Sciencelogic

Using the Sciencelogic API

SLT version 12.3.0

Table of Contents

Introduction to the Sciencelogic APl 9
What is the Sciencelogic APl 10
Accessing the APl L 10
AP SO NG 12

HTTP Methods, Headers and Response Formats ... 14
HTTP Methods ..o 15
HTTP SHOTUS COUBS ..o 16
SLT1-Specific Headers 17

Response Headers . . 17
Request Headers 17
ReSpONSE FOrmMats L. 18

Resources & URIs 19
AVAIADIE RESOUICES o 20
URI Formatting oo 21
Resource Index Responses 22
Constructing URIs Using a searchspec ... 23

Y 24
OB ONS e 25
SO NG . 26
Specifying a Query String in the Request Body ... 26
Required Ophons for INAEXESo 27
RESOUICE RESPONSES ... o e 27
Creating and Updating RESOUICES oo 28
Asynchronous OPerations 29
Links Between Resources ... 29
Size Limits Lo 30

Authentication and Access Permissions ... 31
User Access to the APl 32
ACCOUNT LOCKOUTS ... 32
The self ResOUrCe 33

AUt LOgGiNg oo 33

CUSIOM AR DULES ..o 35

Custom Aftributes for API RESOUITESo 36
Viewing and Adding Custom Attributes ... 36
Example of How to Add Custom Aftributes ... 39
Editing Custom Aributes ... 41
Requests to Resources with Custom Attributes ... 42
Removing Custom AribUtes ... 44
Generating Events Using the APl L. . 45
Generating Alerts L. 46
Defining APl Event Policies 47
Defining APl Event Policies in the Classic SL1 User Interfaceo 49
Requesting Performance Datain Bulk ... 51
Resource URIS ..o o 52
Specifying the Time Range for a Data Request ... 53
Specifying Data Fields ... 54
Fields for Dynamic Application Resources 54
Fields for Port Monitor Resources 55
Fields for Web Content Monitor Resources ... 56
Fields for SOAP/XML Transaction Monitor Resources ... 58
Fields for Process Monitor Resources ... 59
Fields for Windows Service Monitor Resources ... 60
Fields for Email Round-Trip Monitor Resources ... 61
Fields for DNS Monitor Resources ... 62
Fields for File System Resources ... 62
Fields for Availability Resources ... 64
Fields for Interface Resources ... 65
Fields for CBQOS RESOUICESo 72
Requesting Data for Specific Devices or Interfaces ... 78
Filtering Device ResOUICES 78
Filtering Interface Resources ... 80
Filtering CBQUOS ReSOUICES o o 82

Addiional OptioNs ... o 82

Responses from Bulk Performance Data Resources ... 82

Best Practices for Requesting Bulk Performance Data ... 84
Best PractiCes ..o 85
Using the Ticket ReSOUICeo 86
R UITEMENS 88
Getting Started ..o 88
Connecting to the APl 89
Viewing a List of Tickets ..o oo 95
Viewing a List of Tickets and Ticket Details ... 102
Filtering a List of Tickets ... 104
Retrieving Information about a Specific Ticket 105
Updating @ TIcket oo 108
Capture Ticket Information in a File ... 108
Editthe Captured File 110

Use HTTP POST to Update the Ticket with the Edited File 111
Sending Only Changes in the ticket99.json File 114
Creating a New Ticket ... 114
Capturing an Existing Ticket and Storing the Informationina File ... 115
Determining the URI for a User ACCOUNt o 115
Editing the Captured File ... 120
Using the Edited File to Create a New Ticket 122
Viewing Notes for a Ticket ... 125
Adding a Note 1o a TIicket ... 129
Capturing an Existing Note and Storing the Informationina File ... 130
Editing the Captured File 130
Creating a New Note Using the Edited File 131
Viewing the Attachments for a Ticket 132
Adding an Attachment to a Ticket NOte ... o 138
Using the Discovery Resource ... 141
R qQUINEM NS 143
GettiNg STaMEd 143

