"\/api\/ticket\/0",

"aligned_resource":null,

"custom_fields":{

},

"notes":{

"URI":"\/api\/ticket\/99\/note\/?hide_filterinfo=1&limit=1000",

"description":"Notes"

}

}

Use HTTP POST to Update the Ticket with the Edited File

We'll now use an HTTP POST method to update the ticket with the contents of the file ticket99.json. To do this,
enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/99" -H 'content-type:application/json'

--data-binary @ticket99.json

In addition to the optional "beautify response" header and the URI for the ticket, you must specify:

l 'content-type:application/json'. So the API knows that the incoming data is in JSON format.

l --data-binary @file_name.json. Specifies that HTTP POST should transmit the data exactly as is, with no
extra processing. The @ symbol tells cURL that the data is stored in a file.

The response should look like the following:

* About to connect() to 192.168.10.205 port 443 (#0)

* Trying 192.168.10.205... connected

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)

* Server auth using Basic with user 'em7admin'

Updating a Ticket

Updating a Ticket

> POST /ticket/99 HTTP/1.1

> Authorization: Basic ZW03YWRtaW46ZW03YWRtaW4=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

OpenSSL/0.9.7l zlib/1.2.3

> Host: 192.168.10.205

> Accept: */*

> X-em7-beautify-response:1

> content-type:application/json

> Content-Length: 722

>

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 15:53:40 GMT

< Server: Apache

< X-EM7-Implemented-methods: GET,PUT,POST

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: Ticket tid:99 updated.

< X-EM7-status-code: OK

< Content-Length: 812

< Content-Type: application/json

<

{

"class":"1",

"severity":"4",

"status":"1",

115

116

"source":"43",

"date_create":"1263845526",

"date_update":"1263845526",

"assigned_to":"\/api\/account\/0",

"resolution":"0",

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date_close":"0",

"auto_close":"0",

"organization":"\/api\/organization\/0",

"description":"Rollback Configuration On Device CustB_2821-1.cisco.com",

"opened_by":"\/api\/account\/1",

"updated_by":"\/api\/account\/1",

"closed_by":"\/api\/account\/1",

"ticket_queue":"\/api\/ticket_queue\/8",

"parent_ticket":"\/api\/ticket\/0",

"aligned_resource":null,

"custom_fields":{

},

"notes":{

"URI":"\/api\/ticket\/99\/note\/?hide_filterinfo=1&limit=1000",

"description":"Notes"

}

Updating a Ticket

Creating a New Ticket

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

l Notice that the status codes and status messages specify that the ticket was updated and also specify the
ticket ID. The response contains the ticket with the edits applied, so an additional GET request on the
/api/ticket/99 URI is not necessary to see the changes.

l If our file ticket99.json had included bad syntax, we would get:

HTTP/1.1 400 Bad Request

< X-EM7-status-message: Unable to decode JSON string.

< X-EM7-status-code: BAD_REQ

Sending Only Changes in the ticket99.json File

Our ticket99.json file included all the ticket information. However, we could have edited our file ticket99.json
to include only changes to the ticket. That is, our file could contain only:

{

"severity":"4",

"status":"1"

}

We could have sent this shortened file with an HTTP POST method and had the same result.

Creating a New Ticket

We can use the HTTP POST method to create a new ticket. To create a ticket, we must perform the following
steps:

1. Capture an existing ticket and store the information in a file. We will use this file as our template for creating
a new ticket.

2. Determine the URI for a user account. This is the user that will appear in the opened_by, assigned_to, and
updated_by fields.

3. Edit the captured file to create the new ticket.

4. Perform an HTTP POST method to create a new ticket from the edited file.

The following sections explain each step.

117

118

Capturing an Existing Ticket and Storing the Information in a File

First, we will request all the information from an existing ticket and store that information in a file. We will then use
the file as a template for creating a new ticket.

To do this, enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/1" > new_ticket.json

We will use the file new_ticket.json as our template.

Determining the URI for a User Account

The fields opened_by, assigned_to, and updated_by require a reference to a user account. Because account
is another resource in the API, the reference for each of these fields is a URI for a specific account.

First, let's request the index for the account resource. To do this, enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/account"

The response looks like this:

[REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM RESPONSE,

FOR BREVITY]

< HTTP/1.1 302 Found

< Date: Wed, 25 Aug 2010 15:54:52 GMT

< Server: Apache

< X-Implemented-methods: GET,POST

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< Location: /account?limit=100

< X-EM7-status-message: account index requires a limit

< X-EM7-status-code: FOUND

< Content-Length: 1828

Creating a New Ticket

Creating a New Ticket

< Content-Type: application/json

<

{

"searchspec":{

"fields":{

"data":[

"default_map_type",

"user",

"email",

"state",

"restrict_ip",

"admin",

"active",

"create_date",

"edit_date",

"timezone",

"default_map",

"refresh",

"barred",

"page_results",

"event_severity",

"ldap",

"console_height",

"date_format",

119

120

"iflabel_pref",

"all_orgs",

"contact_fname",

"contact_lname",

"title",

"dept",

"phone",

"fax",

"cell",

"pager",

"email_2",

"address",

"office",

"city",

"zip",

"country",

"billing_id",

"crm_id",

"tollfree",

"email_3",

"im",

"im_type",

"role",

"critical",

Creating a New Ticket

Creating a New Ticket

"notes",

"verification_question",

"verification_answer",

"organization",

"theme",

"created_by",

"updated_by",

"user_policy"

]

},

"options":{

"extended_fetch":{

"type":"boolean",

"description":"Fetch entire resource if 1 (true), or resource link only if

0 (false)",

"default":"0"

},

"hide_filterinfo":{

"type":"boolean",

"description":"Suppress filterspec and current filter info if 1 (true)",

"default":"0"

},

"limit":{

"type":"int",

121

122

"description":"Number of records to retrieve",

"default":"100"

},

"offset":{

"type":"int",

"description":"Specifies the index of the first returned resource within

the entire result set",

"default":"0"

}

}

},

"total_matched":"26",

"total_returned":0,

"result_set":[

]

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

The response tells us that:

l The account URI requires the limit option (like the previous example for the ticket resource).

l We can filter accounts by user-name.

We can now try to find the URI for our current user ID, em7admin. To do this, enter the following at the command
prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/account?limit=100&filter.user=em7admin"

Creating a New Ticket

Creating a New Ticket

The response will look like this:

[...REMOVED CONNECTION INFORMATION, HEADER INFORMATION, and

SEARCHSPEC INFORMATION FOR BREVITY]

},

"total_matched":"1",

"total_returned":1,

"result_set":[

{

"URI":"\/api\/account\/1",

"description":"em7admin"

}

]

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

l We now know that the URI for the user "em7admin" is "/api/account/1".

NOTE:Our response is in JSON format. Notice that the URI for the account includes escaped forward slash
characters ("\/").

Editing the Captured File

We'll edit our captured file like this:

{

"class":"1",

"severity":"3",

"status":"1",

123

124

"source":"43",

"assigned_to":"\/api\/account\/1",

"resolution":"0",

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date_close":"0",

"auto_close":"0",

"organization":"\/api\/organization\/0",

"description":"TICKET FOR ORGANIZATION: System | ID: 0",

"opened_by":"\/api\/account\/1",

"updated_by":"\/api\/account\/1",

"closed_by":"\/api\/account\/0",

"ticket_queue":"\/api\/ticket_queue\/7",

"parent_ticket":"\/ticket\/0",

"aligned_resource":null,

"custom_fields":{

},

"notes":{

"URI":"\/api\/ticket\/1\/note\/?hide_filterinfo=1&limit=1000",

"description":"Notes"

},

"logs":{

"URI":"\/api\/ticket\/1\/log\/?hide_filterinfo=1&limit=1000",

Creating a New Ticket

Creating a New Ticket

"description":"Logs"

}

}

l We changed the assigned_to, opened_by, and updated_by field to the URI for the user "em7admin".
Because the file is in JSON format, we must escape the forward slash characters (/). Notice that we did so
when specifying the account URI.

l We removed the entire line that contains "date_create". The API will automatically insert the current date
and time in the new ticket.

l We removed the entire line that contains "date_update". The API will automatically insert the current date
and time in the new ticket.

l We set the organization field to reference the System organization (URI is "/api/organization/0").

l We accepted the previous ticket's values for all other fields. However, you can edit these fields as you want.
To determine a URI value for a field, do an HTTP GET request for the referenced resource (account,
organization, ticket, ticket_queue).

l We left the entries for "notes" and "logs" sub-resources. The API ignores these fields and replaces them with
empty fields that reference the new ticket's URI.

Using the Edited File to Create a New Ticket

To use the file new_ticket.json to create a new ticket, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/ticket" -H 'content-type:application/json' --data-

binary @new_ticket.json

l Notice that unlike when we updated the ticket, in this example we POST to the URI for the general index for
the ticket resource instead of POSTing to a URI for a ticket ID. This is because we do not yet have a ticket
ID.

l Like when we updated a ticket, we include the following in the POST:

o 'content-type:application/json'. So the API knows that the incoming data is in JSON format.

o --data-binary @file_name.json. Specifies that HTTP POST should transmit the data exactly as is,
with no extra processing. The @ symbol tells cURL that the data is stored in a file.

You should get a response that looks something like this:

[...REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM RESPO

NSE, FOR BREVITY]]

< HTTP/1.1 201 Created

125

126

< Date: Wed, 25 Aug 2010 15:54:52 GMT

< Server: Apache

< X-Implemented-methods: GET,PUT,POST

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< Location: /ticket/279

< X-EM7-status-message: Ticket tid:279 added successfully

< X-EM7-status-code: CREATED

< Content-Length: 788

< Content-Type: application/json

<

{

"class":"1",

"severity":"3",

"status":"1",

"source":"43",

"date_create":"1260402605",

"date_update":"1260402605",

"assigned_to":"\/account\/1",

"resolution":"0",

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date_close":"0",

"auto_close":"0",

Creating a New Ticket

Creating a New Ticket

"organization":"\/api\/organization\/0",

"description":"TICKET FOR ORGANIZATION: System | ID: 0",

"opened_by":"\/api\/account\/1",

"updated_by":"\/api\/account\/1",

"closed_by":"\/api\/account\/0",

"ticket_queue":"\/api\/ticket_queue\/7",

"parent_ticket":"\/api\/ticket\/0",

"aligned_resource":null,

"custom_fields":{

},

"notes":{

"URI":"\/api\/ticket\/note\/?hide_filterinfo=1&limit=1000",

"description":"Notes"

}

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

l Notice that the status codes and status messages specify that the ticket was created successfully and also
specify the ticket ID.

l If our file new_ticket.json had included bad syntax, we would get:

HTTP/1.1 400 Bad Request

< X-EM7-status-message: Unable to decode JSON string.

< X-EM7-status-code: BAD_REQ

...

127

128

l Notice that the API automatically inserted the current time (in UNIX timestamp format) for the "date_created"
and "date_updated" fields.

l Notice that the API automatically inserted an appropriate URI for the "notes" sub-resource.

Viewing Notes for a Ticket

When you request information about a ticket, the response includes a sub-resource: notes. Sub-resources are
always associated with their parent resource. Sub-resources have their own URI, appended to that of their parent
resource. In our examples, notes is a sub-resource of a ticket resource.

We could look at the response from the ticket we just created (ticket 279). In the response, the reference to the
notes a sub-resource looks like this:

"notes":{

"URI":"\/ticket\/note\/?hide_filterinfo=1&limit=1000",

"description":"Notes"

}

To view all the notes for the ticket we just created (ticket 279), enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/279/note"

Because we have not yet added a note to this ticket, the response looks like this:

[.... REMOVED CONNECTION INFORMATION, HEADER INFORMATION,

AND SEARCHSPEC INFORMATION FROM response, FOR BREVITY]

"total_matched":"0",

"total_returned":0,

"result_set":[

]

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

Viewing Notes for a Ticket

Viewing Notes for a Ticket

Suppose we know that ticket ID 97 includes two notes. Let's request all the notes in this ticket. To do this, enter the
following at the command line:

curl -v -H 'X-em7-beautify-response:1'

"https://192.168.10.205/api/ticket/97/note"

The response would look like this:

[.... REMOVED CONNECTION INFORMATION, HEADER INFORMATION,

AND SEARCHSPEC INFORMATION FROM response, FOR BREVITY]

"total_matched":"2",

"total_returned":2,

"result_set":[

{

"URI":"\/api\/ticket\/97\/note\/96",

"description":"Someone or some event altered the configuration on this

device. Roll back configuration to last-known-good.<br \/>\r\n<br

\/>\r\nEvent occured on device CustB_2821-1.cisco.com.<br \/>\r\n<br

\/>\r\nSee detail of event at

http:\/\/ap.server.url\/\/em7\/index.em7?exec=events&q_type=aid&q_

arg=17710&q_sev=1&q_sort=0&q_oper=0.<br \/>\r\n<br \/>\r\n<br \/>\r\n<br

\/>\r\n<br \/>"

},

{

"URI":"\/api\/ticket\/97\/note\/270",

"description":"For security, immediately performed rollback.<br \/>\r\n<br

\/>\r\nCurrently analyzing logs to determine where change came from.<br

\/>\r\n<br \/>"

}

]

}

129

130

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

In the response:

l We see that there are two notes in ticket 97: note 96 and note 270.

l We can view the text included in each note.

Now let's request a specific note. Using ticket 97 and our results above, we can request information about note
96 in ticket 97. To do this, enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/97/note/96"

Viewing Notes for a Ticket

Viewing Notes for a Ticket

The response would look like this:

About to connect() to 192.168.10.205 port 443 (#0)

[.... REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION

FROM RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 15:59:52 GMT

< Server: Apache

< X-Implemented-methods: GET,PUT,POST

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: Note id:96 loaded successfully

< X-EM7-status-code: OK

< Content-Length: 475

< Content-Type: application/json

<

{

"note_text":"Someone or some event altered the configuration on this

device. Roll back configuration to last-known-good.<br \/>\r\n<br

\/>\r\nEvent occured on device CustB_2821-1.cisco.com.<br \/>\r\n<br

\/>\r\nSee detail of event at

http:\/\/ap.server.url\/\/em7\/index.em7?exec=events&q_type=aid&q_

arg=17710&q_sev=1&q_sort=0&q_oper=0.<br \/>\r\n<br \/>\r\n<br \/>\r\n<br

\/>\r\n<br \/>",

"edited_by":"\/api\/account\/1",

"date_edit":"1263845526",

"ip":"192.168.10.206"

"hidden":"0",

"mime_type":"text\/html",

131

132

"media": {

"URI": "\/api\/ticket\/97\/note\/96\/media",

"description": "Associated Note Media"

}

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

The response contains the following:

l HTTP code 200 OK. The API was able to successfully find note 96 within ticket 97. If note 96 did not exist,
we would see the following:

HTTP/1.1 404 Not Found

X-EM7-status-message: Note id:96 is not a valid note for ticket tid:97

X-EM7-status-code: NOT_FOUND

l Our note contains the following fields:

o note_text

o edited_by

o date_edit

o ip

o hidden

o mime_type

Adding a Note to a Ticket

Now let's try adding a note to an existing ticket. To do this:

We can use the HTTP POST method to add a note to an existing ticket. We will add a note to the ticket we created
earlier, ticket 279. To add a note to a ticket, we must perform the following steps:

Adding a Note to a Ticket

Adding a Note to a Ticket

1. Request an existing note and store the information in a file. We will use this file as our template for creating
a new note.

2. Edit the captured file.

3. Execute an HTTP POST method to create a new note from the edited file.

The following sections explain each step.

Capturing an Existing Note and Storing the Information in a File

To add a note to a ticket, first we will request the information from note 96 in ticket ID 97 and store it in a file. We
will then use this file as a template. To do this, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/97/note/96" > new_note.json

The information from the note will be stored in the file new_ note.json. We will use this file as our template.

Editing the Captured File

We'll edit our file new_note.json like this:

{

"hidden":"0",

"note_text":"This is a test note from the API",

"mime_type":"text\/html",

"edited_by":"\/api\/account\/1"

}

l We removed the lines that contain "date_edit" and "ip". The API will automatically insert the current date
and time and the source IP of the request in the new note.

l We removed the "media" section.

l In the mime_type field, we accepted the value from the previous ticket (text/html).

l In the hidden field, we accepted the value from the previous ticket ("0", zero).

o When "hidden" is set to "0" (zero), the note is not cloaked.

o When "hidden" is set to "1" (one), the note is cloaked.

133

134

l We changed the value of the note_text field to "This is a test note from the API".

l We changed the edited_by field to the URI for the user "em7admin" (/api/account/1). Because the file is in
JSON format, we must escape the forward slash characters (/). Notice that we did so when specifying the
account URI.

Creating a New Note Using the Edited File

To use the file new_note.json to create a new note in ticket 279, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/279/note" -H 'content-

type:application/json' --data-binary @new_note.json

l Notice that we POST to the URI for the index for the note sub-resource for this ticket, instead of to a specific
note ID. This is because we do not yet have a note ID.

l We include the following in the POST:

o 'content-type:application/json'. So the API knows that the incoming data is in JSON format.

o --data-binary @file_name.json. Specifies that HTTP POST should transmit the data exactly as is,
with no extra processing. The @ symbol tells cURL that the data is stored in a file.

The response should look like the following:

[.... REMOVED CONNECTION INFORMATION and SOME HEADER INFORMATION

FROM RESPONSE, FOR BREVITY]

< HTTP/1.1 201 Created

< Date: Wed, 25 Aug 2010 16:01:49 GMT

< Server: Apache

< X-Implemented-methods: GET,PUT,POST

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< Location: /api/ticket/279/note/273

< X-EM7-status-message: Note /ticket/279/note/273 added.

< X-EM7-status-code: CREATED

< Content-Length: 142

< Content-Type: application/json

Adding a Note to a Ticket

Viewing the Attachments for a Ticket

<

{

"date_edit":"1264525835",

"hidden":"0",

"note_text":"This is a test note from the API",

"edited_by":"\/api\/account\/1"

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

l Notice that the status codes and status messages specify that the note was created successfully and also
specify the note ID (note 273).

l If our file new_ticket.json had included bad syntax, we would get:

HTTP/1.1 400 Bad Request

< X-EM7-status-message: Unable to decode JSON string.

< X-EM7-status-code: BAD_REQ

...

l Notice that the API automatically inserted the current date and time (in UNIX timestamp format) in the date_
edited field.

Viewing the Attachments for a Ticket

In a ticket, each note can include one or more attachments. Each ticket note has a /media sub-resource that can
be used to search and view the attachments associated with that ticket note.

For example, to view the attachments for ticket 2058, at note 11, we could enter the following at the command
prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/2058/note/11/media?limit=100"

The response would look like this:

135

136

[.... REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION

FROM RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 16:03:11 GMT

< Server: Apache

< X-Implemented-methods: GET

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: Fileindex found with 1 resources.

< X-EM7-status-code: OK

< Content-Disposition: inline; filename="test_attachment.rtf"

< Content-Length: 357

< Content-Type: application/rtf

<

{

"searchspec": {

"fields": [

"creation_date",

"file_length",

"is_attachment",

"is_complete",

"mime_type",

"modified_date",

"total_size",

"user_owner"

Viewing the Attachments for a Ticket

Viewing the Attachments for a Ticket

],

"options": {

"hide_filterinfo": {

"type": "boolean",

"description": "Suppress filterspec and current filter info if 1

(true)",

"default": "0"

},

"limit": {

"type": "int",

"description": "Number of records to retrieve",

"default": "100"

},

"offset": {

"type": "int",

"description": "Specifies the index of the first returned resource

within the entire result set",

"default": "0"

},

"extended_fetch": {

"type": "boolean",

"description": "Fetch entire resource if 1 (true), or resource

link only if 0 (false)",

"default": "0"

},

137

138

"link_disp_field": {

"type": "enum",

"description": "When not using extended_fetch, this determines

which field is used for the \"description\" of the resource link",

"default": "mime_type",

"values": [

"is_attachment",

"mime_type",

"is_complete",

"user_owner",

"total_size",

"file_length",

"creation_date",

"modified_date"

]

}

}

},

"total_matched": 1,

"total_returned": 1,

"result_set": [

{

"URI": "\/api\/ticket\/2058\/note\/11\/media\/Penguins.jpg\/info",

"description": "image\/jpeg"

Viewing the Attachments for a Ticket

Viewing the Attachments for a Ticket

}

]

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

In the response, notice that:

l The status codes and messages specify that one attachment was found.

l If no attachments were found, the response would include:

X-EM7-status-message: Fileindex found with 0 resources.

l The result set includes an entry for each attachment.

l The entry for each attachment includes the URI that can be used to request detailed information about the
attachment.

Now let's request a specific attachment. Using ticket 2058, note 11 and our results above, we can request
information about the "Penguins.jpg" attachment. To do this, enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/2058/note/11/media/Penguins.jpg/info"

The response would look like this:

About to connect() to 192.168.10.205 port 443 (#0)

[.... REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION

FROM RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 15:59:52 GMT

< Server: Apache

< X-Implemented-methods: GET,POST,PUT,DELETE

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: /ticket/2058/note/11/media/Penguins.jpg loaded

successfully

< X-EM7-status-code: OK

139

140

< Content-Length: 475

< Content-Type: application/json

<

{

"mime_type": "image\/jpeg",

"is_complete": "1",

"user_owner": "\/api\/account\/0",

"total_size": 777835,

"file_length": 777835,

"creation_date": "1445379816",

"modified_date": "1445379816",

"is_attachment": "1",

"chunks": [

{

"offset": 0,

"length": 777835,

"md5": "9d377b10ce778c4938b3c7e2c63a229a"

}

],

"data": {

"URI": "\/api\/ticket\/2058\/note\/11\/media\/Penguins.jpg",

"description": "File Contents"

}

}

Viewing the Attachments for a Ticket

Adding an Attachment to a Ticket Note

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

The response contains the following:

l HTTP code 200 OK. The API was able to successfully find the Penguins.jpg attachment.

l The URI field in the data section specifies the download link for the file.

NOTE: For FIPS-compliant systems, the response will include a SHA hash, not an MD5 hash.

Adding an Attachment to a Ticket Note

You can add an attachment to an existing ticket note. To do this, we must use the HTTP PUT method instead of
the HTTP POST method. The HTTP PUT method is used for explicitly adding or replacing (where HTTP POST is
used for creating or updating).

The API will not allow you to add an attachment with an HTTP POST method. If you try, the response will look like
this:

[.... REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION

FROM RESPONSE, FOR BREVITY]

< HTTP/1.1 405 Method Not Allowed

< Date: Wed, 25 Aug 2010 16:04:25 GMT

< Server: Apache

< X-Implemented-methods: GET,PUT,DELETE

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: POST not allowed for note media. PUT an explicitly

named new attachment or image

< X-EM7-status-code: BAD_METHOD

< Content-Length: 214

< Content-Type: application/json

<

141

142

{

"errors":[

{

"errorcode":"BAD_METHOD",

"message":"POST not allowed for ticket attachments. PUT an explicitly

named new attachment or image"

}

],

"messages":[

],

"resource_body":null

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

To use HTTP PUT, we must include the "-T" option with the cURL command.

Suppose we want to add the image file "spidey.png" to ticket 97, note 96. We could enter the following at the
command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/ticket/97/note/96/media/spidey.png" -H

"content-type:image/png" -T ./spidey.png

l attachment/spidey.png. Tells the API the filename to use when saving the attachment in the system.

l -H "content-type:image/png". Tells the API that the attachment will be an image file of type png.

l -T. Tells cURL to perform an HTTP PUT.

l ./spidey.png. Full pathname of the file to attach. "./" means "current directory".

l Notice that unlike HTTP POST, the HTTP PUT method does not require the "--data-binary option" or the "@"
characters before the filename.

Adding an Attachment to a Ticket Note

Adding an Attachment to a Ticket Note

NOTE: If an attachment has been prohibited in the Ticket Attachment Blacklist page (Registry . Ticketing
> Attachment Blacklist), the API will not attach the file to the ticket note. The API will not allow you to
attach files with a file extension that matches a blacklist entry.

143

Example

2
Using the Discovery Resource

Overview

Discovery is the process by which SL1 retrieves data from the devices in a network and then adds and configures
those devices. SL1 runs discovery to perform the initial discovery of your network and then nightly to collect and
update information about your network. You can also manually initiate discovery, for a single device or for a
range of devices, at any time.

To start discovery, you must provide the discovery tool with one or more IP addresses and other information
about how you want SL1 to perform the discovery. You save the list of IP addresses and other information about
how you want SL1 to perform the discovery in a discovery session. When you execute the discovery session, SL1
then finds all the devices and components in the range. For each discovered device or component, SL1 gathers
detailed data. This data is used throughout SL1.

This chapter will show you how to use the API to perform some basic tasks for managing discovery sessions.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Requirements 146

Getting Started 146

Connecting to the API 146

Viewing a List of Discovery Sessions 151

Viewing Details about All Discovery Sessions 158

Filtering the List of Discovery Sessions 159

144

145

Retrieving Information about a Specific Discovery Session 161

Starting a Discovery Session 163

Viewing a List of All Active Discovery Sessions 165

Retrieving Information about a Specific Active Discovery-Session 167

Viewing Logs for a Discovery Session 168

Stopping a Currently Running Discovery-Session 171

Deleting a Discovery Session 173

Requirements

Requirements

l This chapter assumes that you have a working version of cURL installed and can run cURL from a command
prompt. For information on cURL, see http://curl.haxx.se/.

l To connect to the API, you must use HTTPS. If you have not installed or configured a security certificate or if
your appliance uses a self-signed certificate, you must use include the "-k" option each time your execute
cURL. The "-k" option tells cURL to perform the HTTPS connection without checking the security certificate.

l Through the API, you can perform only actions for which you have permission in the system. To perform the
tasks in this chapter, you must connect to the API using an account (username and password). The account
must have Access Keys that grant the following:

o Access the Discovery page

o Schedule or execute a discovery session

Getting Started

l In the examples in this chapter, we will connect to the example Administration Portal with the IP address of
192.168.10.205. To run these examples on your system, you should replace this IP address with the base
URI of the API on the appliance you are using.

l In the examples in this chapter, we will connect using the default account "em7admin" with the example
password "examplepassword". To run these examples on your system, you should replace this username and
password with a valid username and password for your system.

l In the examples in this chapter, we will execute each request at a shell prompt or command prompt.
However, you can include these requests in a script or program.

CAUTION: The examples in this chapter use the custom-header option "X-em7-beautify-response:1". This
header tells the API to include white-space in a response, to make it easier to read. However, this
header can greatly increase the amount of time required to process a request. ScienceLogic
recommends you use this header only when testing requests. ScienceLogic strongly
discourages you from using this header in integration code.

Connecting to the API

To connect to the API and view the root directory (with an HTTP GET request), enter the following at the command
prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api"

146

http://curl.haxx.se/

147

l curl -v. Executes the cURL request. The -v option tells cURL to use verbose mode (displays all header
information and all status and error messages). In the response, lines that start with ">" include header data
returned by cURL. Lines that start with "<" include header data received by cURL.

l -H 'X-em7-beautify-response:1'. The -H option tells cURL to include an additional header in the request.
In this case, we're including a ScienceLogic custom header that tells the API to include white-space in the
response.

l -u 'em7admin:examplepassword'. The -u option tells cURL to authenticate as a specified user. In our
example, we authenticated as the user "em7admin" with the password "examplepassword".

l "https://192.168.10.205/api". Connect to the specified URL. In our example, we connected to the API at
192.168.10.205.

The response will look like this (however, we've added line numbers for reference):

1) * About to connect() to 192.168.10.205 port 443 (#0)

2) * Trying 192.168.10.205... connected

3) * Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)

4) * Server auth using Basic with user 'em7admin'

5) GET / HTTP/1.1

6) Authorization: Basic ZW03YWRtaW46ZW03YWRtaW4=

7) User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

OpenSSL/0.9.7l zlib/1.2.3

8) Host: 192.168.10.205

9) Accept: */*

10) X-em7-beautify-response:1

11) >

12) < HTTP/1.1 200 OK

13) < Date: Wed, 20 Jan 2010 23:03:46 GMT

14) < Server: Apache/2.2.9 (Unix) mod_ssl/2.2.9 OpenSSL/0.9.8e-fips-rhel5

15) < X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

16) < Content-Length: 703

17) < Content-Type: application/json

Connecting to the API

Connecting to the API

18) <

19) {

20) "data":{

21) "account":{

22) "URI":"\/account",

23) "description":"Get\/Update\/Add\/Delete User Accounts"

24) },

25) "device":{

26) "URI":"\/device?limit=100",

27) "description":"Get\/Update\/Add\/Delete Devices and Get Collected

Data"

28) },

29) "discovery_session":{

30) "URI":"\/discovery_session\/",

31) "description":"Get\/Update\/Add\/Delete Device Discovery Sessions"

32) },

33) "dynamic_app":{

34) "URI":"\/dynamic_app\/",

35) "description":"Get Dynamic Application Resources"

36) },

37) "organization":{

38) "URI":"\/organization",

39) "description":"Get\/Update\/Add\/Delete Organizations"

40) },

148

149

41) "ticket":{

42) "URI":"\/ticket?limit=100",

43) "description":"Get\/Update\/Add\/Delete Tickets"

44) },

45) "ticket_queue":{

46) "URI":"\/ticket_queue",

47) "description":"Get Ticket Queues"

48) }

49) }

50) }

51) Connection #0 to host 192.168.10.205 left intact

52) Closing connection #0

l Lines 1-4 show cURL trying to connect to and authenticate with the API.

l Lines 5-11 show the HTTP GET request we sent. The initial request performs a GET on the root directory of
the API.

o accept: */*. Specifies that we will use the default accept header. The accept header tells the API how
to format the response. The API can respond in XML or JSON. Because we didn't specify an accept
header, the API will use the default format, which is JSON. If you want to view the response in XML,
you can include the header option "
-H 'Accept:application/xml" in the cURL command.

o X-em7-beautify-response:1. Tells the API to include white-space in the response, for easier
reading.

l Line 12 shows the HTTP version and the HTTP status code for the response.

l Lines 12-18 show the header information for the response.

l Lines 19-52 display the response to the HTTP GET request on the root directory of the API.

The response for the HTTP GET request displays a list of resources. A resource is a functional area in SL1 that you
can access through the API.

You can interact with the following entities through the API:

Connecting to the API

Connecting to the API

l Accounts

l Account Lockouts

l Alerts

l Appliances

l Assets

l Collector Groups

l CBQoS Objects

l Collection Labels

l Credentials

l Custom Attributes

l Dashboards

l Devices

l Device Categories

l Device Classes

l Device Interfaces

l Device Groups

l Device Relationships

l Device Templates

l Discovery Sessions

l Dynamic Applications

l Events

l Event Categories

l External Contacts

l File Uploads

l Interfaces

l Monitoring Policies

l Organizations

l Performance Data

l PowerPacks

l Product SKUs

l Schedules

l System Patches

l System Settings

l Tasks

150

151

l System Thresholds

l Themes

l Thresholds

l Tickets

l Ticket Categories

l Ticket Chargeback

l Ticket Logs

l Ticket Notes

l Ticket Queues

l Ticket States

l User Policies

l Vendors

For each resource, the response displays the associated URI for accessing the resource and a description that lists
the actions you can perform on the resource.

For our example, we'll be looking at the discovery_session resource. The entry for the discovery_session
resource includes the URI of the discovery_session resource and includes the following description:

29) "discovery_session":{

30) "URI":"\/discovery_session\/",

31) "description":"Get\/Update\/Add\/Delete Device Discovery Sessions"

32) },

Viewing a List of Discovery Sessions

In the previous section, we used an HTTP GET request to retrieve information about the root directory of the API.
Our response included a list of resources. We learned that we can request information about discovery sessions.

To access a resource, like discovery_session, we can use an HTTP GET and append a discovery session's URI to
the URI of the root directory. To access the resource discovery_session, we could enter the following at the
command line.

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session"

The response looks like this:

Viewing a List of Discovery Sessions

Viewing a List of Discovery Sessions

...[REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM

RESPONSE, FOR BREVITY]

< HTTP/1.1 302 Found

< Date: Wed, 27 Jan 2010 16:32:05 GMT

< Server: Apache

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< Location: /discovery_session?limit=100

< X-EM7-status-message: discovery_session index requires a limit

< X-EM7-status-code: FOUND

< Content-Length: 977

< Content-Type: application/json

<

{

"searchspec":{

"fields":{

"data":[

"dgid",

"date_edit",

"date_run",

"scan_ports",

"organization",

"collector_id",

"edited_by",

"discover_non_snmp"

152

153

]

},

"options":{

"extended_fetch":{

"type":"boolean",

"description":"Fetch entire resource if 1 (true), or resource link only if

0 (false)",

"default":"0"

},

"hide_filterinfo":{

"type":"boolean",

"description":"Suppress filterspec and current filter info if 1 (true)",

"default":"0"

},

"limit":{

"type":"int",

"description":"Number of records to retrieve",

"default":"100"

},

"offset":{

"type":"int",

"description":"Specifies the index of the first returned resource within

the entire result set",

"default":"0"

}

Viewing a List of Discovery Sessions

Viewing a List of Discovery Sessions

}

},

"total_matched":"14",

"total_returned":0,

"result_set":[

]

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

The response does not contain the results we wanted, that is, information about the discovery sessions in SL1.
Instead, the response contains:

l HTTP/1.1 302 Found. This status code indicates that discovery_session resources were found, but our
request was missing required filtering and options.

l Location: /discovery_session?limit=100. This is a redirect header. Most browsers would automatically
redirect our request to this URI. However, cURL requires an additional option to use redirects.

l "X-EM7-status-message: discovery_session index requires a limit" and "X-EM7-status-code:
FOUND". Human-readable status messages provided by the API. These messages indicate that our API
does include discovery_session resources and that our HTTP request was missing the "limit" option.

l "searchspec". The response include a list of searchspec options. These options allow use to filter content
contained in the response.

l "total_matched":"14", "total_returned":"0, "result_set":[]. This line indicates that the default "limit" option
would have returned 14 discovery sessions, but that our request returned zero discovery sessions.

Let's run the command again with the correct URI that contains the required option. To do this, enter the following
at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session?limit=100"

The response looks like this:

...[REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM

RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 27 Jan 2010 16:36:20 GMT

154

155

< Server: Apache

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< Content-Length: 2530

< Content-Type: application/json

<

{

"searchspec":{

"fields":{

"data":[

"dgid",

"date_edit",

"date_run",

"scan_ports",

"organization",

"collector_id",

"edited_by",

"discover_non_snmp"

]

},

"options":{

"extended_fetch":{

"type":"boolean",

"description":"Fetch entire resource if 1 (true), or resource link only if

0 (false)",

Viewing a List of Discovery Sessions

Viewing a List of Discovery Sessions

"default":"0"

},

"hide_filterinfo":{

"type":"boolean",

"description":"Suppress filterspec and current filter info if 1 (true)",

"default":"0"

},

"limit":{

"type":"int",

"description":"Number of records to retrieve",

"default":"100"

},

"offset":{

"type":"int",

"description":"Specifies the index of the first returned resource within

the entire result set",

"default":"0"

}

}

},

"total_matched":"14",

"total_returned":14,

"result_set":[

{

156

157

"":{

"URI":"\/discovery_session\/1",

"description":"SNMP:1:2"

}

},

{

"":{

"URI":"\/discovery_session\/2",

"description":"21:22:23:25:80"

}

},

[...REMOVED SESSONS 3-13 FROM RESPONSE, FOR BREVITY]

{

"":{

"URI":"\/discovery_session\/14",

"description":"21:22:23:25:80"

}

},

{

"":{

"URI":"\/discovery_session\/15",

"description":"21:22:23:25:80"

}

}

Viewing a List of Discovery Sessions

Viewing Details about All Discovery Sessions

]

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

Notice that the response includes:

l HTTP/1.1 200 OK. Status code that indicates that our HTTP request was successful.

l An entry for all of the discovery sessions found. The response includes basic information about 14
discovery sessions, because only 14 sessions exist on our example system. Because we set the limit option to
"100", the response could contain information about the first 100 discovery sessions. For each found
discovery session, the response includes:

o URI of the discovery session.

NOTE: Our response is in JSON format. Notice that the URI for the discovery session includes
escaped forward slash characters ("\/").

o Description of the discovery method. A list of values that were selected in the Detection Method &
Port field (in the System >Manage > Classic Discovery page). The possible values are described in
the following section, in the description of the scan_ports field.

o To request all information about all discovery sessions, you can use the extended_fetch option. This
is described in the following section.

Viewing Details about All Discovery Sessions

We can use the HTTP GET request and the extended_fetch option to request all information about each
returned discovery session. If we append "&extended_fetch=1" to our URI, we can request all information about
the first 100 discovery sessions. To do so, we enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session?limit=100&extended_fetch=1"

The response will return a list of the first 100 discovery sessions, with the following information for each session:

158

159

l Discovery Session ID. The unique numeric identifier, assigned to this session by SL1.

NOTE: The Discovery Session ID and the numbered list in the Session Register pane in the System >
Manage > Classic Discovery page may not match. The Session Register pane in the System
>Manage > Classic Discovery page is sorted by date and changes when a discovery session
is edited.

l dgid. ID of the Device Group associated with this discovery session. If no device group is associated with
this discovery session, this field will contain the value "NULL".

l date_edit. Date and time the discovery session was last edited.

l date_run. Date and time the discovery session was last executed.

l scan_ports. A list of values that were selected in the Detection Method & Port field (in the System >
Manage > Classic Discovery page).

o If in the Detection Method & Port field, a user selected the "Default" method, this list includes the
default TCP ports that are used during discovery (21, 22, 23, 25, and 80).

o If in the Detection Method & Port field, a user selected one or more TCP ports, the list includes
those ports.

o If in the Detection Method & Port field, a user selected "UDP 161", the list includes the string
"SNMP".

l ip_list. The start IP and end IP for each IP range included in the discovery session.

l credentials. One or more credentials selected for this discovery session.

l organization. Link to the organization resource associated with the discovery session.

l collector_id. The appliance ID of the Data Collector associated with the discovery session.

l edited_by. Link to the account resource for the user who last edited this discovery session.

l discover_non_snmp. Specifies whether this session will discover devices that don't support SNMP. These
devices are called "pingables" in SL1. "0" (zero) means do not include pingables; "1" (one) means include
pingables.

l logs. Link to the logs sub-resource for this discovery session.

NOTE:Our response is in JSON format. Notice that the URIs for other resources include escaped forward
slash characters ("\/").

Filtering the List of Discovery Sessions

We can use the fields listed in searchspec to filter the list of discovery sessions that will appear in the
response. For the discovery_session resource, the searchspec includes:

Filtering the List of Discovery Sessions

Filtering the List of Discovery Sessions

l dgid. Selected Device Group.

l date_edit. Date and time the session was last edited.

l date_run. Date and time the session was last run.

l scan_ports. Value selected in the Detection Method & Ports field.

l organization. Organization associated with the discovery session.

l collector_id. Appliance ID of a single Data Collector (not a collector group). Currently, there is no way to
query Appliance information through the API.

l edited_by. The user account that last edited the discovery session.

l discover_non_snmp. Specifies whether this session will discover devices that don't support SNMP. These
devices are called "pingables" in SL1. "0" (zero) means do not include pingables; "1" (one) means include
pingables.

If we wanted to view details about only discovery sessions that do not include pingables, we could enter the
following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session?limit=100&extended_

fetch=1&filter.discover_non_snmp=0"

The response would display full details about the first 100 discovery sessions that do not discover pingables.

We can also use the following operators in the searchspec:

o .not (not equal to)

o .min (greater than or equal to)

o .max (less than or equal to)

o .contains (string comparison)

o .in (is in a list)

For example, if we wanted to view full details about the first 100 discovery sessions that are not associated with
the Data Collector with the ID of 3, we could enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session?limit=100&extended_

fetch=1&filter.collector_id.not=3"

160

161

Retrieving Information about a Specific Discovery Session

We can use the HTTP GET method and the URI for a specific discovery session to request information about that
specific discovery session.

NOTE: When you include the URI for a specific discovery session, the response automatically includes all
the information for the session. If you include the URI for a specific discovery session, you do not
need to include "extended_fetch=1"

For example, if we wanted to request information about discovery session ID "1", we could enter the following at
the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session/1”

The response would look like this:

...[REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM

RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 27 Jan 2010 19:16:49 GMT

< Server: Apache

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: discovery_session seq:1 loaded successfully

< X-EM7-status-code: OK

< Content-Length: 625

< Content-Type: application/json

<

{

"dgid":null,

"date_edit":"1264540686",

Retrieving Information about a Specific Discovery Session

Retrieving Information about a Specific Discovery Session

"date_run":"1264544101",

"scan_ports":[

"SNMP",

"1",

"2"

],

"ip_lists":[

{

"start_ip":"192.168.9.1",

"end_ip":"192.168.9.100"

},

{

"start_ip":"192.168.10.200",

"end_ip":"192.168.10.203"

}

],

"credentials":[

"\/api\/credential\/snmp\/1",

"\/api\/credential\/snmp\/2",

"\/api\/credential\/db\/10"

],

"organization":"\/api\/organization\/0",

"collector_id":"3",

"edited_by":"\/api\/account\/28",

162

163

"discover_non_snmp":"0",

"logs":{

"URI":"\/api\/discovery_session\/1\/log",

"description":"Discovery Session Logs"

}

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

l Notice the HTTP status message and the ScienceLogic status messages.

l The response includes all the details about the specified discovery session

l If the discovery session did not exist (for example, if we supplied an incorrect ID), the response would
include:

HTTP/1.1 404 Not Found

X-EM7-status-message: Unable to find discovery_session w/ id of '401'

X-EM7-info-message: Use /discovery_session search to find valid

discovery_session resources

Starting a Discovery Session

After the initial discovery, SL1 automatically polls monitored devices and applications to retrieve new and
updated data. SL1 performs these updates at regular intervals. However, you can manually execute a discovery
session at any time.

You can use the API to manually execute an existing discovery session. To do this, we use the URI of the existing
discovery session, the HTTP POST method, and an additional resource called discovery_session_active.

The discovery_session_active resource allows you to execute a discovery session, view a list of currently active
discovery sessions, and stop a currently active discovery session.

In our example, we'll POST the URI for a discovery session to the discovery_session_active resource. We'll use
discovery session ID 1 as the discovery session.

Starting a Discovery Session

Starting a Discovery Session

To execute discovery session 1, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session_active" -H 'content-

type:application/em7-resource-uri' --data-binary "/api/discovery_

session/1"

l "https://192.168.10.205/api/discovery_session_active". Notice that the address for the HTTP Post
includes the discovery_session_active resource in the URI.

l 'content-type:application/em7-resource-uri'. Tells the API that the incoming data is a resource URI.

l --data-binary "/api/discovery_session/1". Specifies that HTTP POST should transmit use the URI exactly
as is, with no extra processing. The URI of the discovery session must be surrounded by double-quotes.

The response looks like this:

[...REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM

RESPONSE, FOR BREVITY]

< HTTP/1.1 202 Accepted

< Date: Wed, 27 Jan 2010 19:36:44 GMT

< Server: Apache

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: Discovery session queued for discovery

< X-EM7-status-code: ACCEPTED

< Content-Length: 1

< Content-Type: application/json

<

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

l The HTTP status code is 202, because the action did not complete within the HTTP response time. This is
because the discovery session is still running when the API generates the response.

l Notice the ScienceLogic status messages, which specify that the session has been queued for execution.

l If the discovery session is already running or is already queued, the response includes:

164

165

HTTP/1.1 400 Bad Request

X-EM7-status-message: /discovery_session/1 is already active

X-EM7-status-code: BAD_REQ

Viewing a List of All Active Discovery Sessions

You can use HTTP GET and the discovery_session_active resource index to request a list of all currently active
discovery sessions.

To view a list of all currently active discovery sessions, enter the cURL command from the previous section, to start
a discovery session:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session_active" -H 'content-

type:application/em7-resource-uri' --data-binary "/api/discovery_

session/1"

Viewing a List of All Active Discovery Sessions

Viewing a List of All Active Discovery Sessions

Then immediately enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session_active?limit=100"

The response looks like this:

* About to connect() to 192.168.10.205 port 443 (#0)

* Trying 192.168.10.205... connected

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)

* Server auth using Basic with user 'em7admin'

> GET /discovery_session_active?limit=100 HTTP/1.1

> Authorization: Basic ZW03YWRtaW46ZW03YWRtaW4=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

OpenSSL/0.9.7l zlib/1.2.3

> Host: 192.168.10.205

> Accept: */*

> X-em7-beautify-response:1

>

< HTTP/1.1 200 OK

< Date: Wed, 27 Jan 2010 19:42:51 GMT

< Server: Apache

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< Content-Length: 1087

< Content-Type: application/json

<

[.... REMOVED SEARCHSPEC INFORMATION FROM response, FOR BREVITY]

"total_matched":"1",

166

167

"total_returned":1,

"result_set":[

{

"":{

"URI":"\/api\/discovery_session_active\/1",

"description":"SNMP:1:2"

}

}

]

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

l We receive the HTTP status code and a ScienceLogic status message.

l We found one active discovery session.

l The ID for the active discovery session is "1", with a URI of /api/discovery_session_active/1.

NOTE: Our response is in JSON format. Notice that the URI for the discovery session includes escaped
forward slash characters ("\/").

Retrieving Information about a Specific Active Discovery-
Session

We can request information about a specific, active discovery session using the HTTP GET method with the URI
for a specific discovery_session_active resource.

To request details about an active discovery session, perform the following:

First, start a discovery session. Enter the following at the command prompt:

Retrieving Information about a Specific Active Discovery-Session

Viewing Logs for a Discovery Session

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session_active" -H 'content-

type:application/em7-resource-uri' --data-binary "/api/discovery_

session/1"

Before the discovery session completes, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session_active/1

l The response will be the same as if you requested all the details about the discovery session.

l If the specified discovery_session is not active, the response will include the following:

HTTP/1.1 303 See Other

X-EM7-status-message: The requested discovery_session is not currently

active.

X-EM7-status-code: FOUND

and will also include a redirect to the discovery_session resource for the discovery session.

Viewing Logs for a Discovery Session

When you request information about a discovery session, the returned data includes a sub-resource: logs. Sub-
resources are always associated with their parent resource. Sub-resources have their own URI, appended to that
of their parent resource. In our example, logs is a sub-resource of a discovery_session resource.

If we look at the response from an HTTP GET of discovery session 1, the logs sub-resource looks like this:

"logs":{

"URI":"\/api\/discovery_session\/1\/log",

"description":"Discovery Session Logs"

}

Each discovery session has only a single log. Each time the discovery session is executed, the previous log is
overwritten with information from the current session.

To view the log for a discovery session, enter the following HTTP GET command at the command prompt:

168

169

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session/1/log?limit=100

Note that we appended the URI of the log to the URI of the discovery session, as referenced in the HTTP GET of
discovery session 1.

The response looks like this:

[...REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM

RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 27 Jan 2010 20:07:34 GMT

< Server: Apache

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< Transfer-Encoding: chunked

< Content-Type: application/json

<

[.... REMOVED SEARCHSPEC INFORMATION FROM response, FOR BREVITY]

"total_matched":null,

"total_returned":71,

"result_set":[

{

"log_tstamp":"1264621963",

"msg_id":"124",

"msg_txt":"Beginning auto-discovery session"

},

{

"did":"\/device\/113",

"ip":"192.168.9.71",

Viewing Logs for a Discovery Session

Viewing Logs for a Discovery Session

"log_tstamp":"1264621979",

"msg_id":"500",

"msg_txt":"Discovered and modeled existing device"

},

{

"did":"\/device\/114",

"ip":"192.168.9.70",

"log_tstamp":"1264621979",

"msg_id":"500",

"msg_txt":"Discovered and modeled existing device"

},

{

"did":"\/device\/115",

"ip":"192.168.9.72",

"log_tstamp":"1264621979",

"msg_id":"500",

"msg_txt":"Discovered and modeled existing device"

},

{

"ip":"192.168.9.12",

"log_tstamp":"1264621994",

"msg_id":"504",

"msg_txt":"Discovered, not modeled, pingable device"

},

170

171

[...REMOVED REMAINING 66 DEVICE ENTRIES, FOR BREVITY]

{

"log_tstamp":"1264622228",

"msg_id":"125",

"msg_txt":"Auto-discovery session completed"

}

]

}

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

l We receive the HTTP status code and a ScienceLogic status message.

l The log includes an entry for each discovered device, including device IP, device name for SNMP devices,
date and time device was discovered, and a description of what was performed on the device.

Stopping a Currently Running Discovery-Session

We can perform an HTTP DELETE method on a discovery_session_active resource to stop a currently running
discovery session.

Let's first start discovery session 1 again. To do this, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session_active" -H 'content-

type:application/em7-resource-uri' --data-binary "/api/discovery_

session/1"

Before the discovery session completes, enter the following at the command prompt to stop the discovery session:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session_active/1" –X DELETE

Stopping a Currently Running Discovery-Session

Stopping a Currently Running Discovery-Session

l /api/discovery_session_active/1. We used the URI of the currently active discovery session.

l –X DELETE. We simply appended "-X DELETE" to our HTTP statement to use the DELETE method.

The response looks like this:

* About to connect() to 192.168.10.205 port 443 (#0)

* Trying 192.168.10.205... connected

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)

* Server auth using Basic with user 'em7admin'

> DELETE /discovery_session_active/1 HTTP/1.1

> Authorization: Basic ZW03YWRtaW46ZW03YWRtaW4=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

OpenSSL/0.9.7l zlib/1.2.3

> Host: 192.168.10.205

> Accept: */*

> X-em7-beautify-response:1

>

< HTTP/1.1 202 Accepted

< Date: Wed, 27 Jan 2010 20:49:59 GMT

< Server: Apache

< X-Powered-By: ScienceLogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: Collector signaled to stop Discovery Session

< X-EM7-status-code: ACCEPTED

< Content-Length: 1

< Content-Type: application/json

<

* Connection #0 to host 192.168.10.205 left intact

172

173

* Closing connection #0

l Notice that the ScienceLogic status message indicates that the discovery session will be stopped.

l If the discovery session was not currently running, the response would include the following:

HTTP/1.1 400 Bad Request

X-EM7-status-message: The requested discovery_session is not currently

active.

X-EM7-status-code: BAD_REQ

Deleting a Discovery Session

You can use the HTTP DELETE method on a discovery_session resource to remove a discovery session from SL1.
When you remove a discovery session from SL1, the entry is removed from the Session Register in the System >
Manage > Classic Discovery page, and users can no longer execute this discovery session.

To delete a discovery session from SL1, enter the following at the command line:

curl -v -k -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery_session/1" –X DELETE

l discovery_session/1. We used the URI of the discovery session we want to delete.

l –X DELETE. We simply appended "-X DELETE" to our HTTP statement, to specify that this is a
DELETE method.

Deleting a Discovery Session

Example

3
Searching Component Trees

Overview

The /device resource can be filtered using the following fields, which can be used to search a component tree:

l component_ancestor_device

l component_parent_device

l component_root_device

l component_unique_id

This chapter describes examples of filters that use these fields.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Searching for All the Components in a Tree 175

Searching for the Direct Children of a Device 177

Searching for the Components in a Sub-Tree 177

Searching for a Component by Unique ID 181

174

175

Searching for All the Components in a Tree

To search for all the component devices in a tree, i.e., all the component devices under a root device:

l Perform a GET request to the /device resource.

l In the URL of the GET request, include a filter option that matches the component_root_device field to the
device ID of the root device.

For example, suppose that you want to get a list of all component devices associated with a NetApp Cluster.
Suppose that the NetApp Cluster has a device ID of 1656. To get the list of component devices, you can perform
a GET request using the following URL:

https://<base URL of the API>/device?limit=100&filter.component_root_

device=1656

In this example, the result_set in the response looks like this in XML format:

<result_set elemtype="list">

<link URI="/api/device/1673" description="KNT_NetApp_83_C2-01:/vol/vol0"

elemtype="href"/>

<link URI="/api/device/1697" description="/vol/vserver1_iscsi_

vol2/vserver1_mixed_vol1_lun01" elemtype="href"/>

<link URI="/api/device/1680" description="vserver1:/vol/vserver1_mix_

vol1" elemtype="href"/>

<link URI="/api/device/1671" description="data_aggr1" elemtype="href"/>

<link URI="/api/device/1679" description="vserver1:/vol/vserver1_iscsi_

vol2" elemtype="href"/>

<link URI="/api/device/1675" description="aggr0_KNT_NetApp_83_C2_02_0"

elemtype="href"/>

<link URI="/api/device/1687" description="vserver2:/vol/vs2_sm_dest_1"

elemtype="href"/>

<link URI="/api/device/1678" description="KNT_NetApp_83_C2-02:/vol/vol0"

elemtype="href"/>

Searching for All the Components in a Tree

Searching for All the Components in a Tree

<link URI="/api/device/1660" description="KNT_NetApp_83_C2-01"

elemtype="href"/>

<link URI="/api/device/1682" description="vserver1:/vol/vs1_sm_dest_1"

elemtype="href"/>

<link URI="/api/device/1663" description="vserver1" elemtype="href"/>

<link URI="/api/device/1681" description="vserver1:/vol/root"

elemtype="href"/>

<link URI="/api/device/1672" description="aggr0" elemtype="href"/>

<link URI="/api/device/1670" description="data_aggr2" elemtype="href"/>

<link URI="/api/device/1662" description="KNT_NetApp_83_C2-02"

elemtype="href"/>

<link URI="/api/device/1677" description="data_aggr4" elemtype="href"/>

<link URI="/api/device/1665" description="vserver2" elemtype="href"/>

<link URI="/api/device/1688" description="vserver2:/vol/root"

elemtype="href"/>

<link URI="/api/device/1676" description="data_aggr3" elemtype="href"/>

<link URI="/api/device/1664" description="vserver3" elemtype="href"/>

<link URI="/api/device/1686" description="vserver3:/vol/root"

elemtype="href"/>

<link URI="/api/device/1661" description="vserver4" elemtype="href"/>

<link URI="/api/device/1674" description="vserver4:/vol/root"

elemtype="href"/>

</result_set>

The default response includes the relative API URI and name of each component device. You can add additional
options to adjust the response, e.g., the extended_fetch option can be used to return all attributes of the
component devices in the response.