Connecting 1o the APl o 143

Viewing a List of Discovery SEssions 148

Viewing Details about All Discovery Sessions ... 155
Filtering the List of DisCoVery SESSIONSooiii e 156
Retrieving Information about a Specific Discovery Session ..o 158
Starting @ Discovery Session 160
Viewing a List of All Active Discovery Sessions 162
Retrieving Information about a Specific Active Discovery-Session ... 164
Viewing Logs for a DiSCoVEry SESSION ... o e 165
Stopping a Currently Running Discovery-Session ... 168
Deleting a Discovery SessioN 170
Searching Component TreeS e 171
Searching for All the Components in @ Tree ... 172
Searching for the Direct Children of a Device ... 173
Searching for the Componentsin a Sub-Tree ... 174
Searching for a Component by Unique ID ... 178
Simple Provisioning System 182
SYStEM DS IgN 184
P e QUISIIES . 185
System-Specific FUNCHONS . .. 186
Utility Functions (Utils.php) oo 188
Performing ReqUests 188
Requesting a List of Entities ... 194
Organization LOOKUD ... o 197
Creating Entities . 198
Deleting Entities .. oo 199
Configuring SNMP Credentials ... 201
Requesting Discovery SEssion LOgS 206
Requesting an Available Data Collection Unit ... 212
Requesting a List of Referenced Entities 215
UserInterface 217
R ader PN 218

deViCes. DD o 220

MOV PR D o 226

P VIS ONING . CSS . 227
Provisioning a Customer (provision _customer.php) 227
Retrieving and Configuring Devices (configure devices.php) ... 235
Removing a Customer (delete_customer.php) ... 248
Create Device Maintenance Schedules viathe APl . . 253
R qQUINEMENS 254
CaVeats 10 CONSIABT ... 254
Prerequisite EXQMDIes ... 254
GettiNg STaMEd 256
Creating the Task (Step 1) oo 256
Creating the Schedule Entry (Step 2) ... 258
Aligning the Task to the Schedule Entry (Step 3) ... 259
Available Actions ... 262
ACCOUNTS o 265
ACCOUNT LOCKOUTS ... 265
AlOTTS 265
A ONCES 266
A S ETS 266
CBQOS METTICS ... 268
CBQOS Objects ..o 268
CBQOS OB et TYPES .o 269
Cleared Events ... 269
Collection Labels ... 269
Collection Label Groups ..o 269
COllECIOr GrOUPS ... 270
Credentials ... 270
Custom AtribULES ... o 272
DASDOAIAS ..o 274
DIEVICES .o 275

DEVICE ClOSSES ..t 278

DEVICE GrOUDS 278
Device Relationships 279
Device Relationship Types ... 279
Device Templateso 280
DS COVEIY SO I ONS .. 282
DyNamic APPlICATONS ... 283
BV ENES 297
Event CalegOries o 297
EXtErnal CoOntaCES ..o 297
File Uploads ... 298
INTEITACES . 298
INEEITAICE METICS ... 299
IO CE TGS o 299
MONItOrS 299
g aNIZO I ONS . 301
Performance Data ... 303
PowerPacks ... 304
Product SKUS ... oo 305
Sale ValUes ..o 305
Schedules o o 305
Streamer PUsh Proxy ... o 306
SYSTEM PO ES . 306
SYSIEM SEHINGS 307
System Thresholds ... 307
TaSKS 307
TREMES 308
Threshold Overrides ... 308
TICKES 309
Ticket CategOriES . 310
Ticket Chargeback . . 311

TiCKet OGS o 311

Ticket Notes

... 311
Ticket QUEUES ..o 312
TiCket SHatES L 312
UNITVAIUBS 312
User PoliCies ..o 313

Vendors

Chapter

Introduction to the Sciencelogic API

Overview

This manual describes the functionality of the Sciencelogic APl and is intended for developers who are
responsible for integrating SL1 with external systems. To use this manual, you should have a general
understanding of the HTTP protocol.

Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [&).

« To view a page containing all of the menu options, click the Advanced menu icon (==+).

This chapter covers the following topics:

What is the Sciencelogic APl 10
Accessing the APl 10
APl St iNgS . 12

What is the Sciencelogic API2

The Sciencelogic APl allows external systems to programmatically access data in SL1. The API gives access to
entities in SL1— such as tickets, devices, and collected data — using standard HTTP request/response protocols.
Much like the user interface provides access to SL1 for end users, the APl provides access to SL1 for external
systems.