176

177

Searching for the Direct Children of a Device

To search for all the component devices that are direct children of another device, typically another component
device:

l Perform a GET request to the /device resource.

l In the URL of the GET request, include a filter option that matches the component_parent_device field to the
device ID of the device for which you want to see the children devices.

For example, suppose that you want to get a list of all component devices that are directly associated with an ACI
Pod, which includes APIC, Leaf, and Spine devices. Suppose that the ACI Pod has a device ID of 3. To get the list
of component devices, you can perform a GET request using the following URL:

https://<base URL of the API>/device?limit=100&filter.component_parent_

device=3

In this example, the result_set in the response looks like this in XML format:

<result_set elemtype="list">

<link URI="/api/device/4" description="Leaf1" elemtype="href"/>

<link URI="/api/device/5" description="Leaf2" elemtype="href"/>

<link URI="/api/device/6" description="apic2" elemtype="href"/>

<link URI="/api/device/7" description="apic3" elemtype="href"/>

<link URI="/api/device/8" description="apic1" elemtype="href"/>

<link URI="/api/device/9" description="Spine2" elemtype="href"/>

<link URI="/api/device/10" description="Spine1" elemtype="href"/>

</result_set>

The default response includes the relative API URI and name of each component device. You can add additional
options to adjust the response, e.g., the extended_fetch option can be used to return all attributes of the
component devices in the response.

Searching for the Components in a Sub-Tree

To search for all the component devices in a sub-tree, i.e., all the component devices under a specific component
device:

Searching for the Direct Children of a Device

Searching for the Components in a Sub-Tree

l Perform a GET request to the /device resource.

l In the URL of the GET request, include a filter option that matches the component_ancestor_device field to
the device ID of the root device.

For example, suppose that you want to get a list of all component devices under the US East region component
device in an Azure component tree. Suppose that the US East component device has a device ID of 682. To get
the list of component devices, you can perform a GET request using the following URL:

https://<base URL of the API>/device?limit=100&filter.component_ancestor_

device=682

In this example, the result_set in the response looks like this in XML format:

<result_set elemtype="list">

<link URI="/api/device/693" description="Data & Storage"

elemtype="href"/>

<link URI="/api/device/694" description="Compute" elemtype="href"/>

<link URI="/api/device/695" description="Networking" elemtype="href"/>

<link URI="/api/device/724" description="Storage" elemtype="href"/>

<link URI="/api/device/725" description="Cloud Services"

elemtype="href"/>

<link URI="/api/device/726" description="Virtual Machines"

elemtype="href"/>

<link URI="/api/device/727" description="Virtual Networks"

elemtype="href"/>

<link URI="/api/device/786" description="portalvhdsr5fxx3bdbnld5"

elemtype="href"/>

<link URI="/api/device/787" description="temp01tdj" elemtype="href"/>

<link URI="/api/device/788" description="ywtmpstrgacct"

elemtype="href"/>

<link URI="/api/device/789" description="wintempeu01" elemtype="href"/>

<link URI="/api/device/790" description="storagepeu1" elemtype="href"/>

178

179

<link URI="/api/device/791" description="Group Group-10 deletemenettjn"

elemtype="href"/>

<link URI="/api/device/792" description="VNetPEU1" elemtype="href"/>

<link URI="/api/device/793" description="virtualnetwork-perm-2"

elemtype="href"/>

<link URI="/api/device/794" description="Group Api-Default-East-US

WinTempEU01" elemtype="href"/>

<link URI="/api/device/825" description="em7-cu3-perm" elemtype="href"/>

<link URI="/api/device/850" description="em7-cu3-perm" elemtype="href"/>

<link URI="/api/device/852" description="VmPEA1" elemtype="href"/>

<link URI="/api/device/853" description="CloudServicePEU2"

elemtype="href"/>

<link URI="/api/device/854" description="VmServicePEU1"

elemtype="href"/>

<link URI="/api/device/855" description="CloudServicePEU1"

elemtype="href"/>

<link URI="/api/device/946"

description="WADDiagnosticInfrastructureLogsTable" elemtype="href"/>

<link URI="/api/device/947" description="SchemasTable" elemtype="href"/>

<link URI="/api/device/948" description="WADMetricsPT1MP10DV2S20150720"

elemtype="href"/>

<link URI="/api/device/949" description="WADMetricsPT1HP10DV2S20150720"

elemtype="href"/>

<link URI="/api/device/950" description="WADWindowsEventLogsTable"

elemtype="href"/>

<link URI="/api/device/951" description="WADPerformanceCountersTable"

elemtype="href"/>

<link URI="/api/device/952" description="vhds" elemtype="href"/>

Searching for the Components in a Sub-Tree

Searching for the Components in a Sub-Tree

<link URI="/api/device/953" description="ywtmpcontainter"

elemtype="href"/>

<link URI="/api/device/957" description="vhds" elemtype="href"/>

<link URI="/api/device/959" description="vhds" elemtype="href"/>

<link URI="/api/device/960" description="disks" elemtype="href"/>

<link URI="/api/device/961" description="vm-images" elemtype="href"/>

<link URI="/api/device/988" description="WADMetricsPT1MP10DV2S20150630"

elemtype="href"/>

<link URI="/api/device/989" description="WADMetricsPT1MP10DV2S20150620"

elemtype="href"/>

<link URI="/api/device/990" description="WADMetricsPT1MP10DV2S20150720"

elemtype="href"/>

<link URI="/api/device/991" description="WADMetricsPT1MP10DV2S20150710"

elemtype="href"/>

<link URI="/api/device/992" description="WADPerformanceCountersTable"

elemtype="href"/>

<link URI="/api/device/993" description="LinuxDiskVer2v0"

elemtype="href"/>

<link URI="/api/device/994" description="LinuxCpuVer2v0"

elemtype="href"/>

<link URI="/api/device/995" description="LinuxsyslogVer2v0"

elemtype="href"/>

<link URI="/api/device/996" description="LinuxMemoryVer2v0"

elemtype="href"/>

<link URI="/api/device/997"

description="WADDiagnosticInfrastructureLogsTable" elemtype="href"/>

<link URI="/api/device/998" description="SchemasTable" elemtype="href"/>

<link URI="/api/device/999" description="WADMetricsPT1HP10DV2S20150630"

elemtype="href"/>

180

181

<link URI="/api/device/1000" description="WADMetricsPT1HP10DV2S20150620"

elemtype="href"/>

<link URI="/api/device/1001" description="WADMetricsPT1HP10DV2S20150720"

elemtype="href"/>

<link URI="/api/device/1778" description="WADMetricsPT1HP10DV2S20151008"

elemtype="href"/>

<link URI="/api/device/1795" description="vmTraffMgrTEU"

elemtype="href"/>

<link URI="/api/device/1796" description="vmTraffMgrTEU"

elemtype="href"/>

<link URI="/api/device/1798" description="TMcloud1" elemtype="href"/>

<link URI="/api/device/1918" description="tempcpuEUSqa"

elemtype="href"/>

<link URI="/api/device/1919" description="tempcpuEUSqa"

elemtype="href"/>

<link URI="/api/device/1920" description="testcpueus01"

elemtype="href"/>

</result_set>

The default response includes the relative API URI and name of each component device. You can add additional
options to adjust the response, e.g., the extended_fetch option can be used to return all attributes of the
component devices in the response.

Searching for a Component by Unique ID

To search for a specific component device based on the unique identifier of that component device:

l Perform a GET request to the /device resource.

l In the URL of the GET request, include a filter option that matches the component_unique_id field to the
unique identifier of the component device. The unique identifier format will be different for each type of
component device. For example, the unique identifier of an AWS EC2 instance is the instance ID specified
by Amazon.

l Typically, you would also use the extended_fetch option to return all the attributes of the specified device.

Searching for a Component by Unique ID

Searching for a Component by Unique ID

For example, suppose that you want to get all the attributes of an AWS EC2 instance discovered in SL1. Suppose
that the EC2 instance has an instance ID, which is used by SL1 as the unique identifier, of i-c5cf573a. To get all
the attributes of the device, you can perform a GET request using the following URL:

https://<base URL of the API>/device?limit=100&filter.component_unique_

id=i-c5cf573a&extended_fetch=1

In this example, the result_set in the response looks like this in XML format:

<result_set elemtype="list">

<device key="/api/device/74">

<name>us-east-1a student34: c3.large: i-c5cf573a</name>

<ip/>

<hostname elemtype="null"/>

<snmp_cred_id>/api/credential/snmp/0</snmp_cred_id>

<snmp_w_cred_id elemtype="null"/>

<class_type>/api/device_class/451</class_type>

<collector_group>/api/collector_group/1</collector_group>

<active>

<user-disabled>0</user-disabled>

<unavailable>1</unavailable>

<maintenance>0</maintenance>

<system-disabled>0</system-disabled>

<user-initiated-maintenance>0</user-initiated-maintenance>

</active>

<organization>/api/organization/0</organization>

<auto_update>1</auto_update>

<event_suppress_mask>00:00:00</event_suppress_mask>

<auto_clear>1</auto_clear>

182

183

<log_all>1</log_all>

<daily_port_scan>1</daily_port_scan>

<critical_ping>0</critical_ping>

<scan_all_ips>0</scan_all_ips>

<preserve_hostname>1</preserve_hostname>

<disable_asset_update>0</disable_asset_update>

<date_added>1433793323</date_added>

<alert_avail_and_latency_fail>0</alert_avail_and_latency_fail>

<l3_topo elemtype="null"/>

<dashboard elemtype="null"/>

<last_poll elemtype="null"/>

<parent_device elemtype="null"/>

<state>3</state>

<child_devices elemtype="list"/>

<link name="notes" URI="/api/device/74/note/?hide_

filterinfo=1&limit=1000" description="Notes" elemtype="href"/>

<link name="logs" URI="/api/device/74/log/?hide_

filterinfo=1&limit=1000" description="Logs" elemtype="href"/>

<link name="applications" URI="/api/device/74/aligned_app"

description="Aligned Dynamic Applications" elemtype="href"/>

<link name="performance_data" URI="/api/device/74/performance_data"

description="Collected Performance Dynamic App Data" elemtype="href"/>

<link name="config_data" URI="/api/device/74/config_data"

description="Collected Config Dynamic App Data" elemtype="href"/>

Searching for a Component by Unique ID

Searching for a Component by Unique ID

<link name="vitals" URI="/api/device/74/vitals"

description="Component-mapped (CPU/MEM/FS) Performance App Data and

Availability/Latency Data" elemtype="href"/>

<link name="interfaces" URI="/api/device/74/interface?limit=1000"

description="Index of interfaces for a device" elemtype="href"/>

<link name="thresholds" URI="/api/device/74/device_thresholds"

description="Current device threshold values" elemtype="href"/>

<link name="details" URI="/api/device/74/detail" description="Current

device details" elemtype="href"/>

<link name="app_credentials" URI="/api/device/74/device_app_

credentials" description="Read-only lookup for aligned credentials and

the device-aligned apps that are using them" elemtype="href"/>

</device>

</result_set>

184

Example

4
Simple Provisioning System

Overview

This chapter describes a simple provisioning system written in PHP. The provisioning system is designed to be
used by a managed service provider that uses SL1 to provide monitoring services to its customers.

Using customer information supplied through a simple user interface, the example code makes requests to the
API to:

l Create an organization record for the customer.

l Configure SNMP credentials using the supplied community strings.

l Create and run a discovery session.

l Display a list of devices for a specific customer.

l Configure selected devices using device templates.

l Remove a customer from SL1 by deleting devices, discovery sessions, credentials, and the organization
record.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

System Design 187

Prerequisites 188

System-Specific Functions 189

Utility Functions (utils.php) 191

185

186

User Interface 221

Provisioning a Customer (provision_customer.php) 231

Retrieving and Configuring Devices (configure_devices.php) 239

Removing a Customer (delete_customer.php) 252

System Design

System Design

The example provisioning system comprises the following front-end files that display the user interface:

l index.php. Provides a user interface for provisioning a new customer and discovering additional devices for
an existing customer.

l devices.php. Provides a user interface for configuring customer devices that have been discovered in SL1.

l remove.php. Provides a user interface for removing a customer from SL1.

The following back-end files handle the provisioning procedures:

l provision_customer.php. Processes the input values from index.php and performs the following
provisioning tasks:

o If an organization record does not currently exist for the customer, creates an organization record for
the customer.

o Configures SNMP credentials for each supplied SNMP community string.

o Creates a discovery session for the customer using the configured SNMP credentials and the supplied
list of IP addresses.

o Runs the discovery session.

If all of these tasks are successful, provision_customer.php redirects to configure_devices.php, which will
return a list of discovered devices to the devices.php page. If a provisioning task is unsuccessful, provision_
customer.php returns an error message to index.php.

l configure_devices.php. The configure_devices.php script returns a list of devices and associated device
classes for a specified customer. The list of devices can be all devices associated with the customer's
organization record, all devices from the last discovery session for that customer, or new devices from the
last discovery session for that customer. Additionally, if a user selects the [Configure Devices] button in the
devices.php page, the configure_devices.php script applies the device templates selected by the user to the
specified devices.

l delete_customer.php. Takes a customer name as input; deletes all devices, credentials, and discovery
sessions associated with that customer's organization record; and then deletes the organization record for
that customer.

187

188

The following diagram shows the control flow between the files when all procedures are successful:

When a back-end procedure is unsuccessful, an error message is returned to the appropriate front-end page.

The six main PHP files use the following additional files:

l header.php. Includes the common elements used by all three user interface pages.

l provisioning.css. Includes style information for the user interface pages. In this example, minimal style is
applied to the user interface pages. You can customize the user interface pages by adding style information
to this file.

l utils.php. Includes a set of PHP functions that are used by the three back-end files.

Prerequisites

To use the example code described in this chapter to interact with your instance of SL1, you must:

l Upgrade your system to version 7.5.5 or later. Some API requests used in the provisioning code are not
compatible with older versions of SL1.

l Manually create a device template in your instance of SL1 that will be applied to all devices discovered
using the provisioning system.

l Edit utils.php to include:

o The IP address of an Administration Portal, Database Server, or All-In-One Appliance in your system.

Prerequisites

System-Specific Functions

o An administrator username and password.

o The URI of the device template that will be applied to all devices discovered using the provisioning
system.

See the System-Specific Functions section for a description of the required changes to utils.php.

l Copy the example files to a web server. All the example files must be in the same directory on the web
server. The web server must:

o Be able to make HTTP requests to your Administration Portal, Database Server, or All-In-One
Appliance.

o Use a PHP processor module that includes cURL support. The code in this example uses cURL to
communicate with an Administration Portal, Database Server, or All-In-One Appliance. For more
information about cURL support in PHP, see http://www.php.net/manual/en/book.curl.php.

o Use PHP version 5.2.0 or later. The code in this example uses JSON format for all requests and uses
the json_encode and json_decode functions. For more information about JSON support in PHP, see
http://php.net/manual/en/book.json.php.

l Manually add a custom attribute to the /device resource. The example code uses this custom attribute to
track the last device template that was applied to each device. To add the custom attribute, "c-last_dev_tpl",
POST the following JSON content to the /custom_attribute/device resource index:

{

"name":"last_dev_tpl",

"label":"last_dev_tpl",

"type":"string",

"index":"none",

"extended":"0"

}

For more information about custom attributes, see the Custom Attributes section.

System-Specific Functions

This example includes two functions in utils.php that return information about the instance of SL1 with which the
provisioning code interacts:

189

http://www.php.net/manual/en/book.curl.php
http://php.net/manual/en/book.json.php

190

l get_admin_uri. Returns the URL of an Administration Portal, Database Server, or All-In-One Appliance with
the username and password of an administrator user embedded in the URL. This value is a required
parameter for most functions in utils.php.

l get_base_template. Returns the relative URI of a device template. This device template specifies the basic
monitoring parameters for customer devices and is applied to every device discovered using the
provisioning system.

To use the example code with your instance of SL1, you must edit the get_admin_uri function to include the
IP address of your Administration Portal, Database Server, or All-In-One Appliance, the username for an
administrator user, and the password for that administrator user:

function get_admin_uri() {

$is_ip = "10.100.100.15";

$is_user = "em7admin";

$is_pass = "<password>";

$base_uri = "https://" . $is_user . ":" . $is_pass . "@" . $is_ip;

return $base_uri;

}

To use the example code with your instance of SL1, you must edit the get_base_template function to include the
relative URI of a device template in your system:

function get_base_template() {

return "/api/device_template/3";

}

System-Specific Functions

Utility Functions (utils.php)

Utility Functions (utils.php)

Most tasks performed by the back-end code for this example are performed using a set of generic functions that
can be re-used multiple times. If you are developing code that interacts with the ScienceLogic API and are using a
different programming language, you might want to start by developing similar generic functions. In this
example, the functions are included in the file utils.php, which is used by every back-end PHP file. The utils.php
file includes functions that perform the following procedures:

l Perform a request to the API using a specified URI, request type, and optional POST content.

l Request a list of all entities returned by a specified resource index URI.

l Request the URI for an organization record associated with a specified customer name.

l Create an entity using a specified set of values.

l Delete a list of entities.

l Configure a set of SNMP credentials using a specified set of community strings.

l Request a list of all devices discovered by a specified discovery session.

l Request the URI of a Data Collection Unit in the Collector Group with the most available capacity.

l Request a list of entities that are referenced by another list of entities. For example, request a list of
device classes associated with a list of devices.

In addition, utils.php includes two functions that return information about the instance of SL1 with which the
provisioning code interacts. For this example, the information returned by these system-specific functions is
hard-coded.

The following sections describe each function in utils.php.

Performing Requests

To perform a request to the ScienceLogic API in PHP, you must:

l Create and configure a cURL session.

l For requests that use the POST method, encode a PHP array as JSON content.

l Execute the cURL request.

l Parse the response and decode the JSON content in to a PHP array.

The perform_request function is designed to perform these steps and return the response in a PHP array that has
the following structure:

(

['http_code'] => HTTP status code in the response

191

192

['headers'] => Array of headers that were included in the response. Each

key in this array is the name of the header, which points to the value

for that header.

['content'] => Array that contains the decoded JSON body of the

response.

['error'] => If the HTTP code in the response is not healthy (i.e. not

200, 201, or 202), a human-readable error message that includes all

error information that was included in the response.

)

The perform_request function requires the following parameters:

l $base. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

l $resource. The relative URI of the resource to request.

The perform_request function has the following optional parameters:

l $type. The type of request to perform. By default, the perform_request function performs a GET request
($type = "GET"). The function accepts the following string values in the $type parameter:

o POST. The function will POST JSON content to the specified $resource. This method can be used to
create or update resources.

o APPLY. The function will POST a resource URI to the specified $resource. This method is used to
perform asynchronous operations such as starting discovery sessions and applying device templates
to devices. For information about applying a ScienceLogic resource URI to another resource, see the
Asynchronous Operations section.

o DELETE. The function will perform an HTTP DELETE request on the specified $resource.

l $content. For $type values that require a POST operation ("POST" or "APPLY"), the content to POST must
be passed in this parameter. For a $type value of "POST", $contentmust be an array, which will be
encoded in JSON format. For a $type value of "APPLY", $contentmust be the relative URI to POST.

The perform_request function uses the $base and $resource values to construct the full URI of the resource,
then creates a cURL session:

function perform_request($base, $resource, $type = "GET", $content =

FALSE) {

$uri = $base . $resource;

$ch = curl_init($uri);

Utility Functions (utils.php)

Utility Functions (utils.php)

For every request, the following cURL options are configured in the cURL session:

l CURLOPT_RETURNTRANSFER. Set to TRUE. By default, the PHP function that executes a request outputs
the response to standard out. By specifying this option, the function will return the response as a string.

l CURLOPT_HEADER. Set to TRUE. By specifying this option, the response headers will be included in the
output.

l CURLOPT_SSL_VERIFYPEER and CURLOPT_SSL_VERIFYHOST. Set to FALSE. To enable the use of the
example code in a test environment, the verification of the SSL certificate on the API appliance is disabled.

curl_setopt($ch, CURLOPT_RETURNTRANSFER, TRUE);

curl_setopt($ch, CURLOPT_HEADER, TRUE);

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE);

curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, FALSE);

If the $type parameter is set to "POST" and content is supplied, the following additional cURL options are set to
perform a create/update POST request:

l CURLOPT_POST. Set to TRUE to perform an HTTP POST request.

l CURLOPT_POSTFIELDS. Set to the value of $content (in this case, a PHP array) encoded as JSON
content.

l CURLOPT_HTTPHEADER. Specifies the appropriate content-type header to include in the request.

if($type == "POST" AND $content) {

$json_content = json_encode($content);

curl_setopt($ch, CURLOPT_POST, TRUE);

curl_setopt($ch, CURLOPT_POSTFIELDS, $json_content);

curl_setopt($ch, CURLOPT_HTTPHEADER, array('content-type:

application/json'));

}

193

194

If the $type parameter is set to "APPLY" and content is supplied, the following additional cURL options are set to
perform POST request that applies a resource URI:

l CURLOPT_POST. Set to TRUE to perform an HTTP POST request.

l CURLOPT_POSTFIELDS. Set to the value of $content (in this case, a the URI of a resource).

l CURLOPT_HTTPHEADER. Specifies the appropriate content-type header to include in the request.

if($type == "APPLY" AND $content) {

curl_setopt($ch, CURLOPT_POST, TRUE);

curl_setopt($ch, CURLOPT_POSTFIELDS, $content);

curl_setopt($ch, CURLOPT_HTTPHEADER, array('content-type:

application/em7-resource-uri'));

}

If the $type parameter is set to "DELETE", the CURLOPT_CUSTOMREQUEST option is set to perform an HTTP
DELETE in the cURL session:

if($type == "DELETE") {

curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");

}

If the $type parameter is set to "POST" or "APPLY" and the $content parameter is not supplied, the perform_
request function returns FALSE without performing a request:

elseif(($type == "POST" OR $type == "APPLY") AND !$content) {

return FALSE;

}

Utility Functions (utils.php)

Utility Functions (utils.php)

The perform_request function executes the cURL request and stores the HTTP status code from the response in
the output array ($response):

$output = curl_exec($ch);

$response['http_code'] = curl_getinfo($ch, CURLINFO_HTTP_CODE);

The response from the API includes the following information that must be included in the output of the function:

l Each response header on a separate line.

l The JSON content in the body of the response on a single line.

To parse this information, an array called $output_array is created with each line of the response as an array
element. Because the HTTP status code has already been stored, the first line of the response, which contains the
HTTP version and status code, is removed from the array:

$output_array = explode("\n", $output);

array_shift($output_array);

The function iterates through each line of the response. If a line begins with an opening brace, it is assumed to be
the JSON content and is added to the output array ($response):

foreach($output_array as $line) {

if(strpos($line, "{") < 2 AND strpos($line, "{") !== FALSE) {

$response['content'] = json_decode($line, TRUE);

}

If a line is not content and includes a colon, it is assumed to be a header and is added to the output array
($response):

elseif(strpos($line, ":") !== FALSE) {

$header_array = explode(":", $line);

$response['headers'][$header_array[0]] = trim($header_array[1]);

}

}

195

196

To allow other functions to assume that the "content" key always exists in the output array, the "content" key in the
output array ($response) is initialized as an empty array if it is not already initialized:

if(!array_key_exists('content', $response)) {

$response['content'] = array();

}

In addition to HTTP status codes, every response from the API includes headers that provide additional details
about the result of a request:

l X-EM7-Implemented-methods. A comma-delimited list of methods that are supported by the requested
resource. This header is intended to provide information on the actions that can be performed on a given
resource. For example, if you perform a GET request on the /device resource index, X-EM7-Implemented-
methods will contain "GET,POST", the two methods supported by /device. If you perform a GET request on
a specific device (e.g. /device/1), the X-EM7-Implemented-methods header will contain
"GET,POST,PUT,DELETE", because a specific device resource supports all available methods.

l X-EM7-Applicable-resources. A comma-delimited list of base URIs for resources that can be applied to the
requested resource. For example, to start a discovery session through the API, you would POST a specific
/discovery_session resource to the /discovery_session_active resource index; therefore, if you perform a
GET request on the /discovery_session_active resource index, the response will include a X-EM7-
Applicable-resources header of "/discovery_session". For more information on applying resource URIs to
other resources, see the Asynchronous Operations section.

l X-EM7-authenticated-user. The URI of the user account that authenticated the request. If the request
included the X-EM7-run-as header, the X-EM7-authenticated-user will return the run-as user.

l X-EM7-status-code. Typically a human-readable version of the HTTP Status Code. For certain errors, X-
EM7-status-codemight include additional information about why a request was unsuccessful. For
example, if a response has the HTTP Status code "400 Bad Request", the X-EM7-status-codemight be
"FAILED_INPUT_VALIDATION".

l X-EM7-status-message. A human-readable description of the result of a request. The X-EM7-status-
message can contain multiple messages delimited by a newline character (\n). For example, if a response
has the HTTP Status code "302 Found", the X-EM7-status-messagemight be "ticket index requires a limit",
indicating the request was missing the required limit option.

l X-EM7-Last-updated. This header is returned only when requesting device configuration data from the API.
Returns the date and time that at least one value in the returned data changed.

If the HTTP status code from the response is not 200, 201, or 202 (i.e. 301 or above), the "error" key in the output
array ($response) is set to an appropriate message, which includes the values from the X-EM7-status-message
and X-EM7-info-message headers:

if($response['http_code'] > 300) {

Utility Functions (utils.php)

Utility Functions (utils.php)

$response['error'] = "HTTP status " . $response['http_code'] . "

returned. ";

if(array_key_exists("X-EM7-status-message", $response['headers'])) {

$response['error'] .= $response['headers']['X-EM7-status-message'] .

". ";

}

if(array_key_exists("X-EM7-info-message", $response['headers'])) {

$response['error'] .= $response['headers']['X-EM7-info-message'] .

". ";

}

}

Finally, the cURL session is closed and the output array ($response) is returned:

curl_close($ch);

return $response;

}

Requesting a List of Entities

All resource indexes in the API require the inclusion of the "limit" option in all GET requests; therefore, to obtain a
full list of entities from a resource index, you might need to perform multiple requests. For example, if 300 devices
are discovered in the system and you use the default limit of "100" when performing a request on the "/device"
resource index, you must perform three requests to obtain a list of all devices: one request with an offset of 0, one
request with an offset of 100, and one request with an offset of 200.

The get_all function is designed to return a list of all available entities for a given resource index URI. The get_all
function includes a do-while loop that handles cases where multiple requests are required. For example, if the
URI is "/device", the get_all function returns a list of all devices in the system.

197

198

The get_all function requires the following parameters:

l $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

l $uri. The relative URI of a resource index. The limit and offset parameters are added to the URI by the get_
all function; the URI must not include limit or offset parameters. The logic in the get_all function requires
that responses from the API include the total_matched value; therefore, the passed URI must not include
the hide_filterinfo parameter.

The get_all function returns:

l On success, an array of entities. The structure of the array of entities is identical to the structure returned in
the result_set section of the response from the specific resource URI. The array of entities can be empty if
the request to the resource URI was successful, but no results were returned.

l On failure, an error message.

Any function that calls the get_all function can check success/failure by determining if the returned value is an
array or a string.

Before executing the do-while loop in which requests to the resource URI are performed, the array of entities is
initialized, initial offset value is set to 0, and the limit and offset values are added to the URI:

function get_all($base_uri, $uri) {

$offset = 0;

$request_uri = $uri . "&limit=100&offset=";

$entities = array();

The the $request_uri variable does not include a value for the offset option. For each iteration of the do-while
loop, the current offset is appended to the end of $request_uri.

The do-while loop performs a GET request for the URI with the current offset. If the request was successful (the
HTTP status code is 200), the result_set from the request is added to the list of entities:

do {

$response = perform_request($base_uri, $request_uri . $offset, "GET");

if($response['http_code'] == 200 AND array_key_exists("result_set",

$response['content']) AND count($response['content']['result_set']) >

0) {

Utility Functions (utils.php)

Utility Functions (utils.php)

$entities = array_merge($entities, $response['content']['result_

set']);

}

If the request is unsuccessful, the $message variable is initialized with an error message:

elseif($response['http_code'] != 200) {

$message = "An error occured while requesting entities. ";

if(array_key_exists("error", $response)) {

$message .= $response['error'];

}

}

Because the limit parameter is set to 100 in the URI, the offset value is incremented by 100 on each iteration. The
do-while loop iterates if the previous request was successful and more entities are available. The "total_matched"
value from the previous response indicates the total number of entities that can be returned by this specific URI;
more entities are available if the current offset value is lower than "total_matched"":

$offset = $offset + 100;

} while(!isset($message) AND ($offset < $response['content']['total_

matched']));

If an error message was generated by any request performed by the get_all function, the returned value is the
error message generated by the failed request. If no error messages were generated, the array of entities is
returned:

if(isset($message)) {

return $message;

}

else {

199

200

return $entities;

}

}

Organization Lookup

The input forms used in this example include a field for customer name. The lookup_organization function is
designed to return the URI for a customer's organization record using the name of a customer.

The lookup_organization function requires the following parameters:

l $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

l $customer. The customer name.

The lookup_organization function returns:

l On success, the URI of the organization record for the specified customer.

l On failure, boolean FALSE.

The lookup_organization function constructs a request to the /organization resource index using the customer
name as a search parameter. The customer name is URL encoded to handle names that include spaces:

function lookup_organization($base_uri, $customer) {

$resource = "/api/organization?limit=1&hide_

filterinfo=1&filter.company=" . rawurlencode($customer);

$response = perform_request($base_uri, $resource, "GET");

If the request was successful (the HTTP status code is 200) and at least one organization is returned, the URI of the
first organization in the response is returned. Because the request specified that the customer name must be
matched exactly and because all organization names in an instance of SL1 must be unique, the assumption is
made that the response will not include more than one organization:

if($response['http_code'] == 200 AND count($response['content']) > 0 AND

array_key_exists("URI", $response['content'][0])) {

return $response['content'][0]['URI'];

}

else {

Utility Functions (utils.php)

Utility Functions (utils.php)

return FALSE;

}

}

Creating Entities

The create_entity function is designed to create an entity using the resource index URI for that entity and an array
of field/value pairs for the entity.

The create_entity function requires the following parameters:

l $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

l $entity_uri. The resource index URI for the entity to be created. For example, to create an organization,
supply "/api/organization" in the $entity_uri parameter.

l $entity_array. A PHP array that contains field/value pairs of the attributes for the entity. This PHP array will
be converted to JSON format and POSTed to the specified URI.

The create_entity function returns an array:

l The first array value (array index 0) is a boolean that indicates whether the entity was created successfully.

l The second array value (array index 1) is a string. On success, the string is the URI of the created entity. On
failure, the string is an error message.

The create_entity function uses the perform_request function to create the entity. The perform_request
function handles the conversion of the PHP array to JSON format and the options required to perform a
POST request:

function create_entity($base_uri, $entity_uri, $entity_array) {

$response = perform_request($base_uri, $entity_uri, "POST", $entity_

array);

If the request was successful (the HTTP status code is 201), the function returns TRUE at array index 0 and the
contents of the "Location" header at array index 1, which contains the relative URI of the created element:

if($response['http_code'] == 201) {

return array(TRUE, $response['headers']['Location']);

}

201

202

If the request was unsuccessful, the function returns FALSE at array index 0 and the error message at array index
1:

else {

$error_message = "Could not create " . substr($entity_uri, 1) . ". ";

if(array_key_exists("error", $response)) {

$error_message .= $response['error'];

}

return array(FALSE, $error_message);

}

}

Deleting Entities

Themulti_delete function is designed to delete multiple entities.

Themulti_delete function requires the following parameters:

l $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

l $entities. An array that contains the entities to be deleted. The $entities array must be multi-dimensional;
each element in the $entities array must be an array that includes "URI" as a key. The function uses the
value of "URI" as the relative URI in a delete request. The structure of the $entities array is the same as an
array returned by the get_all function.

Themulti_delete function returns NULL on success or an error message on failure.

Themulti_delete function initializes $bad_entities as an array. The $bad_entities array is used to track entities
that could not be deleted:

function multi_delete($base_uri, $entities) {

$bad_entities = array();

If the input is valid ($entities is an array), themulti_delete function iterates through each element in the array.
For each element, if the element is an array that contains the key "URI", the function performs a delete request
using the value that corresponds to the key "URI". If the element was not an array, did not contain the key "URI", or
the delete request fails, the element is added to the $bad_entities array:

Utility Functions (utils.php)

Utility Functions (utils.php)

if(is_array($entities)) {

foreach($entities as $entity) {

if(is_array($entity) AND array_key_exists('URI', $entity)) {

$response = perform_request($base_uri, $entity['URI'], "DELETE");

if($response['http_code'] >= 400) {

$bad_entities[] = $entity;

}

}

else {

$bad_entities[] = $entity;

}

}

If all elements in the $entities array were deleted, themulti_delete function returns NULL, indicating success:

if(count($bad_entities) == 0) {

return NULL;

}

If one or more elements in the $entities array could not be deleted, an error message is constructed by
concatenating the contents of each element in $entities that could not be deleted. Instead of determining the
data type of each element, the print_r function is used to output the human-readable string for the element:

else {

$error_message = "Could not delete: ";

foreach($bad_entities as $entity) {

$error_message .= print_r($entity, TRUE) . ". ";

203

204

}

return $error_message;

}

}

else {

return "Must pass an array of entities";

}

}

Configuring SNMP Credentials

The configure_credentials function is designed to return an array of SNMP v2 credentials for a specific
organization using a list of community strings. The configure_credentials function creates new credentials if a
credential with the same community string does not already exist for the organization.

The configure_credentials function requires the following parameters:

l $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

l $customer. The name of the customer organization for which the credentials will be used.

l $community_strings. A comma-delimited list of community strings. The configure_credentials function
ensures that a credential associated with the $customer organization exists for each community string in the
list.

The configure_credentials function returns an array of credential URIs on success or an error message on
failure.

The configure_credentials function uses the array_walk PHP function when the list of community strings is
parsed. The array_walk function takes the name of a function as a parameter and applies that function to each
value in the array. In our example code, the array_walk applies the trim_value function to each value in the
array. The trim_value function is included in the utils.php file and removes leading and trailing whitespace from
each value passed in the parameter:

function trim_value(&$value) {

$value = trim($value);

}

Utility Functions (utils.php)

Utility Functions (utils.php)

The $community_strings parameter is split into an array of community strings. If a user enters spaces in the
comma-delimited list, the trim_value function removes leading and trailing whitespace from each element in the
array:

function configure_credentials($base_uri, $customer, $community_strings) {

$community_array = explode(",", $community_strings);

array_walk($community_array, 'trim_value');

All credentials created by the configure_credentials function are named "customer: community string". The
configure_credentials function performs a request for all credentials associated with the specified customer by
searching for credential names that include the string $customer:

$resource = "/api/credential/snmp?limit=1000&snmp_version=2&hide_

filterinfo=1&filter.cred_name.contains=" . rawurlencode($customer);

$existing_credentials = perform_request($base_uri, $resource, "GET");

If the request for existing credentials is successful, the response is processed using the following arrays:

l $existing_credentials. The response to the request for all credentials currently associated with the
organization specified in $customer.

l $community_array. The array of community strings passed in the $community_strings parameter.

l $existing_communities. Initialized to an empty array. As the function iterates through $existing_
credentials, the community string for each existing credential that matches a community string that was
passed in the $community_strings parameter is added to this array.

l $credentials. Initialized to an empty array. If a community string for an existing credential matches a
community string that was passed in the $community_strings parameter, the URI for that credential is
added to this array.

if($existing_credentials['http_code'] == 200) {

$credentials = array();

$existing_communities = array();

The configure_credenetials function iterates through the existing credentials for the organization in the
$existing_credentials array. The community string is parsed from the name of the existing credential based on
the standard naming scheme. If the community string matches a value in $community_array, the community
string is added to the $existing_communities array and the URI is added to the $credentials array:

205

206

foreach($existing_credentials['content'] as $key => $credential) {

$existing_community = substr($credential['description'], strlen

($customer) + 2);

$matched_community = array_search($existing_community, $community_

array);

if($matched_community !== FALSE) {

$credentials[] = $credential['URI'];

$existing_communities[] = $community_array[$matched_community];

}

}

The configure_credentials function must now create a credential for any community string that appears in
$community_array that does not appear in $existing_communities. The variable $error_message is
initialized as an empty string; all error messages generated while credentials are added are appended to this
string. The variable $diff is initialized as an array of community strings that appear in $community_array that do
not appear in $existing_communities:

$error_message = "";

$diff = array_diff($community_array, $existing_communities);

If $diff is empty, i.e. no additional credentials need to be created, processing is complete. If new credentials need
to be created, the variable $organization is initialized to the URI of the organization record associated with
$customer:

if(count($diff) > 0) {

$organization = lookup_organization($base_uri, $customer);

If the organization URI is returned by the lookup_organization function, the configure_credentials function
iterates through the community strings in $diff. For each community string, the credential name is constructed
using the customer name and the community string:

Utility Functions (utils.php)

Utility Functions (utils.php)

if($organization !== FALSE) {

foreach($diff as $community) {

$cred_name = $customer . ": " . trim($community);

The variable $cred_post_array is initialized to an array that represents the content that will be used to create the
credential. When the credential is created, the create_entity function encodes this array in JSON format. The
array includes the following field/value pairs that are applicable to /credential/snmp resources:

(

['cred_name'] => The name of the credential.

['cred_host'] => The hostname associated with the credential. Always set

to an empty string.

['cred_port'] => The port associated with the credential. Always set to

the standard SNMP port, 161.

['cred_timeout'] => The timeout for the credential. Always set to a

default timeout of 1500ms.

['all_orgs'] => This setting specifies whether the credential is visible

to all organizations (1) or is restricted to specific organizations (0).

All credentials created by the provisioning system are aligned only with

the specific organization for which they are created, so this value is

always set to 0.

['snmp_version'] => The SNMP version. For simplicity, this example

creates only SNMP v2 credentials.

['snmp_ro_community'] =>The SNMP community string.

['aligned_organizations'] => A list of organizations to which the

credential is visible. A list element in JSON is represented as an array

in the equivalent PHP structure.

)

207

208

The $cred_post_array variable is passed to the create_entity function with the URI of an Administration Portal,
Database Server, or All-In-One Appliance and the relative URI that is used to create SNMP credentials
(/api/credential/snmp):

$cred_post_array = array('cred_name' => $cred_name, 'cred_host'

=> "", 'cred_port' => 161, 'cred_timeout' => 1500, 'all_orgs' =>

0, 'snmp_version' => 2, 'snmp_ro_community' => trim($community),

'aligned_organizations' => array($organization));

$cred_response = create_entity($base_uri,

"/api/credential/snmp", $cred_post_array);

The create_entity function returns an array of two values. Index 0 in the returned array is a boolean that
indicates whether the entity was created successfully. Index 1 in the returned array is the URI of the created entity
on success or an error message on failure. If the credential was created successfully, the URI of the new credential
is added to the $credentials array. If the credential was not created, the error message from the create_entity
function is appended to $error_message:

if($cred_response[0]) {

$credentials[] = $cred_response[1];

}

else {

$error_message .= $cred_response[1];

}

}

}

If no organization URI was returned by the lookup_organization function, an error message is appended to
$error_message:

else {

$error_message .= "Could not find organization record for

customer: " . $customer . ". ";

}

}

Utility Functions (utils.php)

Utility Functions (utils.php)

}

If the request for existing credentials is not successful, an the $error_message variable is set to an error message
that includes the error message constructed by the perform_request function, if available:

else {

$error_message = "Could not get list of existing credentials. ";

if(array_key_exists("error", $existing_credentials)) {

$error_message .= $existing_credentials['error'] . ". ";

}

}

If an error message has been generated by the create_credentials function, that error message is returned.
Otherwise, the array of credential URIs is returned:

if(strlen($error_message) == 0) {

return $credentials;

}

else {

return $error_message;

}

}

Requesting Discovery Session Logs

The get_discovery_result function is designed to return an array that contains information about a specified
discovery session. The returned array has the following structure:

(

209

210

['status'] => An integer that specifies the result of the get_discovery_

result function:

0 = The specified discovery session has completed and get_

discovery_result was able to return a list of devices discovered by the

discovery session.

1 = The specified discovery session is currently running and

get_discovery_result was able to return a list of devices discovered by the

discovery session.

2 = The specified discovery session has never been run.

3 = An error occurred in a request made by the get_

discovery_result function.

['devices'] => If the returned status is 0 or 1, is set to an array of

device arrays. Each device array includes "ip", "name", "uri", and "new"

keys. The "new" key is a boolean that is set to TRUE if the device was

discovered as a new device or FALSE if the device was discovered as an

existing device.

['error'] => If the returned status is 3, is set to an error message.

)

The get_discovery_result function requires the following parameters:

l $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

l $session_uri. The URI for a discovery session resource.

The get_discovery_result has the following optional parameter:

l $new_only. If TRUE is passed in this parameter, the list of devices returned by the function will include only
newly discovered devices from the discovery session. By default, the function returns all discovered devices,
both new and existing, from the discovery session.

function get_discovery_result($base_uri, $session_uri, $new_only = FALSE)

{

Utility Functions (utils.php)

Utility Functions (utils.php)

The function includes a do-while loop in which all log messages for a discovery session are requested. Like the
get_all function, a limit of 100 is specified in the logs URI and the offset is increased on each iteration of the do-
while loop. The variable $discovery_logs is initialized as an array, to which the log messages in the responses
will be added. The variable $not_started is initialized as FALSE. If the logic within the do-while loop determines
that the discovery session is not running, this variable is set to TRUE:

$log_uri = $session_uri . "/log?extended_fetch=1&limit=100&offset=";

$offset=0;

$discovery_logs = array();

$not_started = FALSE;

do {

$response = perform_request($base_uri, $log_uri . $offset, "GET");

If the request for logs in this iteration of the do-while loop successfully returns logs, the returned logs are added to
the $discovery_logs array:

if($response['http_code'] == 200 AND array_key_exists("result_set",

$response['content']) AND count($response['content']['result_set']) >

0) {

$discovery_logs = array_merge($discovery_logs, $response['content']

['result_set']);

}

If the request for logs is successful but does not return any logs, the function must determine whether the discovery
session was never started or if the discovery session is running but has not yet generated any logs. To do this, the
URI of the discovery session is manipulated to determine the equivalent /api/discovery_session_active URI:

elseif($response['http_code'] == 200 AND array_key_exists("total_

matched", $response['content']) AND $response['content']['total_

matched'] == 0) {

$uri_array = explode("/", $session_uri);

211

212

$uri_array[2] = "discovery_session_active";

$active_uri = implode("/", $uri_array);

The function performs a GET request on the /discovery_session_active URI for the specified discovery session. If
the response includes an HTTP status code of 200, the discovery session is currently running. The output array
($result) is initialized with a status of 1 (running) with an empty array of devices:

$active_check = perform_request($base_uri, $active_uri, "GET");

if($active_check['http_code'] == 200) {

$result = array("status" => 1, "devices" => array());

}

If the response includes an HTTP status code of 303 (See Other), the discovery session exists but is not currently
running. The output array ($result) is initialized with a status of 2 (never run) and an appropriate error message:

elseif($active_check['http_code'] == 303) {

$result = array("status" => 2, "error" => "Discovery Session has

never run.");

}

If the response includes an HTTP status code other than 200 or 303, an error occurred with the request. The
output array ($result) is initialized with a status of 3 (error) and an appropriate error message:

else {

$result = array("status" => 3, "error" => "Could not determine

status of discovery session. ");

if(array_key_exists("error", $active_check)) {

$result['error'] .= $active_check['error'];

}

Utility Functions (utils.php)

Utility Functions (utils.php)

}

}

If the request for discovery session logs fails (HTTP status code is not 200), the output array ($result) is initialized
with a status of 3 (error) and an appropriate error message:

else {

$result = array("status" => 3, "error" => "Could not get discovery

session logs ");

if(array_key_exists("error", $response)) {

$result['error'] .= $response['error'];

}

}

The offset is increased for the next iteration for the do-while loop. The loop continues if the output array ($result)
has not been initialized, i.e. the request for logs was successful and returned one or more logs, and if more logs
are available. The "total_matched" value from the previous response indicates the total number of logs that can
be returned; more logs are available if the current offset value is lower than "total_matched"":

$offset = $offset + 100;

} while(!isset($result) AND array_key_exists("total_matched", $response

['content']) AND ($offset < $response['content']['total_matched']));

If the output array ($result) has not been initialized, all requests performed in the do-while loop were successful
and one or more logs were returned. In this case, the status returned by the get_discovery_result function will be
either 0 (logs were successfully returned and the discovery session is complete) or 1 (logs were successfully
returned and the discovery session is still running). The function iterates through the array of returned log
messages:

if(!isset($result)) {

$result = array("devices" => array());

213

214

foreach($discovery_logs as $log) {

Each discovery session log includes a "msg_id" field, which specifies the type of message in the log entry. To
return a list of devices and to determine the state of the discovery session, the get_discovery_results function
uses only log messages that have one of the following msg_id values:

l 125. Associated with the log message that indicates the discovery session is complete.

l 500. Associated with the log message that is generated when an existing device is found by the discovery
session.

l 501. Associated with the log message that is generated when a new device is found by the discovery
session.

The "msg_id" field is used in a switch statement, which includes cases for the three values:

switch($log['msg_id']) {

If the log message indicates the discovery session is complete, the status key in the output array is set to 0:

case 125:

$result['status'] = 0;

break;

If the log message indicates an existing device is found and the $new_only parameter is set to FALSE, the device
is added to the device array:

case 500:

if(!$new_only) {

$result['devices'][] = array("ip" => $log['ip'], "name" =>

$log['name'], "uri" => $log['device'], "new" => FALSE);

}

break;

New devices are always added to the device array:

Utility Functions (utils.php)

Utility Functions (utils.php)

case 501:

$result['devices'][] = array("ip" => $log['ip'], "name" => $log

['name'], "uri" => $log['device'], "new" => TRUE);

break;

}

}

If the status key in the output array has not been set after all log messages have been evaluated, the discovery
session is still running:

if(!array_key_exists("status", $result)) {

$result['status'] = 1;

}

}

return $result;

}

Requesting an Available Data Collection Unit

To create a discovery session using the API, you must specify the URI of an /appliance resource. The supplied
/appliance resource must be an All-In-One Appliance or a Data Collector. The get_collector_id function is
designed to return the URI of an appliance for discovery.

The get_collector_id function requires the following parameter:

l $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

The get_collector_id function returns an array:

l The first array value (array index 0) is a boolean that indicates whether an appropriate appliance resource
was found.

l The second array value (array index 1) is a string. On success, the string is the URI of an appropriate
appliance. On failure, the string is an error message.

215

216

For systems that include All-In-One Appliances, the function returns the URI of the currently active All-In-One
Appliance. For distributed systems, the function returns the URI of a Data Collector in a collector group.

An initial request is made on the /appliance resource index. The request includes filter criteria that specifies that
only All-In-One Appliances (type = "ao") that are currently active (ha_status = 1) should be returned:

function get_collector_id($base_uri, $num_devices) {

$resource = "/api/appliance?limit=100&filter.type=ao&filter.ha_

status=1&hide_filterinfo=1";

$response = perform_request($base_uri, $resource, "GET");

If the response includes at least one appliance, the URI of that appliance is returned:

if($response['http_code'] == 200 AND count($response['content']) > 0) {

return array(TRUE, $response['content'][0]['URI']);

}

If the initial request fails, the function returns an error message:

elseif($response['http_code'] != 200) {

$error_message = "Request for list of appliances failed. ";

if(array_key_exists("error", $response)) {

$error_message .= $response['error'];

}

return array(FALSE, $error_message);

}

Utility Functions (utils.php)

Utility Functions (utils.php)

If the initial request is successful, but does not return any appliances, a request is made for all collector groups in
the system using the extended fetch option:

else {

$resource = "/api/collector_group?limit=100&hide_

filterinfo=1&extended_fetch=1";

$response = perform_request($base_uri, $resource, "GET");

If the request for collector groups is successful and at least one collector group is returned, the function iterates
through the array of returned collector groups. For each collector group, the function checks the data_collectors
field. If a collector group includes at least one Data Collector, the URI of the first Data Collector in that collector
group is returned:

if($response['http_code'] == 200 AND count($response['content']) > 0)

{

foreach($response['content'] as $cug_id => $cug) {

if(array_key_exists("data_collectors", $cug) AND count($cug['data_

collectors']) > 0) {

return array(TRUE, $cug['data_collectors'][0]);

}

}

}

If the request for collector groups is not successful (the HTTP Status Code in the response is not 200), an
appropriate error message is returned. If an error message was returned by the perform_request function, it is
included in the error message:

elseif($response['http_code'] != 200) {

$error_message = "Request for list of collector groups failed. ";

if(array_key_exists("error", $response)) {

$error_message .= $response['error'];

}

217

218

return array(FALSE, $error_message);

}

If the request for collector groups is successful but does not return any collector groups, an appropriate error
message is returned:

else {

return array(FALSE, "No collector groups configured on system.");

}

}

}

Requesting a List of Referenced Entities

API resources that represent a specific entity can include references to other entities. These references are
displayed as the relative URI of that other entity. For example, if you perform a GET request on "/api/device/1",
the response will include a "class_type" field that contains the URI of the device class associated with the device.
The get_join_resources function is designed to return an array of entities referenced in a particular field in a
passed array of entities.

The get_join_resources function requires the following parameters:

l $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

l $entity_list. An array that contains the entities that include a field that references another entity. For
example, if you want to retrieve an array of device classes that are associated with a set of devices, you
would pass the array of devices in the $entity_list parameter.

l $left_join_field. The name of the field associated with the entities in the $entity_list that reference the other
entity. For example, all devices include a "class_type" field that specifies the URI of the device class
associated with that device; therefore, if you want to retrieve an array of device classes that are associated
with a set of devices, you would pass "class_type" in the $left_join_field parameter.

l $right_join_field. For efficiency, the get_join_resources function performs a single request for all
referenced entities instead of performing a request on each referenced URI. To request all referenced
entities, the get_join_resources function performs a request to the appropriate resource index with the
extended_fetch option enabled. To limit the request to only entities that are referenced by the entities in the
$entity_list, the get_join_resources function concatenates the ID values of each referenced entity and
passes them as a search value using the "in" function. To do this, the get_join_resources function must
specify the field in the referenced entity that contains the ID value. You must pass the name of that field in

Utility Functions (utils.php)

Utility Functions (utils.php)

the $right_join_field parameter. For example, if you want to retrieve an array of device classes that are
associated with devices and the get_join_resources function determines that the devices in $entity_list are
associated with device classes 2, 5, and 9, the get_join_resources function must pass the following URI to
the get_all function to get the list of device classes:

/api/device_class?extended_fetch=1&filter.class_type.in=2,5,9

The field used in the filter clause must be passed in the $right_join_field parameter. In this case, $right_
join_field is "class_type".

The get_join_resources function returns an array of entities on success or an error message on failure. If no
referenced entities are found, the returned array is empty.

The get_join_resources function initializes $in as an array. The $in array is used to track the ID values of the
entities that must be requested:

function get_join_resources($base_uri, $entity_list, $left_join_field,

$right_join_field) {

$in = array();

The get_join_resources function iterates through the array of entities passed in the $entity_list parameter. For
each entity in the array, the function looks up the URI for the referenced entity using the field name passed in the
$left_join_field parameter. Two variables are populated by the URI of the referenced entity:

l $join_uri. Initialized to an array that contains each section of the URI (delimited by the "/" character) as an
element. The specific resource ID is removed from the end of the array using the array_pop function;
therefore, when the foreach loop completes, $join_uri is an array that contains each section of the URI for
the resource index of the referenced entity.

For example, if the URI of the referenced entity is /credential/snmp/1, the$join_uri array looks like this
when the foreach loop completes:

(

[0] => "credential"

[1] => "snmp"

)

l $in. An element in this array is set to the ID value of the referenced entity.

foreach($entity_list as $entity) {

219

220

if(array_key_exists($left_join_field, $entity)) {

$join_uri = explode("/", $entity[$left_join_field]);

$in[] = array_pop($join_uri);

}

}

If at least one entity ID exists in the $in array, the get_join_resources function constructs a URI for the resource
index of the referenced entities using:

l The $join_uri array, which contains the base resource index URI.

l The value in $right_join_field, which is the field in the referenced entity that contains the ID values for that
entity.

l The $in array, which contains the ID values of each referenced entity from the list of entities that was passed
in the $entity_list array.

The URI is used to request a list of referenced entities:

if(count($in) > 0) {

$uri = implode("/", $join_uri) . "?extended_fetch=1&filter." . $right_

join_field . ".in=" . implode(",", $in);

$join_list = get_all($base_uri, $uri);

The get_all function returns an array or entities on success and an error message on failure. Because the get_all
function returns the same values as the get_join_resourcesfunction, the result of the get_all function can be
returned without additional processing:

return $join_list;

}

Utility Functions (utils.php)

User Interface

If no entity IDs exist in the $in array, the function returns an empty array without performing a request:

else {

return array();

}

}

User Interface

The example provisioning system comprises the following front-end files to display the user interface:

l index.php. Provides a user interface for provisioning a new customer and discovering additional devices for
an existing customer.

l devices.php. Provides a user interface for configuring customer devices that have been discovered in SL1.

l remove.php. Provides a user interface for removing a customer from SL1.