The following SL1 appliances provide access to the API:
* All-In-One Appliances
» Administration Portals

* Database Servers

Accessing the API

This section gives a brief overview of how to communicate with an appliance that provides access to the API. All
communication with the APl is handled by HTTPS requests.

A request must include:

» Valid SL1 login credentials. The APl uses HTTP authentication methods. The credentials you include in the
HTTP request are validated against the user accounts stored in the system.

o A Resource URI. The URI for the resource (entity) you are performing the request on.
o An HTTP Method. Correlates to the action you would like to perform on the resource.

o An Accept Header. Specifies which format should be used for the response. The APl supports
application/xml and application/json formats.

o The base URI of the API. The base URI of the AP is the full address of the main APl index. The base URI
includes information about the appliance you are using to access the API:

For Database Servers, Administration Portals, and All-In-One Appliances, the base URI of the AP is:
https://<ip-address or hostname of appliance>/api

For SL1 PowerFlow, the base URI of the APl is:
https://<ip-address or hostname of appliance>

The response from the APl contains:
e An HTTP Status Code. Indicates the result of the request.

o SL1-Specific Status Headers. Contains additional information about the result of a request. This
information supplements the HTTP Status Code.

o XML or JSON data. Information about the requested resource in the format specified in the request.

10 What is the Sciencelogic API2

To familiarize yourself with performing basic requests, you can use a standard web browser:

1.

Open a web browser.

correctly. If possible, you should use Mozilla Firefox to perform these steps.

NOTE: When you request a resource from the APl using a web browser, the API will respond in raw
XML format. Some browsers, including Safari and Internet Explorer, will not display raw XML

displayed.

index is displayed.

The response contains a list of URIs for the resources that are available through the API:

Enter the username and password for a user account in the system. The response for the main resource

—<APIFeatures elemtype="list">

<link URI="/account” description="GetUpdate/Add/Delete User Accounts” elemtype="href"/>

<link URI="/alert" description="Add Alerts" elemtype="href"/>

<link URI="/api_custom_field" description="Get/Update/Add/ Delete Custom Fields for various resources” elemtype="href"/>
<link URI="/appliance” description="Get/Update EM7T Appliances” elemtype="href"/>

<link URI="/asset” description="Get/Update/Add/Delete Asset Records” elemtype="href" />

<link URI="/cp_theme" description="Get/Update/Add Delete "Customer Portal" Theme Resources” elemtype="href"/>
<link URI="/credential" description="Get/Update/Add Credentials” elemtype="href"/>

<link URI="/dashboard" description="Get/Update/Delete Dashboards" elemtype="href"/>

<link URI="/device" description="Get/Update/Add/Delete Devices and Get Collected Data” elemtype="href"/>

<link URI="/device_class" description="Get Device Classes” elemtype="href"/>

<link URI="/device_group" description="Get/Update/ Add/Delete Device Groups" elemtype="href"/>

<link URI="/device_template”" description="GetUpdate/Add/Delete Device Templates” elemtype="href" />

<link URI="/discovery_session" description="Get/Update/Add/Delete Device Discovery Sessions” elemtype="href"/=>
<link URI="/discovery_session_active” description="View/Start/Stop Active Device Discovery Sessions” elemtype="href"/=
<link URI="/dynamic_app" description="Get Dynamic Application Resources" elemtype="href"/>

<link URI="/event" description="View/ Update/Clear Events" elemtype="href"/>

<link URI="/monitor" description="GetUpdate/Add/Delete Monitor Policies” elemtype="href"/>

<link URI="/organization"” description="GetUpdate/Add Delete Organizations” elemtype="href"/>

<link URI="/theme" description="Get/Update/Add/Delete Theme Resources" elemtype="href"/>

<link URI="/ticket" description="GetUpdate/ Add Delete Tickets" elemtype="hre{"/>

<link URI="/ticket_queue" description="Get Ticket Queues” elemtype="href"/>

<link URI="/ticket_state" description="Get/Update/Add/Delete Custom Ticket States" elemtype="href"/>

<link URI="/vendor" description="Get/Update/Add/Delete Vendor Records" elemtype="href"/>

</APIFeatures>

Each entry in the list includes:

e The URI of the resource.