The user interface files use the following additional files:

l header.php. Includes the common elements used by all three user interface pages.

l provisioning.css. Includes style information for the user interface pages. In this example, minimal style is
applied to the user interface pages. You can customize the user interface pages by adding style information
to this file.

The following sections describe each of these five files.

header.php

The header.php file is required in all user interface PHP files. The header.php file outputs links to each user
interface page, includes utils.php, and outputs messages from the back-end PHP files:

<p>Run Discovery | Configure

Devices | Remove Customer</p>

<?php

require_once 'utils.php';

session_start();

221

222

if(isset($_SESSION['message'])) {

echo "<p>" . $_SESSION['message'] . "</p>";

unset($_SESSION['message']);

}

else {

echo "<p> </p>";

}

?>

index.php

The index.php file provides a user interface for provisioning a new customer and discovering additional devices
for an existing customer:

<html>

<head>

<title>Provision Customer</title>

<link href="provisioning.css" rel="stylesheet" type="text/css">

User Interface

User Interface

</head>

<body>

<?php

require_once 'header.php';

?>

<form action="provision_customer.php" method="post">

Customer Name:

<input type="text" name="customer" />

Device IP List (Comma-separated):

<input type="text" name="ip_addresses" />

SNMP v2 Community Strings:

<input type="text" name="community_strings" />

<input type="checkbox" name="non_snmp" value="yes" /> Discover Non-

SNMP Devices

<input type="submit" value="Submit" />

</form>

</body>

</html>

When you enter customer information and select the [Submit] button, the provision_customer.php script
performs the required tasks for provisioning that customer.

devices.php

The devices.php file provides a user interface for configuring customer devices in SL1:

223

224

When you enter a customer name and select the [Show Devices] button, the configure_devices.php script
returns a list of devices that are then displayed in the devices.php page. For each device in the list of devices, the
devices.php page displays a drop-down list of all device templates in the Service Level column. The last device
template that was applied to the device is selected by default:

<html>

<head>

<title>Configure Devices</title>

<link href="provisioning.css" rel="stylesheet" type="text/css">

</head>

<body>

<?php

User Interface

User Interface

require_once 'header.php';

The configure_devices.php back-end script returns session variables that contain the values that were supplied
in the Customer Name field and radio buttons. These session variables are stored in a local variable then unset.
The local variables are used to populate the form fields:

if(isset($_SESSION['customer'])) {

$customer = $_SESSION['customer'];

unset($_SESSION['customer']);

}

else {

$customer = "";

}

if(isset($_SESSION['dev_type'])) {

$dev_type = $_SESSION['dev_type'];

unset($_SESSION['dev_type']);

}

else {

$dev_type = "";

}

?>

<p>Devices To Configure:</p>

<form action="configure_devices.php" method="post">

Customer Name:

225

226

<input type="text" name="customer" value="<?php echo $customer; ?>"

/>

<input type="radio" name="dev_type" value="new_disc" <?php if($dev_

type == "new_disc") echo checked; ?> /> New Devices from last

Discovery

<input type="radio" name="dev_type" value="all_disc" <?php if($dev_

type == "all_disc") echo checked; ?> /> All Devices from last

Discovery

<input type="radio" name="dev_type" value="all_org" <?php if($dev_type

== "all_org") echo checked; ?> /> All Devices in Organization

<input type="submit" value="Show Devices" />

If the configure_devices.php script sets session variables for an array of one or more devices, an array of device
classes, and an array of device templates, the devices.php page displays a table of devices:

<?php

if(isset($_SESSION['dev_list']) AND isset($_SESSION['class_list'])

AND count($_SESSION['dev_list']) > 0 AND isset($_SESSION

['templates'])) {

$templates = $_SESSION['templates'];

The variable $table is used to build the HTML that will display the table of devices. A foreach loop iterates
through each device in the array of devices:

$table = "<table><tr><th>Device Name</th><th>Device

IP</th><th>Device Type</th><th>Service Level</th></tr>";

foreach($_SESSION['dev_list'] as $key => $device) {

User Interface

User Interface

On each iteration of the foreach loop, the $device variable is set to an array of all fields for the current device.
The configure_devices.php script sets the value of the custom field "c-last_dev_tpl" only if a template other than
the base template is applied. Therefore, if "c-last_dev_tpl" is NULL, it is assumed that the base template was the
last template to be applied to the device. The variable $service_level is initialized to the last device template
applied to the current device:

if(is_null($device['c-last_dev_tpl']) or $device['c-last_dev_

tpl'] == "") {

$service_level = get_base_template();

}

else {

$service_level = $device['c-last_dev_tpl'];

}

The Device Name and Device IP columns are populated using the appropriate values from the $device array.
The Device Type column is populated using values from the array of device classes ($_SESSION['class_list']).
The keys in the array of device classes are the device class URIs; the field from the device resource that references
the associated device class (class_type) is used to look up the device class for this device. The class and
description fields from the device class are combined to populate the Device Type column:

$table .= "<tr>";

$table .= "<td>" . $device['name'] . "</td>";

$table .= "<td>" . $device['ip'] . "</td>";

$table .= "<td>" . $_SESSION['class_list'][$device['class_

type']]['class'] . " " . $_SESSION['class_list'][$device['class_

type']]['description'] . "</td>";

The drop-down list in the Service Level column is constructed using the array of device templates ($templates).
The name of the drop-down list (which will appear as a key in the $_POST array) is set to the URI of the current
device (the current array key from $_SESSION['dev_list']):

$table .= "<td><select name=\"" . $key . "\">";

227

228

A drop-down list option is added for each device template. The last template that was applied to the device
($service_level) is selected as the default option. If the last template that was applied to the device is selected
when the form is submitted, the value of the drop-down list is set to NULL so that it can be skipped by the
configure_devices.php script:

foreach($templates as $template) {

if($service_level == $template['URI']) {

$table .= "<option value=NULL selected=\"selected\">" .

$template['description'] . "</option>";

}

For all other device templates, the value of the drop-down list is set to the URI of the device template:

else {

$table .= "<option value=\"" . $template['URI'] . "\">" .

$template['description'] . "</option>";

}

}

$table .= "</select>";

$table .= "</tr>";

}

The HTML for the table is completed and outputted. To prevent an error in the next execution of configure_
devices.php from producing erroneous results in this page, the session variables that contain the array of
devices, the array of device classes, and the array of device templates are unset:

$table .= "<tr><td colspan=\"3\"></td><td><input type=\"submit\"

name=\"config\" value=\"Configure Devices\" /></td></tr>";

$table .= "</table>";

echo $table;

unset($_SESSION['dev_list']);

User Interface

User Interface

unset($_SESSION['class_list']);

unset($_SESSION['templates']);

}

If an empty array of devices is returned by configure_devices.php, an informational message is displayed
instead of an empty table:

elseif(isset($_SESSION['dev_list'])) {

echo "<p>No Devices Discovered</p>";

unset($_SESSION['dev_list']);

unset($_SESSION['class_list']);

}

?>

</form>

</body>

</html>

remove.php

The remove.php file provides a user interface for removing a customer from the system:

<html>

229

230

<head>

<title>Remove Customer</title>

<link href="provisioning.css" rel="stylesheet" type="text/css">

</head>

<body>

<?php

require_once 'header.php';

?>

<form action="delete_customer.php" method="post">

Customer Name:

<input type="text" name="customer" />

<input type="submit" value="Submit" />

</form>

</body>

</html>

When you enter a customer name and select the [Submit] button, the delete_customer.php script deletes all
devices, credentials, and discovery sessions associated with that customer's organization record; deletes the
organization record; and then returns a status message to remove.php.

provisioning.css

The provisioning.css file includes style information for the user interface pages. In this example, minimal style is
applied to the user interface pages. You can customize the user interface pages by adding style information to
this file:

table {width: 100%; border-collapse:collapse; text-align: center;}

th {border: solid 1px;}

td {border: solid 1px;}

User Interface

Provisioning a Customer (provision_customer.php)

Provisioning a Customer (provision_customer.php)

The provision_customer.php script processes the input values from index.php and performs the following
provisioning tasks:

l If an organization record does not currently exist for the customer, creates an organization record for the
customer.

l Ensures that SNMP credentials are configured for each supplied SNMP community string.

l Creates a discovery session for the customer using the configured SNMP credentials and the supplied list of
IP addresses.

l Runs the discovery session.

If all of these tasks are successful, the script redirects to configure_devices.php. configure_devices.phpwill
return a list of discovered devices to the devices.php page. If a provisioning task is unsuccessful, provision_
customer.php returns an error message to index.php.

All back-end files:

l Use PHP session variables to return values to the user interface files.

l Use the functions defined in the utils.php file.

l Use the URL of an Administration Portal, Database Server, or All-In-One Appliance.

The provision_customer.php script starts by initializing the session, requiring utils.php, and initializing $base_
uri to the URL of an Administration Portal, Database Server, or All-In-One Appliance:

<?php

session_start();

require_once 'utils.php';

$base_uri = get_admin_uri();

The provision_customer.php script validates the input to ensure that a customer name, IP address list, and either
a community string list or the discover Non-SNMP flag were supplied:

if(isset($_POST['customer']) AND $_POST['customer'] != "" AND isset($_

POST['ip_addresses']) AND $_POST['ip_addresses'] != "" AND

((isset($_POST['community_strings']) AND $_POST['community_strings'] !=

"") OR (isset($_POST['non_snmp']) AND $_POST['non_snmp'] == "yes"))) {

231

232

The provision_customer.php script attempts to lookup the URI of the organization record associated with the
customer name supplied in the input form. If no organization record is found, the script creates a new
organization record using the create_entity function. The array of fields for the new organization record includes
only the name of the organization:

$organization = lookup_organization($base_uri, $_POST['customer']);

if($organization === FALSE) {

$org_post_array = array('company' => $_POST['customer']);

$org_response = create_entity($base_uri, "/api/organization", $org_

post_array);

If the request to create an organization record is successful (the create_entity function returns TRUE at array
index 0), the $organization variable is set to the URI of the organization:

if($org_response[0]) {

$organization = $org_response[1];

}

If the request to create an organization fails, the $message variable is set to an appropriate error message:

else {

$message = "Failed to create org: " . $org_response[1];

}

}

Provisioning a Customer (provision_customer.php)

Provisioning a Customer (provision_customer.php)

If an organization record already exists for the supplied customer name, the provision_customer.php script
deletes any existing discovery sessions associated with that organization record. By deleting existing discovery
sessions, the provision_customer.php script maintains a 1:1 mapping between organization records and
discovery sessions. Maintaining a 1:1 mapping reduces the amount of processing required to retrieve a list of
devices from the last discovery session that was run for a particular customer. The provision_customer.php
script constructs a URI for the /discovery_session resource index that includes a filter for the organization record
ID. The organization record ID is appended to the URI by using the last element in an array that contains each
piece of the organization URI:

else {

$uri = "/api/discovery_session?limit=10&hide_

filterinfo=1&filter.organization=" . array_pop(explode("/",

$organization));

$response = perform_request($base_uri, $uri, "GET");

If the request for a list of discovery sessions is successful, themulti_delete function is called to delete the
discovery sessions in the response. Themulti_delete function returns NULL if all the supplied entities are deleted
or an error message if one or more supplied entities are not deleted. If the request for the list of discovery sessions
fails or ifmulti_delete did not return null, the $message variable is set to an appropriate error message:

if($response['http_code'] == 200) {

$error = multi_delete($base_uri, $response['content']);

}

else {

$error = "Could not clean up existing discovery sessions for

organization.";

}

if(!is_null($error)) {

$message = $error;

}

}

233

234

If no error message has been set in the $message variable, the provision_customer.php script continues with
the provisioning process:

if(!isset($message)) {

If a list of community strings was supplied in the input form, the configure_credentials function is used to get an
array of credential URIs for those community strings:

if(isset($_POST['community_strings']) AND $_POST['community_

strings'] != "") {

$credentials = configure_credentials($base_uri, $_POST

['customer'], $_POST['community_strings']);

}

If a list of community strings was not supplied in the input form, i.e. the discovery session will be configured to
discover only non-SNMP devices, the $credentials variable is initialized as an empty array:

else {

$credentials = array();

}

If the $credentials variable is an array, i.e. no error message was returned by the configure_credentials
function or the discovery session will be configured to discover only non-SNMP devices, the script explodes the
supplied list of IP addresses in to an array:

if(is_array($credentials)) {

$ip_array = explode(",", $_POST['ip_addresses']);

To create a discovery session using the API, the JSON content must include a list of IP address ranges. Each IP
address range must specify a start address and an end address. In PHP array format, the array that contains the
discovery session fields must include an "ip_lists" key that points to an array that has the following structure:

(

[0] => array (

Provisioning a Customer (provision_customer.php)

Provisioning a Customer (provision_customer.php)

['start_ip'] =>

['end_ip'] =>

)

.

.

.

[N] => array (

['start_ip'] =>

['end_ip'] =>

)

)

The script initializes the variable $ip_lists, which will contain this structure. For each IP address in the array of
IP addresses supplied in the input form, an element is added to $ip_lists. Each IP address is used as both the start
and end address for each IP address "range":

$ip_lists = array();

foreach($ip_array as $address) {

$ip_lists[] = array('start_ip' => $address, 'end_ip' =>

$address);

}

The script then uses the get_collector_id function to get the URI of an appliance on which the discovery session
can run:

$collector = get_collector_id($base_uri);

235

236

The get_collector_id returns an array. The boolean value at array index 0 indicates whether an appliance URI
was successfully returned. The value at array index 1 is either an appliance URI or an error message. If an
appliance URI was returned, a discovery session is created using the following field values:

l organization. The organization URI ($organization).

l aligned_collector. The appliance URI returned by the get_collector_id function.

l aligned_device_template. The standard device template returned by the get_base_template function.

l initial_scan_level. To limit what is monitored on each discovered device to only what is defined in the
applied device templates, the initial scan level is set to 0 (Model Device Only).

l ip_lists. The array of start and end IP addresses ($ip_lists).

l credentials. The array of credentials returned by the configure_credentials function.

l discover_non_snmp. If Discover Non-SNMP Devices was selected in the input form, this value is set to 1
(discover non-SNMP devices).

if($collector[0]) {

$disc_post_array = array('organization' => $organization,

'aligned_collector' => $collector[1],

'aligned_device_template' => get_base_template(),

'initial_scan_level' => 0,

'ip_lists' => $ip_lists,

'credentials' => $credentials);

if(isset($_POST['non_snmp']) AND $_POST['non_snmp'] == "yes") {

$disc_post_array['discover_non_snmp'] = 1;

}

$disc_response = create_entity($base_uri, "/api/discovery_

session", $disc_post_array);

Provisioning a Customer (provision_customer.php)

Provisioning a Customer (provision_customer.php)

The create_entity function returns an array. The boolean value at array index 0 indicates whether the entity was
successfully created. The value at array index 1 is either the entity URI or an error message. If the discovery
session was created successfully, the discovery session is started by applying the URI of the discovery session to
the /discovery_session_active resource index:

if($disc_response[0]) {

$run_discovery = perform_request($base_uri, "/api/discovery_

session_active", "APPLY", $disc_response[1]);

If the response from the request to start the discovery session includes HTTP status code 202, the discovery
session started correctly. If the discovery session starts correctly, the script redirects to the configure_devices.php
script. The configure_devices.php script requires the customer name as input, either in the $_POST or $_
SESSION array. In this case, the customer name is set as a session variable:

if($run_discovery['http_code'] == 202) {

$_SESSION['customer'] = $_POST['customer'];

header("Location: configure_devices.php");

}

If the request to start the discovery session failed, i.e. the HTTP status code in the response is not 202, the
$message variable is set to an appropriate error message:

else {

$message = "Failed to run discovery session: " . $run_

discovery['http_code'];

}

}

If an error was returned by the create_entity function, the $message variable is set to an appropriate error
message:

else {

237

238

$message = "Failed to create discovery session: " . $disc_

response[1];

}

}

If an error was returned by the get_collector_id function, the $message variable is set to an appropriate error
message:

else {

$message = $collector[1];

}

}

If $credentials is not an array, i.e. the configure_credentials function returned an error message, the
$message variable is set to an appropriate error message:

else {

$message = "Failed to configure credentials: " . $credentials;

}

}

}

If the values supplied in the input form fail validation, the $message variable is set to an appropriate error
message:

else {

$message = "Form Incomplete";

}

Provisioning a Customer (provision_customer.php)

Retrieving and Configuring Devices (configure_devices.php)

If the $message variable is set, a failure occurred in the provision_customer.php script. The error is set in a
session variable and the script redirects back to index.php:

if(isset($message)) {

$_SESSION['message'] = $message;

header("Location: index.php");

}

?>

Retrieving and Configuring Devices (configure_devices.php)

The configure_devices.php script returns a list of devices and associated device classes for a specified
customer. The list of devices can be all devices associated with the customer's organization record, all devices
from the last discovery session for that customer, or new devices from the last discovery session for that customer.

Additionally, if a user selects the [Configure Devices] button in the devices.php page, the configure_
devices.php script applies the device templates selected by the user to the specified devices.

All back-end files:

l Use PHP session variables to return values to the user interface files.

l Use the functions defined in the utils.php file.

l Use the URL of an Administration Portal, Database Server, or All-In-One Appliance.

The script starts by initializing the session, requiring utils.php, and initializing $base_uri to the URL of an
Administration Portal, Database Server, or All-In-One Appliance:

<?php

session_start();

require_once 'utils.php';

$base_uri = get_admin_uri();

239

240

For each displayed device, the devices.php page displays a drop-down list that contains all device templates in
the system. To populate the drop-down list, the devices.php page must be supplied a list of device templates. An
array of all device templates is set as a session variable. Because the list of device templates is assumed to be
static, the array of device templates is set only once per session and is never explicitly unset by the provisioning
code. The code that creates the array of device templates is located in configure_devices.php because the script
is always run before devices are displayed in devices.php.

If the templates variable is not currently set in the session variables, the script gets a list of all device templates
using the get_all function. The get_all function returns an array of entities on success, or an error message on
failure. If the return value is an array, that array is set as a session variable. If the return value is not an array, the
$message variable is assigned the returned error message:

if(!isset($_SESSION['templates'])) {

$templates = get_all($base_uri, "/api/device_template?link_disp_

field=template_name");

if(is_array($templates)) {

$_SESSION['templates'] = $templates;

}

else {

$message = $templates;

}

}

The configure_devices.php script takes a customer name as input. The customer name is passed either as post
data from devices.php or in a session variable from provision_customer.php. The script uses the customer
name to lookup the organization URI:

if(isset($_POST['customer']) AND $_POST['customer'] != "") {

$customer = $_POST['customer'];

$_SESSION['customer'] = $_POST['customer'];

$organization = lookup_organization($base_uri, $customer);

}

elseif(isset($_SESSION['customer'])) {

Retrieving and Configuring Devices (configure_devices.php)

Retrieving and Configuring Devices (configure_devices.php)

$customer = $_SESSION['customer'];

$organization = lookup_organization($base_uri, $customer);

}

If an organization URI is found for the supplied customer name, an error message has not been set, and the user
selected the [Configure Devices] button ("config" is a key in the post data), the block of code that applies device
templates to devices is executed:

if(array_key_exists("config", $_POST) AND $organization != FALSE AND

!isset($message)) {

The variable $dev_type is initialized with the value from the radio buttons on the devices.php page. Later in the
execution of the configure_devices.php script, $dev_type is used to set a session variable that the devices.php
page uses as the default value of the radio buttons:

if(isset($_POST['dev_type'])) {

$dev_type = $_POST['dev_type'];

}

The script iterates through all values supplied by the input form. The variable $devices_updated is initialized to
track the number of devices to which device templates are applied. The variable $in is initialized as an array,
which will be used to track the device ID values for all devices that were previously displayed on devices.php. The
$in array will be used to return the same list of devices to devices.php:

$in = array();

$devices_updated = 0;

foreach($_POST as $device => $template) {

The $_POST array includes all values supplied by the input form. This block of code must operate only on the
values from the drop-down list for each device. Each drop-down list is named using the URI of the associated
device; therefore, it is assumed that if a key in the $_POST array begins with a slash character ("/"), the array
element represents a drop-down list:

if(strpos($device, "/") === 0) {

241

242

The device ID of all devices that were displayed on devices.php is added to the $in array:

$in[] = array_pop(explode("/", $device));

If the user did not select a new device template from the drop-down list for a device, the value for that drop-down
list is "NULL". The block of code that applies a device template to a device is executed only if the value for the
drop-down list is not "NULL". Note that the input form passes "NULL" as a string, not the NULL data-type:

if($template != "NULL") {

To apply a device template to a device, the script uses the perform_request function with a $type parameter of
"APPLY":

$apply_template = perform_request($base_uri, $device, "APPLY",

$template);

If the request to apply a device template to a device is successful (the response includes a HTTP status code of
200), the script must update the device resource with the new value for the c-last_dev_tpl field. To do this, the
device resource is requested:

if($apply_template['http_code'] == 200) {

$dev = perform_request($base_uri, $device, "GET");

If the request for the device resource is successful, the new value of "c-last_dev_tpl" field is set in the array of
attributes for that device and the array of attributes is POSTed back to the same device resource:

if($dev['http_code'] == 200) {

$dev['content']['c-last_dev_tpl'] = $template;

$update_device = perform_request($base_uri, $device, "POST",

$dev['content']);

If the request to update a device resource fails, the variable $message is initialized with an error message:

Retrieving and Configuring Devices (configure_devices.php)

Retrieving and Configuring Devices (configure_devices.php)

if($update_device['http_code'] != 200) {

$message = "Could not update template status of " .

$device . ". ";

if(array_key_exists("error", $update_device)) {

$message .= $update_device['error'];

}

}

If the request to update a device resource is successful, the number of devices that have been updated is
incremented:

else {

$devices_updated++;

}

}

If the request for a device resource fails, the variable $message is initialized with an error message:

else {

$message = "Could not get information to update template

status of " . $device . ". ";

if(array_key_exists("error", $udev)) {

$message .= $dev['error'];

}

}

}

243

244

If the request to apply a device template to a device fails, the variable $message is initialized with an error
message:

else {

$message = "Could not apply " . $template . " to " . $device .

". ";

if(array_key_exists("error", $apply_template)) {

$message .= $apply_template['error'];

}

}

}

}

}

The $in array, which includes the device IDs of all devices that were previously displayed in devices.php, is used
to re-request the list of devices:

$uri = "/api/device?extended_fetch=1&filter.id.in=" . implode(",",

$in);

$device_list = get_all($base_uri, $uri);

If the request for the list of devices is successful, the script requests a list of device classes for those devices:

if(is_array($device_list)) {

$class_list = get_join_resources($base_uri, $device_list, "class_

type", "class_type");

If the request for a list of device classes is successful, the array of devices and the array of device classes are
passed back to devices.php in session variables:

if(is_array($class_list)) {

Retrieving and Configuring Devices (configure_devices.php)

Retrieving and Configuring Devices (configure_devices.php)

$_SESSION['class_list'] = $class_list;

$_SESSION['dev_list'] = $device_list;

}

If the request for the list of device classes fails, the variable $message is initialized with the error message
returned by the get_join_resources function:

else {

$message = $class_list;

}

}

If the request for the list of all devices fails, the variable $message is initialized with the error message returned by
the get_all function:

else {

$message = $device_list;

}

If the $message variable has not yet been initialized, all requests were successful and the $message variable is
initialized with a success message:

if(!isset($message)) {

$message = $devices_updated . " Device(s) Updated.";

}

}

If the block of code that configures devices is not executed, but an organization URI has been found for the
customer and an error message has not been set, the block of code that returns a list of devices is executed:

elseif($organization != FALSE AND !isset($message)) {

245

246

The variable $org_id is initialized with the ID of the organization for which a list of devices has been requested:

$org_id = array_pop(explode("/", $organization));

If a value has been supplied from the radio buttons on the devcies.php page, the variable $dev_type is
initialized with that value. If no value has been supplied, e.g. the script was called by provision_customer.php,
the script defaults to returning a list of new devices from the last discovery session:

if(isset($_POST['dev_type'])) {

$dev_type = $_POST['dev_type'];

}

else {

$dev_type = "new_disc";

}

The following block of code returns a list of all devices associated with the specified organization:

if($dev_type == "all_org") {

The organization ID is used as the filter criteria to request a list of devices. The get_all function will return an array
of all devices that match the filter criteria:

$uri = "/api/device?extended_fetch=1&filter.organization=" . $org_

id;

$device_list = get_all($base_uri, $uri);

If the request for a list of devices is successful, the get_all function returns an array and the script requests a list of
device classes for those devices:

if(is_array($device_list)) {

Retrieving and Configuring Devices (configure_devices.php)

Retrieving and Configuring Devices (configure_devices.php)

$class_list = get_join_resources($base_uri, $device_list, "class_

type", "class_type");

If the request for a list of device classes is successful, the array of devices and the array of device classes are
passed back to devices.php in session variables:

if(is_array($class_list)) {

$_SESSION['class_list'] = $class_list;

$_SESSION['dev_list'] = $device_list;

}

If the request for the list of device classes fails, the variable $message is initialized with the error message
returned by the get_join_resources function:

else {

$message = $class_list;

}

}

If the request for the list of devices fails, the variable $message is initialized with the error message returned by
the get_all function:

else {

$message = $device_list;

}

}

If the block of code that returns a list of all devices associated with the specified organization is not executed, the
script executes a block of code that returns a list of devices from the last discovery session:

else {

247

248

The organization ID is used as the filter criteria to request the discovery session for the customer:

$discovery_search = perform_request($base_uri, "/api/discovery_

session?limit=100&hide_filterinfo=1&filter.organization=" . $org_id,

"GET");

If the request for a discovery session is successful (the response includes HTTP status code 200) and at least one
discovery session is returned, the script calls the get_discovery_result function using the first discovery session in
the response. It is assumed that there is a 1:1 mapping between organizations and customers; a 1:1 mapping is
maintained by the provision_customer.php script. The third parameter passed to get_discovery_result is a
boolean that determines whether the function will return all devices discovered by the discovery session or only
new devices discovered by the discovery session:

if($discovery_search['http_code'] == 200 AND count($discovery_search

['content']) > 0) {

$device_list = get_discovery_result($base_uri, $discovery_search

['content'][0]['URI'], ($dev_type == "new_disc"));

The status code of the get_discovery_result is used in a switch statement that performs the required actions of
each possible result:

switch($device_list['status']) {

A status code of 1 indicates that a list of devices has been returned, but the discovery session is still running. If the
discovery session is still running, the $message variable is initialized to an appropriate status message. The
required actions for a status code of 0 must also be performed if the status code is 1, so no break statement is
included for case 1:

case 1:

$message = "Note: Discovery Session is not complete,

additional devices might be discovered.";

Retrieving and Configuring Devices (configure_devices.php)

Retrieving and Configuring Devices (configure_devices.php)

A status code of 0 indicates that a list of devices has been returned and the discovery session is complete. If the
array of devices is not empty, the $in variable is initialized as an array that will be used to track the device IDs of
all devices in the array of devices:

case 0:

if(count($device_list['devices']) > 0) {

$in = array();

The script iterates through the array of devices. For each device, the device ID is derived from the device URI and
is added to the $in array:

foreach($device_list['devices'] as $device) {

$in[] = array_pop(explode("/", $device['uri']));

}

A URI to request all devices is constructed using the device IDs in the $in array. The get_all function is used to
request all the devices:

$uri = "/api/device?extended_fetch=1&filter._id.in=" .

implode(",", $in);

$device_list = get_all($base_uri, $uri);

If the request for the list of devices is successful, the script requests a list of device classes for those devices:

if(is_array($device_list)) {

$class_list = get_join_resources($base_uri, $device_list,

"class_type", "class_type");

If the request for a list of device classes is successful, the array of devices and the array of device classes are
passed back to devices.php in session variables:

if(is_array($class_list)) {

$_SESSION['class_list'] = $class_list;

249

250

$_SESSION['dev_list'] = $device_list;

}

If the request for the list of device classes fails, the variable $message is initialized with the error message
returned by the get_join_resources function:

else {

$message = $class_list;

}

}

If the request for the list of devices fails, the variable $message is initialized with the error message returned by
the get_all function:

else {

$message = $device_list;

}

}

If the get_discovery_result function returned an empty array of devices, an empty array of devices is passed to
devices.php in a session variable:

else {

$_SESSION['dev_list'] = array();

}

break;

If the get_discovery_result returns status 2 (discovery session has never been run), status 3 (error), or a status
other than 0, 1, 2, or 3, script sets the $message variable to an appropriate error message:

case 2:

Retrieving and Configuring Devices (configure_devices.php)

Retrieving and Configuring Devices (configure_devices.php)

$message = $device_list['error'];

break;

case 3:

$message = $device_list['error'];

break;

default:

$message = "Error occurred retrieving discovery logs.";

}

}

If the request for a discovery session returned an HTTP status code of 200 but did not return any discovery
sessions, the script sets the $message variable to an appropriate error message:

elseif($discovery_search['http_code'] == 200) {

$message = "No discovery session exists for customer.";

}

If the request for a discovery session returned an HTTP status code other than 200, the script sets the $message
variable to an appropriate error message:

else {

$message = "Error finding discovery session for customer. ";

if(array_key_exists("error", $discovery_search)) {

$message .= $discovery_search['error'];

}

}

251

252

}

}

If no organization URI was found for the supplied customer name, the script sets the $message variable to an
appropriate error message:

elseif(!isset($message)){

$message = "Could not find customer record." ;

}

If the $message and/or $dev_type variables have been set during the execution of the script, they are passed to
devices.php using session variables. The script always redirects back to devices.php:

if(isset($message)) {

$_SESSION['message'] = $message;

}

if(isset($dev_type)) {

$_SESSION['dev_type'] = $dev_type;

}

header("Location: devices.php");

?>

Removing a Customer (delete_customer.php)

The delete_customer.php script takes a customer name as input; deletes all devices, credentials, and discovery
sessions associated with that customer's organization record; and then deletes the organization record for that
customer.

All back-end files:

l Use PHP session variables to return values to the user interface files.

l Use the functions defined in the utils.php file.

Removing a Customer (delete_customer.php)

Removing a Customer (delete_customer.php)

l Use the URL of an Administration Portal, Database Server, or All-In-One Appliance.

The script starts by initializing the session, requiring utils.php, and initializing $base_uri to the URL of an
Administration Portal, Database Server, or All-In-One Appliance:

<?php

session_start();

require_once 'utils.php';

$base_uri = get_admin_uri();

If a customer name was supplied in the input form, the script looks up the URI for the organization record
associated with that customer name. If no organization record is found, the $message variable is set to an error
message:

if(isset($_POST['customer']) AND $_POST['customer'] != "") {

$organization = lookup_organization($base_uri, $_POST['customer']);

if($organization === FALSE) {

$message = "Organization does not exist";

}

If an organization record exists for the customer, the ID for that organization record is parsed from the URI:

else {

$org_id = array_pop(explode("/", $organization));

An array of resource index URIs is constructed. The script will iterate through this array and delete all entities
returned by each URI. The organization ID is used as filter criteria in each URI. If a request fails, the array keys are
used to indicate the entity type where the problem occurred. To delete additional entities associated with the
customer organization, for example, asset records, you can add additional URIs to this array:

$entity_types = array("devices" => "/api/device?limit=100&hide_

filterinfo=1&filter.organization=" . $org_id,

253

254

"credentials" => "/api/credential/snmp?limit=100&hide_

filterinfo=1&filter.cred_name.contains=" . $_POST['customer'],

"discoveries" => "/api/discovery_session?limit=100&hide_

filterinfo=1&filter.organization=" . $org_id,

);

The script iterates through the array of URIs. For each URI:

l A GET request is performed.

l If the GET request is successful, the content in the response is passed to themulti_delete function, which
will delete all the returned entities.

l If the GET request is unsuccessful, an error message is set in the $error variable.

l The steps are repeated until either an error occurs or the GET request returns no entities.

If an error occurs for a URI, the iteration through the array of URIs stops:

foreach($entity_types as $key => $entity) {

do {

$response = perform_request($base_uri, $entity, "GET");

if($response['http_code'] == 200) {

$error = multi_delete($base_uri, $response['content']);

}

else {

$error = "Could not get list of " . $key . " to delete";

}

} while(count($response['content']) > 0 AND $error == NULL);

if(!is_null($error)) {

break;

}

Removing a Customer (delete_customer.php)

Removing a Customer (delete_customer.php)

}

To delete an organization record from SL1, the organization must be "empty", that is, have no entities associated
with it. If no error was generated when the other entities were deleted, the organization is deleted:

if(is_null($error)) {

$response = perform_request($base_uri, $organization, "DELETE");

if($response['http_code'] == 200) {

$message = "Customer removed";

}

If the request to delete the organization failed with a 400 HTTP status code, the organization is not empty and an
error message is set in the $message variable:

elseif($response['http_code'] == 400) {

$message = "Could not delete organization because organization

is not empty.";

}

If the request to delete the organization failed with a different HTTP status code, a generic error message is set in
the $message variable:

else {

$message = "Could not delete organization. ";

if(array_key_exists("error", $response)) {

$message .= $response['error'];

}

}

}

255

256

If the $error variable has already been set because deleting an entity other than the organization failed,
$message is set to the value of $error:

else {

$message = $error;

}

}

}

If no customer name is specified in the input form, an appropriate error message is set in the $message variable:

else {

$message = "Form Incomplete";

}

If the $message variable has been set, its value is returned to remove.php using a session variable:

if(isset($message)) {

$_SESSION['message'] = $message;

}

header("Location: remove.php");

?>

Removing a Customer (delete_customer.php)

Appendix

A
Available Actions

Overview

This appendix lists all actions that can be performed through the API, organized by ScienceLogic entity. Each
table includes the HTTP method and URI you should use to perform the action. The URIs in this list include "X",
which signifies where the ID number of a specific entity must be inserted.

This chapter covers the following topics:

Accounts 260

Account Lockouts 260

Alerts 260

Appliances 261

Assets 261

CBQoS Metrics 263

CBQoS Objects 263

CBQoS Object Types 264

Cleared Events 264

Collection Labels 264

Collection Label Groups 264

Collector Groups 265

Credentials 265

Custom Attributes 267

Dashboards 269

Devices 270

257

258

Device Categories 273

Device Classes 273

Device Groups 273

Device Relationships 274

Device Relationship Types 274

Device Templates 275

Discovery Sessions 277

Dynamic Applications 278

Events 292

Event Categories 292

External Contacts 292

File Uploads 293

Interfaces 293

Interface Metrics 294

Interface Tags 294

Monitors 294

Organizations 296

Performance Data 298

PowerPacks 299

Product SKUs 300

Scale Values 300

Schedules 300

Streamer Push Proxy 301

System Patches 301

System Settings 302

System Thresholds 302

Tasks 302

Themes 303

Threshold Overrides 303

Tickets 304

Ticket Categories 305

Ticket Chargeback 306

Ticket Logs 306

Ticket Notes 306

Ticket Queues 307

Ticket States 307

Unit Values 307

User Policies 308

Vendors 308

259

260

Accounts

Action URI Method

View/search/filter the list of user accounts. /account GET

Create a new user account. /account POST

View the properties of a user account. /account/X GET

Update the properties of a user account. /account/X POST

Replace a user account. /account/X PUT

Delete a user account. /account/X DELETE

View the list of access hooks that have been
granted to a user account.

/account/X/access_hooks GET

For records that require an account value,
use the user ID for the logged-in user.

/account/_self GET, POST

Account Lockouts

Action URI Method

View a list of locked-out user accounts. /access_lock GET

View details about a locked-out user
account.

/access_lock/X GET

Clear a lock on a user account. /access_lock/X DELETE

Alerts

Action URI Method

Create a new API alert. /alert POST

View/search/filter the list of pending API
alerts.

/alert GET

View details about a pending API alert. /alert/X GET

Update a pending API alert. /alert/X POST

Accounts

Appliances

Appliances

Action URI Method

View/search/filter the list of SL1 appliances. /appliance GET

View the properties of a SL1 appliance. /appliance/X GET

Update the description or IP address of a
SL1 appliance.

/appliance/X POST

Assets

Action URI Method

View/search/filter the list of asset records. /asset GET

Create a new asset record. /asset POST

View the general properties of an asset
record.

/asset/X GET

Replace an asset record. /asset/X PUT

Update the general properties of an asset
record.

/asset/X POST

Delete an asset record. /asset/X DELETE

View/search/filter the list of components
associated with an asset record.

/asset/X/component/ GET

Add a new component to an asset record. /asset/X/component/ POST

View the properties of a component
associated with an asset record.

/asset/X/component/X GET

Update the properties of a component
associated with an asset record.

/asset/X/component/X POST

Replace a component associated with an
asset record.

/asset/X/component/X PUT

Delete a component from an asset record. /asset/X/component/X DELETE

View the configuration properties of an
asset record.

/asset/X/configuration/ GET

261

262

Action URI Method

Update the configuration properties of an
asset record.

/asset/X/configuration/ POST

Replace the configuration properties of an
asset record.

/asset/X/configuration/ PUT

View/search/filter the list of software
licenses associated with an asset record.

/asset/X/license/ GET

Add a new software license to an asset
record.

/asset/X/license/ POST

View the properties of a software license
associated with an asset record.

/asset/X/license/X GET

Update the properties of a software license
associated with an asset record.

/asset/X/license/X POST

Replace a software license associated with
an asset record.

/asset/X/license/X PUT

Delete a software license from an asset
record.

/asset/X/license/X DELETE

View the maintenance and service
properties of an asset record.

/asset/X/maintenance/ GET

Update the maintenance and service
properties of an asset record.

/asset/X/maintenance/ POST

Replace the maintenance and service
properties of an asset record.

/asset/X/maintenance/ PUT

View/search/filter the list of IP networks
associated with an asset record.

/asset/X/network/ GET

Add a new IP network to an asset record. /asset/X/network/ POST

View the properties of an IP network
associated with an asset record.

/asset/X/network/X GET

Update the properties of an IP network
associated with an asset record.

/asset/X/network/X POST

Replace an IP network associated with an
asset record.

/asset/X/network/X PUT

Delete an IP network from an asset record. /asset/X/network/X DELETE

View/search/filter the list of notes
associated with an asset record.

/asset/X/note/ GET

Add a note to an asset record. /asset/X/note/ POST

Assets

CBQoS Metrics

Action URI Method

View a note associated with an asset
record.

/asset/X/note/X GET

Update a note associated with an asset
record.

/asset/X/note/X POST

Replace a note associated with an asset
record.

/asset/X/note/X PUT

View/search/filter the list of files associated
with an asset record note.

/asset/X/note/X/media GET

Get a media file associated with an asset
record note.

/asset/X/note/X/media/X GET

Add a media file to an asset record note. /asset/X/note/X/media/X PUT

View meta-data about a media file
associated with an asset record note.

/asset/X/note/X/media/X/info GET

CBQoS Metrics

Action URI Method

View/search/filter the list of CBQoS
metrics.

/cbqos_metric GET

View details about a CBQoS metric. /cbqos_metric/X GET

CBQoS Objects

Action URI Method

View/search/filter the list of CBQoS
objects.

/cbqos_object GET

View details about a CBQoS object. /cbqos_object/X GET

263

264

CBQoS Object Types

Action URI Method

View/search/filter the list of CBQoS object
types.

/cbqos_type GET

View details about a CBQoS object type. /cbqos_type/X GET

Cleared Events

Action URI Method

View/search/filter the list of cleared events. /cleared_event GET

View the properties of a cleared event. /cleared_event/X GET

Collection Labels

Action URI Method

View/search/filter the list of collection
labels.

/collection_label GET

View the properties of a collection label. /collection_label/X GET

Collection Label Groups

Action URI Method

View/search/filter the list of collection label
groups.

/collection_label_group GET

View the properties of a collection label
group.

/collection_label_group/X GET

CBQoS Object Types

Collector Groups

Collector Groups

Action URI Method

View/search/filter the list of collector
groups.

/collector_group GET

Create a new collector group. /collector_group POST

View the properties of a collector group. /collector_group/X GET

Update the properties of a collector group. /collector_group/X POST

Replace a collector group. /collector_group/X PUT

Delete a collector group. /collector_group/X DELETE

To enable multi-tenancy for collector groups, the database setting "master.system_settings_ core.enable_cug_
orgs" must be set to 1. When multi-tenancy is enabled, an administrative user can update all collector groups
using the new fields. Non-administrative users can update all collector groups for which the "all_orgs" field is set
to 1. Otherwise, these users can only update credentials and collector groups within their aligned organizations.

Be aware that you might encounter a situation where a device is not aligned to a collector group if you do not
properly configure these actions.

View the properties of all collector groups. /collector_group/all_orgs GET

Update the properties of all collector
groups.

/collector_group/all_orgs POST

View the propertied of only the collector
groups within your aligned organizations.

/collector_group/aligned_organizations GET

Update the properties of only the collector
groups within your aligned organizations

/collector_group/aligned_organizations
POST

Credentials

Action URI Method

View the index of available credential
resources.

/credential GET

View/search/filter the list of basic/snippet
credentials.

/credential/basic GET

265

266

Action URI Method

Create a new basic/snippet credential. /credential/basic POST

View a basic/snippet credential. /credential/basic/X GET

Update a basic/snippet credential. /credential/basic/X POST

Replace a basic/snippet credential. /credential/basic/X PUT

Delete a basic/snippet credential. /credential/basic/X DELETE

View/search/filter the list of database
credentials.

/credential/db GET

Create a new database credential. /credential/db POST

View a database credential. /credential/db/X GET

Update a database credential. /credential/db/X POST

Replace a database credential. /credential/db/X PUT

Delete a database credential. /credential/db/X DELETE

View/search/filter the list of LDAP/AD
credentials.

/credential/ldap GET

Create a new LDAP/AD credential. /credential/ldap POST

View a LDAP/AD credential. /credential/ldap/X GET

Update a LDAP/AD credential. /credential/ldap/X POST

Replace a LDAP/AD credential. /credential/ldap/X PUT

Delete a LDAP/AD credential. /credential/ldap/X DELETE

View/search/filter the list of PowerShell
credentials.

/credential/powershell GET

Create a new PowerShell credential. /credential/powershell POST

View a PowerShell credential. /credential/powershell/X GET

Update a PowerShell credential. /credential/powershell/X POST

Replace a PowerShell credential. /credential/powershell/X PUT

Delete a PowerShell credential. /credential/powershell/X DELETE

View/search/filter the list of SNMP
credentials.

/credential/snmp GET

Create a new SNMP credential. /credential/snmp POST

View an SNMP credential. /credential/snmp/X GET

Credentials

Custom Attributes

Action URI Method

Update an SNMP credential. /credential/snmp/X POST

Replace an SNMP credential. /credential/snmp/X PUT

Delete an SNMP credential. /credential/snmp/X DELETE

View/search/filter the list of SOAP/XML
credentials.

/credential/soap GET

Create a new SOAP/XML credential. /credential/soap POST

View a SOAP/XML credential. /credential/soap/X GET

Update a SOAP/XML credential. /credential/soap/X POST

Replace a SOAP/XML credential. /credential/soap/X PUT

Delete a SOAP/XML credential. /credential/soap/X DELETE

View/search/filter the list of SSH
credentials.

/credential/ssh GET

Create a new SSH credential. /credential/ssh POST

View an SSH credential. /credential/ssh/X GET

Update an SSH credential. /credential/ssh/X POST

Replace an SSH credential. /credential/ssh/X PUT

Delete an SSH credential. /credential/ssh/X DELETE

Custom Attributes

Action URI Method

View the index of available custom attribute
resources.

/custom_attribute GET

View the custom attributes defined for
assets.

/custom_attribute/asset GET

Add a custom attribute for assets. /custom_attribute/asset POST

View details of a custom attribute defined
for assets.

/custom_attribute/asset/X GET

Update a custom attribute defined for
assets.

/custom_attribute/asset/X POST

267

268

Action URI Method

Delete a custom attribute defined for assets. /custom_attribute/asset/X DELETE

View example JSON or XML content for
creating custom attributes for assets.

/custom_attribute/asset/_example GET

View the custom attributes defined for
devices.

/custom_attribute/device GET

Add a custom attribute for devices. /custom_attribute/device POST

View details of a custom attribute defined
for devices.

/custom_attribute/device/X GET

Update a custom attribute defined for
devices.

/custom_attribute/device/X POST

Delete a custom attribute defined for
devices.

/custom_attribute/device/X DELETE

View example JSON or XML content for
creating custom attributes for devices.

/custom_attribute/device/_example GET

View the custom attributes defined for
interfaces.

/custom_attribute/interface GET

Add a custom attribute for interfaces. /custom_attribute/interface POST

View details of a custom attribute defined
for interfaces.

/custom_attribute/interface/X GET

Update a custom attribute defined for
interfaces.

/custom_attribute/interface/X POST

Delete a custom attribute defined for
interfaces.

/custom_attribute/interface/X DELETE

View example JSON or XML content for
creating custom attributes for interfaces.

/custom_attribute/interface/_example GET

View the custom attributes defined for
themes.

/custom_attribute/theme GET

Add a custom attribute for themes. /custom_attribute/theme POST

View details of a custom attribute defined
for themes.

/custom_attribute/theme/X GET

Update a custom attribute defined for
themes.

/custom_attribute/theme/X POST

Delete a custom attribute defined for
themes.

/custom_attribute/theme/X DELETE

Custom Attributes

Dashboards

Action URI Method

View example JSON or XML content for
creating custom attributes for themes.

/custom_attribute/theme/_example GET

View the custom attributes defined for
vendors.

/custom_attribute/vendor GET

Add a custom attribute for vendors. /custom_attribute/vendor POST

View details of a custom attribute defined
for vendors.

/custom_attribute/vendor/X GET

Update a custom attribute defined for
vendors.

/custom_attribute/vendor/X POST

Delete a custom attribute defined for
vendors.

/custom_attribute/vendor/X DELETE

View example JSON or XML content for
creating custom attributes for vendors.

/custom_attribute/vendor/_example GET

View the custom attributes defined for all
entity types.

/custom_attribute/_lookup GET

Dashboards

Action URI Method

View/search/filter the list of dashboards. /dashboard GET

Create a new dashboard. /dashboard POST

View the properties of a dashboard. /dashboard/X GET

Update the properties of a dashboard. /dashboard/X POST

Replace a dashboard. /dashboard/X PUT

Delete a dashboard. /dashboard/X DELETE

View/search/filter the list of widgets on a
dashboard.

/dashboard/X/widget GET

View the properties of a widget on a
dashboard.

/dashboard/X/widget/X GET

Update the properties of a widget on a
dashboard.

/dashboard/X/widget/X POST

269

270

Action URI Method

Replace a widget on a dashboard. /dashboard/X/widget/X PUT

Remove a widget from a dashboard. /dashboard/X/widget/X DELETE

Create a new dashboard by duplicating an
existing dashboard.

/dashboard POST a /dashboard
resource.

Devices

Action URI Method

View/search/filter the list of devices. /device GET

Create a new virtual device. /device POST

View the properties of a device. /device/X GET

Update the properties of a device. /device/X POST

Replace the properties of a device. /device/X PUT

Delete a device. /device/X DELETE

View/search/filter the list of Dynamic
Applications aligned with a device.

/device/X/aligned_app GET

Align a Dynamic Application with a device. /device/X/aligned_app POST

View the collection status and associated
credential for a Dynamic Application
aligned with a device.

/device/X/aligned_app/X GET

Update the collection status and associated
credential for a Dynamic Application
aligned with a device.

/device/X/aligned_app/X POST

Unalign a Dynamic Application from a
device.

/device/X/aligned_app/X DELETE

View/search/filter the list of available
configuration data for a device.

/device/X/config_data GET

View meta-data about data collected from
a device by a configuration Dynamic
Application.

/device/X/config_data/X GET

View data collected from a device by a
configuration Dynamic Application.

/device/X/config_data/X/data GET

Devices

Devices

Action URI Method

View historical snapshots of data collected
from a device by a configuration Dynamic
Application.

/device/X/config_data/X/snapshots GET

View general information collected from a
device.

/device/X/detail GET

View/search/filter the list of credentials
aligned with a device.

/device/X/device_app_credentials GET

View the threshold settings for a device. /device/X/device_thresholds GET

Update the threshold settings for a device. /device/X/device_thresholds POST

Replace the threshold settings for a device. /device/X/device_thresholds PUT

Revert all device thresholds to the global
default values.

/device/X/device_thresholds DELETE

Add an interface record to a device. /device/X/interface POST

View/search/filter the list of interfaces for a
device.

/device/X/interface GET

View the properties of an interface for a
device, including all interface tags.

/device/X/interface/X GET

Update the properties of an interface for a
device. This can create a new interface
without an interface tag or create a new
interface by referencing an existing
interface tag.

/device/X/interface/X POST

Replace an interface record associated with
a device. This can update an interface
without affecting the interface tag
association.

/device/X/interface/X PUT

Delete an interface record associated with
a device. Deleting an interface also deletes
the interface tag.

/device/X/interface/X DELETE

View data for an interface. /device/X/interface/X/interface_data/data GET

View daily normalized data for an interface. /device/X/interface/X/interface_
data/normalized_daily

GET

View hourly normalized data for an
interface.

/device/X/interface/X/interface_
data/normalized_hourly

GET

View/search/filter the list of logs associated
with a device.

/device/X/log/ GET

271

272

Action URI Method

View a log associated with a device. /device/X/log/X GET

Add a note to a device. /device/X/note/ POST

View/search/filter the list of notes
associated with a device.

/device/X/note/ GET

View a note associated with a device. /device/X/note/X GET

Update a note associated with a device. /device/X/note/X POST

Replace a note associated with a device. /device/X/note/X PUT

Delete a note associated with a device. /device/X/note/X DELETE

View/search/filter the list of files associated
with a device note.

/device/X/note/X/media GET

Get a media file associated with a device
note.

/device/X/note/X/media/X GET

Add a media file to a device note. /device/X/note/X/media/X PUT

View meta-data about a media file
associated with a device note.

/device/X/note/X/media/X/info GET

View/search/filter the list of available
Dynamic Application data for a device.

/device/X/performance_data GET

View data for a Dynamic Application
aligned to a device.

/device/X/performance_data/X/data GET

View daily normalized data for a Dynamic
Application aligned to a device.

/device/X/performance_
data/X/normalized_daily

GET

View hourly normalized data for a Dynamic
Application aligned to a device.

/device/X/performance_
data/X/normalized_hourly

GET

View/search/filter the list of available vitals
data for a device.

/device/X/vitals GET

View availability data for a device. /device/X/vitals/availability/data GET

View daily normalized availability data for a
device.

/device/X/vitals/availability/normalized_
daily

GET

View hourly normalized availability data for
a device.

/device/X/vitals/availability/normalized_
hourly

GET

View data for a file system on a device. /device/X/vitals/fsX/data GET

View daily normalized data for a file system
on a device.

/device/X/vitals/fsX/normalized_daily GET

Devices

Device Categories

Action URI Method

View latency data for a device. /device/X/vitals/latency/data GET

View daily normalized latency data for a
device.

/device/X/vitals/latency/normalized_daily GET

View hourly normalized latency data for a
device.

/device/X/vitals/latency/normalized_hourly GET

Apply a device template to a device. /device/X Post a /device_
template resource.

Device Categories

Action URI Method

View/search/filter the list of device
categories.

/device_category GET

View the properties of a device category. /device_category/X GET

Device Classes

Action URI Method

View/search/filter the list of device classes. /device_class GET

View the properties of a device class. /device_class/X GET

Device Groups

Action URI Method

View/search/filter the list of device groups. /device_group GET

Create a new device group. /device_group POST

View the properties of a device group. /device_group/X GET

Update the properties of a device group. /device_group/X POST

273

274

Action URI Method

Replace a device group. /device_group/X PUT

Delete a device group. /device_group/X DELETE

View a list of all devices in the device
group, including devices that match
dynamic rules.

/device_group/X/expanded_devices GET

Apply a device template to a device group. /device_group/X Post a /device_
template resource.

Device Relationships

Action URI Method

View/search/filter the list of device
relationships.

/relationship GET

View the properties of a device relationship. /relationship/X GET

View/search/filter the list of ancestor and
decendant devices of a device.

/relationship_hierarchy/X GET

Device Relationship Types

Action URI Method

View/search/filter the list of device
relationship types.

/relationship_type GET

View the properties of a device relationship
type.

/relationship_type/X GET

Device Relationships

Device Templates

Device Templates

Action URI Method

View/search/filter the list of device
templates.

/device_template GET

Create a new device template. /device_template POST

View the properties of a device template. /device_template/X GET

Update the properties of a device template. /device_template/X POST

Replace a device template. /device_template/X PUT

Delete a device template. /device_template/X DELETE

View/search/filter the list of web content
monitoring policy sub-templates associated
with a device template.

/device_template/X/subtpl_cv GET

Create a new web content monitoring
policy sub-template for a device template.

/device_template/X/subtpl_cv POST

View the properties of a web content
monitoring policy sub-template associated
with a device template.

/device_template/X/subtpl_cv/X GET

Update a web content monitoring policy
sub-template associated with a device
template.

/device_template/X/subtpl_cv/X POST

Replace a web content monitoring policy
sub-template associated with a device
template.

/device_template/X/subtpl_cv/X PUT

Delete a web content monitoring policy
sub-template associated with a device
template.

/device_template/X/subtpl_cv/X DELETE

View/search/filter the list of Dynamic
Application sub-templates associated with
a device template.

/device_template/X/subtpl_dynapp GET

Create a new Dynamic Application sub-
template for a device template.

/device_template/X/subtpl_dynapp POST

View the properties of a Dynamic
Application sub-template associated with a
device template.

/device_template/X/subtpl_dynapp/X GET

275

276

Action URI Method

Update a Dynamic Application sub-
template associated with a device template.

/device_template/X/subtpl_dynapp/X POST

Replace a Dynamic Application sub-
template associated with a device template.

/device_template/X/subtpl_dynapp/X PUT

Delete a Dynamic Application sub-template
associated with a device template.

/device_template/X/subtpl_dynapp/X DELETE

View/search/filter the list of port monitoring
policy sub-templates associated with a
device template.

/device_template/X/subtpl_port GET

Create a new port monitoring policy sub-
template for a device template.

/device_template/X/subtpl_port POST

View the properties of a port monitoring
policy sub-template associated with a
device template.

/device_template/X/subtpl_port/X GET

Update a port monitoring policy sub-
template associated with a device template.

/device_template/X/subtpl_port/X POST

Replace a port monitoring policy sub-
template associated with a device template.

/device_template/X/subtpl_port/X PUT

Delete a port monitoring policy sub-
template associated with a device template.

/device_template/X/subtpl_port/X DELETE

View/search/filter the list of process
monitoring policy sub-templates associated
with a device template.

/device_template/X/subtpl_process GET

Create a new process monitoring policy
sub-template for a device template.

/device_template/X/subtpl_process POST

View the properties of a process monitoring
policy sub-template associated with a
device template.

/device_template/X/subtpl_process/X GET

Update a process monitoring policy sub-
template associated with a device template.

/device_template/X/subtpl_process/X POST

Replace a process monitoring policy sub-
template associated with a device template.

/device_template/X/subtpl_process/X PUT

Delete a process monitoring policy sub-
template associated with a device template.

/device_template/X/subtpl_process/X DELETE

Device Templates

Discovery Sessions

Action URI Method

View/search/filter the list of Windows
service monitoring policy sub-templates
associated with a device template.

/device_template/X/subtpl_service GET

Create a new Windows service monitoring
policy sub-template for a device template.

/device_template/X/subtpl_service POST

View the properties of a Windows service
monitoring policy sub-template associated
with a device template.

/device_template/X/subtpl_service/X GET

Update a Windows service monitoring
policy sub-template associated with a
device template.

/device_template/X/subtpl_service/X POST

Replace a Windows service monitoring
policy sub-template associated with a
device template.

/device_template/X/subtpl_service/X PUT

Delete a Windows service monitoring policy
sub-template associated with a device
template.

/device_template/X/subtpl_service/X DELETE

Discovery Sessions

Action URI Method

View/search/filter the list of discovery
sessions.

/discovery_session GET

Create a new discovery session. /discovery_session POST

View the properties of a discovery session. /discovery_session/X GET

Update a discovery session. /discovery_session/X POST

Replace a discovery session. /discovery_session/X PUT

Delete a discovery session. /discovery_session/X DELETE

View/search/filter the list of logs associated
with a discovery session.

/discovery_session/X/log GET

View a log message associated with a
discovery session.

/discovery_session/X/log/X GET

277

278

Action URI Method

View/search/filter the list of currently
running discovery sessions.

/discovery_session_active GET

Create and immediately run a new
discovery session.

/discovery_session_active POST

View the properties of a currently running
discovery session.

/discovery_session_active/X GET

Stop a currently running discovery session. /discovery_session_active/X DELETE

View/search/filter the list of logs associated
with a currently running discovery session.

/discovery_session_active/X/log GET

View a log message associated with a
currently running discovery session.

/discovery_session_active/X/log/X GET

Start a discovery session. /discovery_session_active POST a /discovery_
session resource.

Dynamic Applications

Action URI Method

View the index of available Dynamic
Application resources.

/dynamic_app GET

View/search/filter the list of Database
Configuration Dynamic Applications.

/dynamic_app/db_config GET

View the properties of a Database
Configuration Dynamic Application.

/dynamic_app/db_config/X GET

View/search/filter the list of collection
objects associated with a Database
Configuration Dynamic Application.

/dynamic_app/db_config/X/collection_
object

GET

Add a collection object to a Database
Configuration Dynamic Application.

/dynamic_app/db_config/X/collection_
object

POST

View the properties of a collection object
associated with a Database Configuration
Dynamic Application.

/dynamic_app/db_config/X/collection_
object/X

GET

Update the properties of a collection object
associated with a Database Configuration
Dynamic Application.

/dynamic_app/db_config/X/collection_
object/X

POST

Dynamic Applications

Dynamic Applications

Action URI Method

Replace a collection object associated with
a Database Configuration Dynamic
Application.

/dynamic_app/db_config/X/collection_
object/X

PUT

Remove a collection object from a
Database Configuration Dynamic
Application.

/dynamic_app/db_config/X/collection_
object/X

DELETE

View/search/filter the list of Database
Performance Dynamic Applications.

/dynamic_app/db_performance GET

View the properties of a Database
Performance Dynamic Application.

/dynamic_app/db_performance/X GET

View/search/filter the list of collection
objects associated with a Database
Performance Dynamic Application.

/dynamic_app/db_
performance/X/collection_object

GET

Add a collection object to a Database
Performance Dynamic Application.

/dynamic_app/db_
performance/X/collection_object

POST

View the properties of a collection object
associated with a Database Performance
Dynamic Application.

/dynamic_app/db_
performance/X/collection_object/X

GET

Update the properties of a collection object
associated with a Database Performance
Dynamic Application.

/dynamic_app/db_
performance/X/collection_object/X

POST

Replace a collection object associated with
a Database Performance Dynamic
Application.

/dynamic_app/db_
performance/X/collection_object/X

PUT

Remove a collection object from a
Database Performance Dynamic
Application.

/dynamic_app/db_
performance/X/collection_object/X

DELETE

View/search/filter the list of presentation
objects associated with a Database
Performance Dynamic Application.

/dynamic_app/db_
performance/X/presentation_object

GET

Add a presentation object to a Database
Performance Dynamic Application.

/dynamic_app/db_
performance/X/presentation_object

POST

View the properties of a presentation object
associated with a Database Performance
Dynamic Application.

/dynamic_app/db_
performance/X/presentation_object/X

GET

279

280

Action URI Method

Update the properties of a presentation
object associated with a Database
Performance Dynamic Application.

/dynamic_app/db_
performance/X/presentation_object/X

POST

Replace a presentation object associated
with a Database Performance Dynamic
Application.

/dynamic_app/db_
performance/X/presentation_object/X

PUT

Remove a presentation object from a
Database Performance Dynamic
Application.

/dynamic_app/db_
performance/X/presentation_object/X

DELETE

View/search/filter the list of PowerShell
Configuration Dynamic Applications.

/dynamic_app/powershell_config GET

View the properties of a PowerShell
Configuration Dynamic Application.

/dynamic_app/powershell_config/X GET

View/search/filter the list of collection
objects associated with a PowerShell
Configuration Dynamic Application.

/dynamic_app/powershell_
config/X/collection_object

GET

Add a collection object to a PowerShell
Configuration Dynamic Application.

/dynamic_app/powershell_
config/X/collection_object

POST

View the properties of a collection object
associated with a PowerShell Configuration
Dynamic Application.

/dynamic_app/powershell_
config/X/collection_object/X

GET

Update the properties of a collection object
associated with a PowerShell Configuration
Dynamic Application.

/dynamic_app/powershell_
config/X/collection_object/X

POST

Replace a collection object associated with
a PowerShell Configuration Dynamic
Application.

/dynamic_app/powershell_
config/X/collection_object/X

PUT

Remove a collection object from a
PowerShell Configuration Dynamic
Application.

/dynamic_app/powershell_
config/X/collection_object/X

DELETE

View/search/filter the list of PowerShell
Performance Dynamic Applications.

/dynamic_app/powershell_performance GET

View the properties of a PowerShell
Performance Dynamic Application.

/dynamic_app/powershell_performance/X GET

View/search/filter the list of collection
objects associated with a PowerShell
Performance Dynamic Application.

/dynamic_app/powershell_
performance/X/collection_object

GET

Dynamic Applications

Dynamic Applications

Action URI Method

Add a collection object to a PowerShell
Performance Dynamic Application.

/dynamic_app/powershell_
performance/X/collection_object

POST

View the properties of a collection object
associated with a PowerShell Performance
Dynamic Application.

/dynamic_app/powershell_
performance/X/collection_object/X

GET

Update the properties of a collection object
associated with a PowerShell Performance
Dynamic Application.

/dynamic_app/powershell_
performance/X/collection_object/X

POST

Replace a collection object associated with
a PowerShell Performance Dynamic
Application.

/dynamic_app/powershell_
performance/X/collection_object/X

PUT

Remove a collection object from a
PowerShell Performance Dynamic
Application.

/dynamic_app/powershell_
performance/X/collection_object/X

DELETE

View/search/filter the list of presentation
objects associated with a PowerShell
Performance Dynamic Application.

/dynamic_app/powershell_
performance/X/presentation_object

GET

Add a presentation object to a PowerShell
Performance Dynamic Application.

/dynamic_app/powershell_
performance/X/presentation_object

POST

View the properties of a presentation object
associated with a PowerShell Performance
Dynamic Application.

/dynamic_app/powershell_
performance/X/presentation_object/X

GET

Update the properties of a presentation
object associated with a PowerShell
Performance Dynamic Application.

/dynamic_app/powershell_
performance/X/presentation_object/X

POST

Replace a presentation object associated
with a PowerShell Performance Dynamic
Application.

/dynamic_app/powershell_
performance/X/presentation_object/X

PUT

Remove a presentation object from a
PowerShell Performance Dynamic
Application.

/dynamic_app/powershell_
performance/X/presentation_object/X

DELETE

View/search/filter the list of Snippet
Configuration Dynamic Applications.

/dynamic_app/snippet_config GET

View the properties of a Snippet
Configuration Dynamic Application.

/dynamic_app/snippet_config/X GET

281

282

Action URI Method

View/search/filter the list of collection
objects associated with a Snippet
Configuration Dynamic Application.

/dynamic_app/snippet_
config/X/collection_object

GET

Add a collection object to a Snippet
Configuration Dynamic Application.

/dynamic_app/snippet_
config/X/collection_object

POST

View the properties of a collection object
associated with a Snippet Configuration
Dynamic Application.

/dynamic_app/snippet_
config/X/collection_object/X

GET

Update the properties of a collection object
associated with a Snippet Configuration
Dynamic Application.

/dynamic_app/snippet_
config/X/collection_object/X

POST

Replace a collection object associated with
a Snippet Configuration Dynamic
Application.

/dynamic_app/snippet_
config/X/collection_object/X

PUT

Remove a collection object from a Snippet
Configuration Dynamic Application.

/dynamic_app/snippet_
config/X/collection_object/X

DELETE

View/search/filter the list of Snippet Journal
Dynamic Applications.

/dynamic_app/snippet_journal GET

View the properties of a Snippet Journal
Dynamic Application.

/dynamic_app/snippet_journal/X GET

View/search/filter the list of collection
objects associated with a Snippet Journal
Dynamic Application.

/dynamic_app/snippet_
journal/X/collection_object

GET

Add a collection object to a Snippet Journal
Dynamic Application.

/dynamic_app/snippet_
journal/X/collection_object

POST

View the properties of a collection object
associated with a Snippet Journal Dynamic
Application.

/dynamic_app/snippet_
journal/X/collection_object/X

GET

Update the properties of a collection object
associated with a Snippet Journal Dynamic
Application.

/dynamic_app/snippet_
journal/X/collection_object/X

POST

Replace a collection object associated with
a Snippet Journal Dynamic Application.

/dynamic_app/snippet_
journal/X/collection_object/X

PUT

Remove a collection object from a Snippet
Journal Dynamic Application.

/dynamic_app/snippet_
journal/X/collection_object/X

DELETE

Add a presentation object to a Snippet
Journal Dynamic Application.

/dynamic_app/snippet_
journal/X/presentation_object

POST

Dynamic Applications

Dynamic Applications

Action URI Method

View/search/filter the list of presentation
objects associated with a Snippet Journal
Dynamic Application.

/dynamic_app/snippet_
journal/X/presentation_object

GET

View the properties of a presentation object
associated with a Snippet Journal Dynamic
Application.

/dynamic_app/snippet_
journal/X/presentation_object/X

GET

Update the properties of a presentation
object associated with a Snippet Journal
Dynamic Application.

/dynamic_app/snippet_
journal/X/presentation_object/X

POST

Replace a presentation object associated
with a Snippet Journal Dynamic
Application.

/dynamic_app/snippet_
journal/X/presentation_object/X

PUT

Remove a presentation object from a
Snippet Journal Dynamic Application.

/dynamic_app/snippet_
journal/X/presentation_object/X

DELETE

View/search/filter the list of Snippet
Performance Dynamic Applications.

/dynamic_app/snippet_performance GET

View the properties of a Snippet
Performance Dynamic Application.

/dynamic_app/snippet_performance/X GET

View/search/filter the list of collection
objects associated with a Snippet
Performance Dynamic Application.

/dynamic_app/snippet_
performance/X/collection_object

GET

Add a collection object to a Snippet
Performance Dynamic Application.

/dynamic_app/snippet_
performance/X/collection_object

POST

View the properties of a collection object
associated with a Snippet Performance
Dynamic Application.

/dynamic_app/snippet_
performance/X/collection_object/X

GET

Update the properties of a collection object
associated with a Snippet Performance
Dynamic Application.

/dynamic_app/snippet_
performance/X/collection_object/X

POST

Replace a collection object associated with
a Snippet Performance Dynamic
Application.

/dynamic_app/snippet_
performance/X/collection_object/X

PUT

Remove a collection object from a Snippet
Performance Dynamic Application.

/dynamic_app/snippet_
performance/X/collection_object/X

DELETE

View/search/filter the list of presentation
objects associated with a Snippet
Performance Dynamic Application.

/dynamic_app/snippet_
performance/X/presentation_object

GET

283

284

Action URI Method

Add a presentation object to a Snippet
Performance Dynamic Application.

/dynamic_app/snippet_
performance/X/presentation_object

POST

View the properties of a presentation object
associated with a Snippet Performance
Dynamic Application.

/dynamic_app/snippet_
performance/X/presentation_object/X

GET

Update the properties of a presentation
object associated with a Snippet
Performance Dynamic Application.

/dynamic_app/snippet_
performance/X/presentation_object/X

POST

Replace a presentation object associated
with a Snippet Performance Dynamic
Application.

/dynamic_app/snippet_
performance/X/presentation_object/X

PUT

Remove a presentation object from a
Snippet Performance Dynamic Application.

/dynamic_app/snippet_
performance/X/presentation_object/X

DELETE

View/search/filter the list of SNMP
Configuration Dynamic Applications.

/dynamic_app/snmp_config GET

View the properties of an SNMP
Configuration Dynamic Application.

/dynamic_app/snmp_config/X GET

View/search/filter the list of collection
objects associated with an SNMP
Configuration Dynamic Application.

/dynamic_app/snmp_config/X/collection_
object

GET

Add a collection object to an SNMP
Configuration Dynamic Application.

/dynamic_app/snmp_config/X/collection_
object

POST

View the properties of a collection object
associated with an SNMP Configuration
Dynamic Application.

/dynamic_app/snmp_config/X/collection_
object/X

GET

Update the properties of a collection object
associated with an SNMP Configuration
Dynamic Application.

/dynamic_app/snmp_config/X/collection_
object/X

POST

Replace a collection object associated with
an SNMP Configuration Dynamic
Application.

/dynamic_app/snmp_config/X/collection_
object/X

PUT

Remove a collection object from an SNMP
Configuration Dynamic Application.

/dynamic_app/snmp_config/X/collection_
object/X

DELETE

View/search/filter the list of SNMP
Performance Dynamic Applications.

/dynamic_app/snmp_performance GET

View the properties of an SNMP
Performance Dynamic Application.

/dynamic_app/snmp_performance/X GET

Dynamic Applications

Dynamic Applications

Action URI Method

View/search/filter the list of collection
objects associated with an SNMP
Performance Dynamic Application.

/dynamic_app/snmp_
performance/X/collection_object

GET

Add a collection object to an SNMP
Performance Dynamic Application.

/dynamic_app/snmp_
performance/X/collection_object

POST

View the properties of a collection object
associated with an SNMP Performance
Dynamic Application.

/dynamic_app/snmp_
performance/X/collection_object/X

GET

Update the properties of a collection object
associated with an SNMP Performance
Dynamic Application.

/dynamic_app/snmp_
performance/X/collection_object/X

POST

Replace a collection object associated with
an SNMP Performance Dynamic
Application.

/dynamic_app/snmp_
performance/X/collection_object/X

PUT

Remove a collection object from an SNMP
Performance Dynamic Application.

/dynamic_app/snmp_
performance/X/collection_object/X

DELETE

View/search/filter the list of presentation
objects associated with an SNMP
Performance Dynamic Application.

/dynamic_app/snmp_
performance/X/presentation_object

GET

Add a presentation object to an SNMP
Performance Dynamic Application.

/dynamic_app/snmp_
performance/X/presentation_object

POST

View the properties of a presentation object
associated with an SNMP Performance
Dynamic Application.

/dynamic_app/snmp_
performance/X/presentation_object/X

GET

Update the properties of a presentation
object associated with an SNMP
Performance Dynamic Application.

/dynamic_app/snmp_
performance/X/presentation_object/X

POST

Replace a presentation object associated
with an SNMP Performance Dynamic
Application.

/dynamic_app/snmp_
performance/X/presentation_object/X

PUT

Remove a presentation object from an
SNMP Performance Dynamic Application.

/dynamic_app/snmp_
performance/X/presentation_object/X

DELETE

View/search/filter the list of SOAP
Configuration Dynamic Applications.

/dynamic_app/soap_config GET

View the properties of a SOAP
Configuration Dynamic Application.

/dynamic_app/soap_config/X GET

285

286

Action URI Method

Add a collection object to a SOAP
Configuration Dynamic Application.

/dynamic_app/soap_config/X/collection_
object

POST

View/search/filter the list of collection
objects associated with a SOAP
Configuration Dynamic Application.

/dynamic_app/soap_config/X/collection_
object

GET

View the properties of a collection object
associated with a SOAP Configuration
Dynamic Application.

/dynamic_app/soap_config/X/collection_
object/X

GET

Update the properties of a collection object
associated with a SOAP Configuration
Dynamic Application.

/dynamic_app/soap_config/X/collection_
object/X

POST

Replace a collection object associated with
a SOAP Configuration Dynamic
Application.

/dynamic_app/soap_config/X/collection_
object/X

PUT

Remove a collection object from a SOAP
Configuration Dynamic Application.

/dynamic_app/soap_config/X/collection_
object/X

DELETE

View/search/filter the list of SOAP
Performance Dynamic Applications.

/dynamic_app/soap_performance GET

View the properties of a SOAP Performance
Dynamic Application.

/dynamic_app/soap_performance/X GET

View/search/filter the list of collection
objects associated with a SOAP
Performance Dynamic Application.

/dynamic_app/soap_
performance/X/collection_object

GET

Add a collection object to a SOAP
Performance Dynamic Application.

/dynamic_app/soap_
performance/X/collection_object

POST

View the properties of a collection object
associated with a SOAP Performance
Dynamic Application.

/dynamic_app/soap_
performance/X/collection_object/X

GET

Update the properties of a collection object
associated with a SOAP Performance
Dynamic Application.

/dynamic_app/soap_
performance/X/collection_object/X

POST

Replace a collection object associated with
a SOAP Performance Dynamic Application.

/dynamic_app/soap_
performance/X/collection_object/X

PUT

Remove a collection object from a SOAP
Performance Dynamic Application.

/dynamic_app/soap_
performance/X/collection_object/X

DELETE

Dynamic Applications

Dynamic Applications

Action URI Method

View/search/filter the list of presentation
objects associated with a SOAP
Performance Dynamic Application.

/dynamic_app/soap_
performance/X/presentation_object

GET

Add a presentation object to a SOAP
Performance Dynamic Application.

/dynamic_app/soap_
performance/X/presentation_object

POST

View the properties of a presentation object
associated with a SOAP Performance
Dynamic Application.

/dynamic_app/soap_
performance/X/presentation_object/X

GET

Update the properties of a presentation
object associated with a SOAP
Performance Dynamic Application.

/dynamic_app/soap_
performance/X/presentation_object/X

POST

Replace a presentation object associated
with a SOAP Performance Dynamic
Application.

/dynamic_app/soap_
performance/X/presentation_object/X

PUT

Remove a presentation object from a SOAP
Performance Dynamic Application.

/dynamic_app/soap_
performance/X/presentation_object/X

DELETE

View/search/filter the list of WMI
Configuration Dynamic Applications.

/dynamic_app/wmi_config GET

View the properties of a WMI Configuration
Dynamic Application.

/dynamic_app/wmi_config/X GET

View/search/filter the list of collection
objects associated with a WMI
Configuration Dynamic Application.

/dynamic_app/wmi_config/X/collection_
object

GET

Add a collection object to a WMI
Configuration Dynamic Application.

/dynamic_app/wmi_config/X/collection_
object

POST

View the properties of a collection object
associated with a WMI Configuration
Dynamic Application.

/dynamic_app/wmi_config/X/collection_
object/X

GET

Update the properties of a collection object
associated with a WMI Configuration
Dynamic Application.

/dynamic_app/wmi_config/X/collection_
object/X

POST

Replace a collection object associated with
a WMI Configuration Dynamic Application.

/dynamic_app/wmi_config/X/collection_
object/X

PUT

Remove a collection object from a WMI
Configuration Dynamic Application.

/dynamic_app/wmi_config/X/collection_
object/X

DELETE

View/search/filter the list of WMI
Performance Dynamic Applications.

/dynamic_app/wmi_performance GET

287

288

Action URI Method

View the properties of a WMI Performance
Dynamic Application.

/dynamic_app/wmi_performance/X GET

View/search/filter the list of collection
objects associated with a WMI Performance
Dynamic Application.

/dynamic_app/wmi_
performance/X/collection_object

GET

Add a collection object to a WMI
Performance Dynamic Application.

/dynamic_app/wmi_
performance/X/collection_object

POST

View the properties of a collection object
associated with a WMI Performance
Dynamic Application.

/dynamic_app/wmi_
performance/X/collection_object/X

GET

Update the properties of a collection object
associated with a WMI Performance
Dynamic Application.

/dynamic_app/wmi_
performance/X/collection_object/X

POST

Replace a collection object associated with
a WMI Performance Dynamic Application.

/dynamic_app/wmi_
performance/X/collection_object/X

PUT

Remove a collection object from a WMI
Performance Dynamic Application.

/dynamic_app/wmi_
performance/X/collection_object/X

DELETE

View/search/filter the list of presentation
objects associated with a WMI Performance
Dynamic Application.

/dynamic_app/wmi_
performance/X/presentation_object

GET

Add a presentation object to a WMI
Performance Dynamic Application.

/dynamic_app/wmi_
performance/X/presentation_object

POST

View the properties of a presentation object
associated with a WMI Performance
Dynamic Application.

/dynamic_app/wmi_
performance/X/presentation_object/X

GET

Update the properties of a presentation
object associated with a WMI Performance
Dynamic Application.

/dynamic_app/wmi_
performance/X/presentation_object/X

POST

Replace a presentation object associated
with a WMI Performance Dynamic
Application.

/dynamic_app/wmi_
performance/X/presentation_object/X

PUT

Remove a presentation object from a WMI
Performance Dynamic Application.

/dynamic_app/wmi_
performance/X/presentation_object/X

DELETE

View/search/filter the list of XML
Configuration Dynamic Applications.

/dynamic_app/xml_config GET

View the properties of an XML
Configuration Dynamic Application.

/dynamic_app/xml_config/X GET

Dynamic Applications

Dynamic Applications

Action URI Method

Add a collection object to an XML
Configuration Dynamic Application.

/dynamic_app/xml_config/X/collection_
object

POST

View/search/filter the list of collection
objects associated with an XML
Configuration Dynamic Application.

/dynamic_app/xml_config/X/collection_
object

GET

View the properties of a collection object
associated with an XML Configuration
Dynamic Application.

/dynamic_app/xml_config/X/collection_
object/X

GET

Update the properties of a collection object
associated with an XML Configuration
Dynamic Application.

/dynamic_app/xml_config/X/collection_
object/X

POST

Replace a collection object associated with
an XML Configuration Dynamic
Application.

/dynamic_app/xml_config/X/collection_
object/X

PUT

Remove a collection object from an XML
Configuration Dynamic Application.

/dynamic_app/xml_config/X/collection_
object/X

DELETE

View/search/filter the list of XML
Performance Dynamic Applications.

/dynamic_app/xml_performance GET

View the properties of an XML Performance
Dynamic Application.

/dynamic_app/xml_performance/X GET

View/search/filter the list of collection
objects associated with an XML
Performance Dynamic Application.

/dynamic_app/xml_
performance/X/collection_object

GET

Add a collection object to an XML
Performance Dynamic Application.

/dynamic_app/xml_
performance/X/collection_object

POST

View the properties of a collection object
associated with an XML Performance
Dynamic Application.

/dynamic_app/xml_
performance/X/collection_object/X

GET

Update the properties of a collection object
associated with an XML Performance
Dynamic Application.

/dynamic_app/xml_
performance/X/collection_object/X

POST

Replace a collection object associated with
an XML Performance Dynamic Application.

/dynamic_app/xml_
performance/X/collection_object/X

PUT

Remove a collection object from an XML
Performance Dynamic Application.

/dynamic_app/xml_
performance/X/collection_object/X

DELETE

289

290

Action URI Method

View/search/filter the list of presentation
objects associated with an XML
Performance Dynamic Application.

/dynamic_app/xml_
performance/X/presentation_object

GET

Add a presentation object to an XML
Performance Dynamic Application.

/dynamic_app/xml_
performance/X/presentation_object

POST

View the properties of a presentation object
associated with an XML Performance
Dynamic Application.

/dynamic_app/xml_
performance/X/presentation_object/X

GET

Update the properties of a presentation
object associated with an XML Performance
Dynamic Application.

/dynamic_app/xml_
performance/X/presentation_object/X

POST

Replace a presentation object associated
with an XML Performance Dynamic
Application.

/dynamic_app/xml_
performance/X/presentation_object/X

PUT

Remove a presentation object from an XML
Performance Dynamic Application.

/dynamic_app/xml_
performance/X/presentation_object/X

DELETE

View/search/filter the list of XSLT
Configuration Dynamic Applications.

/dynamic_app/xslt_config GET

View the properties of an XSLT
Configuration Dynamic Application.

/dynamic_app/xslt_config/X GET

View/search/filter the list of collection
objects associated with an XSLT
Configuration Dynamic Application.

/dynamic_app/xslt_config/X/collection_
object

GET

Add a collection object to an XSLT
Configuration Dynamic Application.

/dynamic_app/xslt_config/X/collection_
object

POST

View the properties of a collection object
associated with an XSLT Configuration
Dynamic Application.

/dynamic_app/xslt_config/X/collection_
object/X

GET

Update the properties of a collection object
associated with an XSLT Configuration
Dynamic Application.

/dynamic_app/xslt_config/X/collection_
object/X

POST

Replace a collection object associated with
a Dynamic Application.

/dynamic_app/xslt_config/X/collection_
object/X

PUT

Remove a collection object from an XSLT
Configuration Dynamic Application.

/dynamic_app/xslt_config/X/collection_
object/X

DELETE

View/search/filter the list of XSLT
Performance Dynamic Applications.

/dynamic_app/xslt_performance GET

Dynamic Applications

Dynamic Applications

Action URI Method

View the properties of an XSLT Performance
Dynamic Application.

/dynamic_app/xslt_performance/X GET

View/search/filter the list of collection
objects associated with an XSLT
Performance Dynamic Application.

/dynamic_app/xslt_
performance/X/collection_object

GET

Add a collection object to an XSLT
Performance Dynamic Application.

/dynamic_app/xslt_
performance/X/collection_object

POST

View the properties of a collection object
associated with an XSLT Performance
Dynamic Application.

/dynamic_app/xslt_
performance/X/collection_object/X

GET

Update the properties of a collection object
associated with an XSLT Performance
Dynamic Application.

/dynamic_app/xslt_
performance/X/collection_object/X

POST

Replace a collection object associated with
an XSLT Performance Dynamic Application.

/dynamic_app/xslt_
performance/X/collection_object/X

PUT

Remove a collection object from an XSLT
Performance Dynamic Application.

/dynamic_app/xslt_
performance/X/collection_object/X

DELETE

View/search/filter the list of presentation
objects associated with an XSLT
Performance Dynamic Application.

/dynamic_app/xslt_
performance/X/presentation_object

GET

Add a presentation object to an XSLT
Performance Dynamic Application.

/dynamic_app/xslt_
performance/X/presentation_object

POST

View the properties of a presentation object
associated with an XSLT Performance
Dynamic Application.

/dynamic_app/xslt_
performance/X/presentation_object/X

GET

Update the properties of a presentation
object associated with an XSLT
Performance Dynamic Application.

/dynamic_app/xslt_
performance/X/presentation_object/X

POST

Replace a presentation object associated
with an XSLT Performance Dynamic
Application.

/dynamic_app/xslt_
performance/X/presentation_object/X

PUT

Remove a presentation object from an XSLT
Performance Dynamic Application.

/dynamic_app/xslt_
performance/X/presentation_object/X

DELETE

View/search/filter the list of all Dynamic
Applications.

/dynamic_app/_lookup GET

291

292

Events

Action URI Method

View/search/filter the list of active events. /event GET

View an active event. /event/X GET

Clear an active event. /event/X DELETE

Update the properties of an event. /event/X POST

Event Categories

Action URI Method

Add an event category to an active event. /event_category/X POST

View the event category for an active event. /event_category/X GET

Delete the event category for an active
event.

/event_category/X DELETE

Update the properties of an event. /event_category/X POST

External Contacts

Action URI Method

View/search/filter the list of external
contacts.

/contacts GET

Create a new external contact. /contacts POST

View the properties of an external contact. /contacts/X GET

Update the properties of an external
contact.

/contacts/X POST

Replace an external contact. /contacts/X PUT

Delete an external contact. /contacts/X DELETE

Events

File Uploads

File Uploads

Action URI Method

View the index of available filestore
resources.

/filestore GET

View the index of available PowerPack file
resources. This index does not include
PowerPacks that are automatically installed
by ScienceLogic patches.

/filestore/powerpack GET

Download a PowerPack file. /filestore/powerpack/X GET

View the information associated with a
PowerPack file.

/filestore/powerpack/X/info GET

View the index of available patch file
resources.

/filestore/system_patch GET

Download a patch file. /filestore/system_patch/X GET

View the information associated with a
patch file.

/filestore/system_patch/X/info GET

Interfaces

Action URI Method

View/search/filter the list of interfaces. /interface GET

Add an interface record to a device. /interface POST

View the properties of an interface. /interface/X GET

Update the properties of an interface. /interface/X POST

Replace an interface record. /interface/X PUT

Delete an interface record. /interface/X DELETE

View data for an interface. /interface/X/interface_data/data GET

View daily normalized data for an interface. /interface/X/interface_data/normalized_
daily

GET

View hourly normalized data for an
interface.

/interface/X/interface_data/normalized_
hourly

GET

293

294

Interface Metrics

Action URI Method

View/search/filter the list of interface
metrics.

/interface_metric GET

View details about an interface metric. /interface_metric/X GET

Interface Tags

Action URI Method

View/search/filter the list of interface tags
and their names.

/interface_tag GET

Add a new interface tag. /interface_tag POST

Update the name of an interface tag. /interface_tag PUT

Delete an interface tag. You cannot delete
a tag mapped to an interface.

/interface_tag DELETE

Monitors

Action URI Method

View the index of available monitoring
policy resources.

/monitor GET

View/search/filter the list of web content
monitoring policies.

/monitor/cv GET

Create a new web content monitoring
policy.

/monitor/cv POST

View a web content monitoring policy. /monitor/cv/X GET

Update a web content monitoring policy. /monitor/cv/X POST

Replace a web content monitoring policy. /monitor/cv/X PUT

Interface Metrics

Monitors

Action URI Method

Delete a web content monitoring policy. /monitor/cv/X DELETE

View/search/filter the list of domain name
monitoring policies.

/monitor/dns GET

Create a new domain name monitoring
policy.

/monitor/dns POST

View a domain name monitoring policy. /monitor/dns/X GET

Update a domain name monitoring policy. /monitor/dns/X POST

Replace a domain name monitoring policy. /monitor/dns/X PUT

Delete a domain name monitoring policy. /monitor/dns/X DELETE

View/search/filter the list of Email round-
trip monitoring policies.

/monitor/email GET

Create a new Email round-trip monitoring
policy.

/monitor/email POST

View an Email round-trip monitoring policy. /monitor/email/X GET

Update an Email round-trip monitoring
policy.

/monitor/email/X POST

Replace an Email round-trip monitoring
policy.

/monitor/email/X PUT

Delete an Email round-trip monitoring
policy.

/monitor/email/X DELETE

View/search/filter the list of port monitoring
policies.

/monitor/port GET

Create a new port monitoring policy. /monitor/port POST

View a port monitoring policy. /monitor/port/X GET

Update a port monitoring policy. /monitor/port/X POST

Replace a port monitoring policy. /monitor/port/X PUT

Delete a port monitoring policy. /monitor/port/X DELETE

Create a new system process monitoring
policy.

/monitor/process POST

View/search/filter the list of system process
monitoring policies.

/monitor/process GET

View a system process monitoring policy. /monitor/process/X GET

295

296

Action URI Method

Update a system process monitoring policy. /monitor/process/X POST

Replace a system process monitoring
policy.

/monitor/process/X PUT

Delete a system process monitoring policy. /monitor/process/X DELETE

View/search/filter the list of Windows
service monitoring policies.

/monitor/service GET

Create a new Windows service monitoring
policy.

/monitor/service POST

View a Windows service monitoring policy. /monitor/service/X GET

Update a Windows service monitoring
policy.

/monitor/service/X POST

Replace a Windows service monitoring
policy.

/monitor/service/X PUT

Delete a Windows service monitoring
policy.

/monitor/service/X DELETE

View/search/filter the list of SOAP/XML
transaction monitoring policies.

/monitor/tv GET

Create a new SOAP/XML transaction
monitoring policy.

/monitor/tv POST

View a SOAP/XML transaction monitoring
policy.

/monitor/tv/X GET

Update a SOAP/XML transaction
monitoring policy.

/monitor/tv/X POST

Replace a SOAP/XML transaction
monitoring policy.

/monitor/tv/X PUT

Delete a SOAP/XML transaction monitoring
policy.

/monitor/tv/X DELETE

Organizations

Action URI Method

View/search/filter the list of organizations. /organization GET

Organizations

Organizations

Action URI Method

Create an organization. /organization POST

View the properties of an organization. /organization/X GET

Update the properties of an organization. /organization/X POST

Replace an organization. /organization/X PUT

Delete an organization. /organization/X DELETE

View/search/filter the list of logs associated
with an organization.

/organization/X/log/ GET

View a log message associated with an
organization.

/organization/X/log/X GET

View/search/filter the list of notes
associated with an organization.

/organization/X/note/ GET

Add a note to an organization. /organization/X/note/ POST

View a note associated with an
organization.

/organization/X/note/X GET

Update a note associated with an
organization.

/organization/X/note/X POST

Replace a note associated with an
organization.

/organization/X/note/X PUT

Delete a note associated with an
organization.

/organization/X/note/X DELETE

View/search/filter the list of files associated
with an organization note.

/organization/X/note/X/media GET

Get a media file associated with an
organization note.

/organization/X/note/X/media/X GET

Add a media file to an organization note. /organization/X/note/X/media/X PUT

View meta-data about a media file
associated with an organization note.

/organization/X/note/X/media/X/info GET

297

298

Performance Data

Action URI Method

View the index of available performance
data resources.

/data_performance GET

View the index of available performance
data resources for devices.

/data_performance/device GET

View normalized (rolled-up) data about
availability and latency.

/data_performance/device/avail GET

View normalized (rolled-up) data from one
or more Dynamic Applications.

/data_performance/device/dynamic_app GET

View normalized (rolled-up) data from file
system usage policies.

/data_performance/device/filesystem GET

View normalized (rolled-up) data from web
content monitoring policies.

/data_performance/device/monitor_cv GET

View normalized (rolled-up) data from DNS
monitoring policies.

/data_performance/device/monitor_dns GET

View normalized (rolled-up) data from
email round-trip monitoring policies.

/data_performance/device/monitor_email GET

View normalized (rolled-up) data from a
port monitoring policies.

/data_performance/device/monitor_port GET

View normalized (rolled-up) data from
system process monitoring policies.

/data_performance/device/monitor_
process

GET

View normalized (rolled-up) data from
Windows service monitoring policies.

/data_performance/device/monitor_
service

GET

View normalized (rolled-up) data from
SOAP/XML transaction monitoring policies.

/data_performance/device/monitor_tv GET

View normalized (rolled-up) data about
interface utilization.

/data_performance/interface GET

View normalized (rolled-up) data about
CBQoS objects.

/data_performance/interface GET

View the index of available raw
performance data resources.

/data_performance_raw GET

View the index of available raw
performance data resources for devices.

/data_performance_raw/device GET

Performance Data

PowerPacks

Action URI Method

View raw data about availability and
latency.

/data_performance_raw/device/avail GET

View raw data from one or more Dynamic
Applications.

/data_performance_raw/device/dynamic_
app

GET

View raw data from file system usage
policies.

/data_performance_raw/device/filesystem GET

View raw data from web content monitoring
policies.

/data_performance_raw/device/monitor_
cv

GET

View raw data from DNS monitoring
policies.

/data_performance_raw/device/monitor_
dns

GET

View raw data from email round-trip
monitoring policies.

/data_performance_raw/device/monitor_
email

GET

View raw data from a port monitoring
policies.

/data_performance_raw/device/monitor_
port

GET

View raw data from system process
monitoring policies.

/data_performance_raw/device/monitor_
process

GET

View raw data from Windows service
monitoring policies.

/data_performance_raw/device/monitor_
service

GET

View raw data from SOAP/XML transaction
monitoring policies.

/data_performance_raw/device/monitor_
tv

GET

View raw data about interface utilization. /data_performance_raw/interface GET

View raw data about CBQoS objects. /data_performance_raw/cbqos GET

PowerPacks

Action URI Method

View/search/filter the list of PowerPacks. /powerpack GET

View a PowerPack. /powerpack/X GET

Install a PowerPack. /powerpack Post a
/filestore/powerpack
resource.

299

300

Product SKUs

Action URI Method

View/search/filter the list of Product SKUs. /product GET

Create a new Product SKU. /product POST

View a Product SKU. /product/X GET

Update a Product SKU. /product/X POST

Replace a Product SKU. /product/X PUT

Delete a Product SKU. /product/X DELETE

Scale Values

Action URI Method

View/search/filter the list of scale values
associated with metrics.

/scale GET

View detials about a scale value associated
with metrics.

/scale/X GET

Schedules

Action URI Method

View a list of schedules. /schedule/ GET

Create a new schedule. /schedule/ POST

View a schedule. /schedule/X GET

Update a schedule. /schedule/X POST

Delete a schedule. /schedule/X DELETE

View a list of tasks aligned to the schedule. /schedule/X/task/X GET

Product SKUs

Streamer Push Proxy

Streamer Push Proxy

Action URI Method

Return the current proxy configuration
information.

/streamerpush/proxy GET

Set the proxy information. /streamerpush/proxy POST

Toggle proxy on or off without deleting the
configuration.

/streamerpush/proxy/toggle POST

System Patches

Action URI Method

View/search/filter the list of patches
registered in the system.

/system_patch GET

View information about a registered patch. /system_patch/X GET

View/search/filter the list of log messages
from the last execution of a patch.

/system_patch/X/log GET

View a log message from the last execution
of a patch.

/system_patch/X/log/X GET

Register a patch file. /system_patch Post a
/filestore/system_
patch resource.

View/search/filter the list of staged patches. /system_patch_stage GET

View information about a staged patch. /system_patch_stage/X GET

Stage a patch file that has been registered
in the system.

/system_patch_stage Post a /system_
patch resource.

View/search/filter the list of patches
currently being installed.

/system_patch_deploy_active GET

View information about a patch that is
currently being installed.

/system_patch_deploy_active/X GET

Install a staged patch. /system_patch_deploy_active Post a /system_
patch_stage
resource.

301

302

System Settings

Action URI Method

View the index of available system settings
resources.

/system_settings GET

View the global threshold settings. /system_settings/system_thresholds GET

Update the global threshold settings. /system_settings/system_thresholds POST

System Thresholds

Action URI Method

View/search/filter the list of system-level
thresholds for metrics associated with
interfaces.

/system_threshold GET

View a system-level threshold for a metric
associated with interfaces.

/system_threshold/X GET

Update the settings for a system-level
interface metric threshold.

/system_threshold/X POST

Tasks

Action URI Method

View a list of tasks. A task is any item that
can be scheduled, such as a discovery
session.

/task/ GET

Create a new task. /task/ POST

View a task. /task/X GET

Update a task. /task/X POST

Delete a task. /task/X DELETE

View a list of schedules aligned to the task. /task/X/schedule/X GET

System Settings

Themes

Themes

Action URI Method

View/search/filter the list of themes. /theme GET

Create a new theme. /theme POST

View a theme. /theme/X GET

Update a theme. /theme/X POST

Replace a theme. /theme/X PUT

Delete a theme. /theme/X DELETE

Threshold Overrides

Action URI Method

View/search/filter the list of threshold
overrides that are in place for metrics
associated with interfaces.

/threshold_value_override GET

Add a threshold override for a metric on an
interface.

/threshold_value_override POST

View details about a threshold override for
a metric associated with a specific
interface.

/threshold_value_override/X GET

Update a threshold override for a metric
associated with a specific interface.

/threshold_value_override/X POST

Replace a threshold override for a metric
associated with a specific interface.

/threshold_value_override/X PUT

Remove a threshold override for a metric
associated with a specific interface.

/threshold_value_override/X DELETE

303

304

Tickets

Action URI Method

View/search/filter the list of tickets. /ticket GET

Create a new ticket. /ticket POST

View the properties of a ticket. /ticket/X GET

Replace a ticket. /ticket/X PUT

Update a ticket. /ticket/X POST

View/search/filter the list of logs associated
with a ticket.

/ticket/X/log/ GET

View a log message associated with a
ticket.

/ticket/X/log/X GET

View/search/filter the list of notes
associated with a ticket.

/ticket/X/note/ GET

Add a note to a ticket. /ticket/X/note/ POST

View a note associated with a ticket. /ticket/X/note/X GET

Update a note associated with a ticket. /ticket/X/note/X POST

Replace a note associated with a ticket. /ticket/X/note/X PUT

View/search/filter the list of files associated
with a ticket note.

/ticket/X/note/X/media GET

Get a media file associated with a ticket
note.

/ticket/X/note/X/media/X GET

Add a media file to a ticket note. /ticket/X/note/X/media/X PUT

View meta-data about a media file
associated with a ticket note.

/ticket/X/note/X/media/X/info GET

View/search/filter the list of external
watchers associated with a ticket.

/ticket/X/watcher_ext GET

Add an external watcher to a ticket. /ticket/X/watcher_ext POST

View an external watcher associated with a
ticket.

/ticket/X/watcher_ext/X GET

Update an external watcher associated with
a ticket.

/ticket/X/watcher_ext/X POST

Tickets

Ticket Categories

Action URI Method

Replace an external watcher associated
with a ticket.

/ticket/X/watcher_ext/X PUT

Remove an external watcher from a ticket. /ticket/X/watcher_ext/X DELETE

View/search/filter the list of organization
watchers associated with a ticket.

/ticket/X/watcher_org GET

Add an organization watcher to a ticket. /ticket/X/watcher_org POST

View an organization watcher associated
with a ticket.

/ticket/X/watcher_org/X GET

Update an organization watcher associated
with a ticket.

/ticket/X/watcher_org/X POST

Replace an organization watcher
associated with a ticket.

/ticket/X/watcher_org/X PUT

Remove an organization watcher from a
ticket.

/ticket/X/watcher_org/X DELETE

View/search/filter the list of ticket queue
watchers associated with a ticket.

/ticket/X/watcher_queue GET

Add a ticket queue watcher to a ticket. /ticket/X/watcher_queue POST

View a ticket queue watcher associated with
a ticket.

/ticket/X/watcher_queue/X GET

Update a ticket queue watcher associated
with a ticket.

/ticket/X/watcher_queue/X POST

Replace a ticket queue watcher associated
with a ticket.

/ticket/X/watcher_queue/X PUT

Remove a ticket queue watcher from a
ticket.

/ticket/X/watcher_queue/X DELETE

Ticket Categories

Action URI Method

View/search/filter the list of ticket
categories.

/ticket_category GET

View the properties of a ticket category. /ticket_category/X GET

305

306

Ticket Chargeback

Action URI Method

View/search/filter the list of ticket
chargeback entries.

/ticket_chargeback GET

View the properties of a ticket chargeback
entry.

/ticket_chargeback/X GET

Ticket Logs

Action URI Method

View/search/filter the list of all ticket logs. /ticket_log GET

View a log message associated with a
ticket.

/ticket_log/X GET

Ticket Notes

Action URI Method

View/search/filter the list of all ticket notes. /ticket_note GET

View the properties of a ticket note. /ticket_note/X GET

Update a ticket note. /ticket_note/X POST

Replace a ticket note. /ticket_note/X PUT

View/search/filter the list of files associated
with a ticket note.

/ticket_note/X/media GET

Get a media file associated with a ticket
note.

/ticket_note/X/media/X GET

Add a media file to a ticket note. /ticket_note/X/media/X PUT

View meta-data about a media file
associated with a ticket note.

/ticket_note/X/media/X/info GET

Ticket Chargeback

Ticket Queues

Ticket Queues

Action URI Method

View/search/filter the list of ticket queues. /ticket_queue GET

Create a new ticket queue. /ticket_queue POST

View the properties of a ticket queue. /ticket_queue/X GET

Update a ticket queue. /ticket_queue/X POST

Replace a ticket queue. /ticket_queue/X PUT

Delete a ticket queue. /ticket_queue/X DELETE

Ticket States

Action URI Method

View/search/filter the list of ticket states. /ticket_state GET

Create a new ticket state. /ticket_state POST

View the properties of a ticket state. /ticket_state/X GET

Update a ticket state. /ticket_state/X POST

Replace a ticket state. /ticket_state/X PUT

Delete a ticket state. /ticket_state/X DELETE

Unit Values

Action URI Method

View/search/filter the list of unit values
associated with metrics.

/unit GET

View details about a unit value associated
with metrics.

/unit/X GET

307

308

User Policies

Action URI Method

View/search/filter the list of user policies. /account_policy GET

Create a new user policy. /account_policy POST

View the properties of a user policy. /account_policy/X GET

Update the properties of a user policy. /account_policy/X POST

Replace a user policy. /account_policy/X PUT

Delete a user policy. /account_policy/X DELETE

Vendors

Action URI Method

View/search/filter the list of vendor records. /vendor GET

Create a new vendor record. /vendor POST

View a vendor record. /vendor/X GET

Update a vendor record. /vendor/X POST

Replace a vendor record. /vendor/X PUT

Delete a vendor record. /vendor/X DELETE

View/search/filter the list of notes
associated with a vendor record.

/vendor/X/note GET

Add a note to a vendor record. /vendor/X/note POST

View a note associated with a vendor
record.

/vendor/X/note/X GET

Update a note associated with a vendor
record.

/vendor/X/note/X POST

Replace a note associated with a vendor
record.

/vendor/X/note/X PUT

View/search/filter the list of files associated
with a vendor record note.

/vendor/X/note/X/media GET

User Policies

Vendors

Action URI Method

Get a media file associated with a vendor
record note.

/vendor/X/note/X/media/X GET

Add a media file to a vendor record note. /vendor/X/note/X/media/X PUT

View meta-data about a media file
associated with a vendor record note.

/vendor/X/note/X/media/X/info GET

309

© 2003 - 2023, ScienceLogic, Inc.

All rights reserved.

LIMITATIONOF LIABILITY AND GENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and ScienceLogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without notice.
ScienceLogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

ScienceLogic, the ScienceLogic logo, and EM7 are trademarks of ScienceLogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to ScienceLogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

l ScienceLogic™
l EM7™ and em7™
l Simplify IT™
l Dynamic Application™
l Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
ScienceLogic’s trademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of ScienceLogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com. For more information, see
https://sciencelogic.com/company/legal.

mailto:legal@sciencelogic.com
https://sciencelogic.com/company/legal

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction to the ScienceLogic API
	What is the ScienceLogic API?
	Accessing the API
	API Settings

	HTTP Methods, Headers and Response Formats
	HTTP Methods
	HTTP Status Codes
	SL1-Specific Headers
	Response Headers
	Request Headers

	Response Formats

	Resources & URIs
	Available Resources
	URI Formatting
	Resource Index Responses
	Constructing URIs Using a searchspec
	Filters
	Options
	Sorting
	Specifying a Query String in the Request Body

	Required Options for Indexes
	Resource Responses
	Creating and Updating Resources
	Asynchronous Operations
	Links Between Resources
	Size Limits

	Authentication and Access Permissions
	User Access to the API
	Account Lockouts
	The _self Resource
	Audit Logging

	Custom Attributes
	Custom Attributes for API Resources
	Viewing and Adding Custom Attributes
	Example of How to Add Custom Attributes
	Editing Custom Attributes
	Requests to Resources with Custom Attributes
	Removing Custom Attributes

	Generating Events Using the API
	Generating Alerts
	Defining API Event Policies
	Defining API Event Policies in the Classic SL1 User Interface

	Requesting Performance Data in Bulk
	Resource URIs
	Specifying the Time Range for a Data Request
	Specifying Data Fields
	Fields for Dynamic Application Resources
	Fields for Port Monitor Resources
	Fields for Web Content Monitor Resources
	Fields for SOAP/XML Transaction Monitor Resources
	Fields for Process Monitor Resources
	Fields for Windows Service Monitor Resources
	Fields for Email Round-Trip Monitor Resources
	Fields for DNS Monitor Resources
	Fields for File System Resources
	Fields for Availability Resources
	Fields for Interface Resources
	Fields for CBQoS Resources

	Requesting Data for Specific Devices or Interfaces
	Filtering Device Resources
	Filtering Interface Resources
	Filtering CBQoS Resources

	Additional Options
	Responses from Bulk Performance Data Resources

	Using the Ticket Resource
	Requirements
	Getting Started
	Connecting to the API
	Viewing a List of Tickets
	Viewing a List of Tickets and Ticket Details
	Filtering a List of Tickets
	Retrieving Information about a Specific Ticket
	Updating a Ticket
	Capture Ticket Information in a File
	Edit the Captured File
	Use HTTP POST to Update the Ticket with the Edited File
	Sending Only Changes in the ticket99.json File

	Creating a New Ticket
	Capturing an Existing Ticket and Storing the Information in a File
	Determining the URI for a User Account
	Editing the Captured File
	Using the Edited File to Create a New Ticket

	Viewing Notes for a Ticket
	Adding a Note to a Ticket
	Capturing an Existing Note and Storing the Information in a File
	Editing the Captured File
	Creating a New Note Using the Edited File

	Viewing the Attachments for a Ticket
	Adding an Attachment to a Ticket Note

	Using the Discovery Resource
	Requirements
	Getting Started
	Connecting to the API
	Viewing a List of Discovery Sessions
	Viewing Details about All Discovery Sessions
	Filtering the List of Discovery Sessions
	Retrieving Information about a Specific Discovery Session
	Starting a Discovery Session
	Viewing a List of All Active Discovery Sessions
	Retrieving Information about a Specific Active Discovery-Session
	Viewing Logs for a Discovery Session
	Stopping a Currently Running Discovery-Session
	Deleting a Discovery Session

	Searching Component Trees
	Searching for All the Components in a Tree
	Searching for the Direct Children of a Device
	Searching for the Components in a Sub-Tree
	Searching for a Component by Unique ID

	Simple Provisioning System
	System Design
	Prerequisites
	System-Specific Functions
	Utility Functions (utils.php)
	Performing Requests
	Requesting a List of Entities
	Organization Lookup
	Creating Entities
	Deleting Entities
	Configuring SNMP Credentials
	Requesting Discovery Session Logs
	Requesting an Available Data Collection Unit
	Requesting a List of Referenced Entities

	User Interface
	header.php
	index.php
	devices.php
	remove.php
	provisioning.css

	Provisioning a Customer (provision_customer.php)
	Retrieving and Configuring Devices (configure_devices.php)
	Removing a Customer (delete_customer.php)

	Available Actions
	Accounts
	Account Lockouts
	Alerts
	Appliances
	Assets
	CBQoS Metrics
	CBQoS Objects
	CBQoS Object Types
	Cleared Events
	Collection Labels
	Collection Label Groups
	Collector Groups
	Credentials
	Custom Attributes
	Dashboards
	Devices
	Device Categories
	Device Classes
	Device Groups
	Device Relationships
	Device Relationship Types
	Device Templates
	Discovery Sessions
	Dynamic Applications
	Events
	Event Categories
	External Contacts
	File Uploads
	Interfaces
	Interface Metrics
	Interface Tags
	Monitors
	Organizations
	Performance Data
	PowerPacks
	Product SKUs
	Scale Values
	Schedules
	Streamer Push Proxy
	System Patches
	System Settings
	System Thresholds
	Tasks
	Themes
	Threshold Overrides
	Tickets
	Ticket Categories
	Ticket Chargeback
	Ticket Logs
	Ticket Notes
	Ticket Queues
	Ticket States
	Unit Values
	User Policies
	Vendors