» Adescription of the resource.

Navigate to the base URI of the APl for the appliance you are using. The standard authentication window is

NOTE: If you are accessing the APl through an Administration Portal, Database Server, or All-In-One

Appliance, the "/api" portion of the base URl is included in all resource URIs returned by the API.

Accessing the API

For example, the URI "/organization" has the description "Get/Update/Add/Delete Organizations". To view
information about organizations, append the base URI of the APl with the URI for the organization resource:

<base URI>/organization

The index for the organization resource, which contains descriptions and URIs for every organization in the
system, is returned.

The browser handles the required elements of the request in the following ways:

* The credentials you enter are used to authenticate the request. Most browsers will save these credentials so
you need to enter them only once per session.

* You enfer the resource URI (/organization) in the browser address bar.
* By default, the browser performs a GET request.

» The browser supplies a default accept header with the request. The default accept header used by Mozilla
Firefox contains "application/xml", one of the two response formats returned by the API.

Although using a web browser is the easiest way to make simple requests, using a browser provides limited
control and functionality. For example, you cannot explicitly perform PUT, POST of DELETE requests with a
browser. A browser will also handle certain aspects of requests and responses, such as automatically following
redirects, differently than they will be handled by integration code. Sciencelogic recommends you use command
line cURL fo test requests.

APl Settings

The REST API Settings page System > Settings > APl allows you to define global parameters that affect the
behavior of the Sciencelogic API.

NOTE: The REST API Settings page is available only to administrator users.

To define or edit the settings in the REST API Settings page:
1. Go to the REST API Settings page System > Settings > API.
2. Inthe REST API Settings page, edit the values in one or more of the following fields:

« Internal Request Account. Specify the user account that allows appliances to make APl requests
without a password.

e X-EM7-run-as Header Support. Specifies whether administrator users can make API requests using
the permissions of another user without that user's password. Choices are

Disabled. Administrator users cannot make APl requests using the permissions of another user.

Enabled (Admin only). Administrator users can include the X-EM7-run-as Header to make API
requests using the permissions of another user.

12 API Settings

Logging. Specifies which logs SL1 will write to when tickets are created or updated using the API.
Choices are:

Transaction Logging Only (System Logs). If a ticket is created or updated using the API, SL1 will
write an entry to the audit log that indicates that a user performed a write-operation using the
APl However, SL1 will not write to the ticket log for the ticket that was created or updated.

Normal (Ticket and System Logs). If a ticket is created or updated using the API, SL1 will write
to the audit log and to the ticket log for the ticket that was created or updated.

o X-EM7-suppress-logging Header Support. If Normal (Ticket and System Logs) is selected in the

Logging field, this field specifies whether an administrator can use the X-EM7-suppress-logging
header can be used when creating or updating a ticket with the API. If the X-EM7-suppress-logging
header is used when creating or updating a ticket, SL1 will not write to the ticket log for that ticket.

Disabled. The X-EM7-suppress-logging header cannot be used.

Enabled (Admin only). The X-EM7-suppress-logging header can be used to stop SL1 from
writing to the ticket log for the ticket that was created or updated.

Send Notification. When a ticket is created or updated, SL1 can automatically send notification
Emails to the ticket assignee and ticket watchers. This option specifies the conditions under which SL1
will send notification Emails when tickets are created or updated using the API. Choices are:

Only if X-EM7-send-notification: 1 is sent. EM7 will send notification Emails for a ticket only
when the X-EM7-send-notification header is setto 1.

Sent after every write operation. SL1 will send notification Emails for every APl request that
creates or updates a ticket.

3. Select the [Save] button to save changes in this page.

API Settings

Chapter

HTTP Methods, Headers and Response
Formats

Overview

This chapter covers how the APl uses elements of the HTTP protocol to handle and respond to requests.
Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [E&).

« To view a page containing all of the menu options, click the Advanced menu icon (==+).

This chapter covers the following topics:

HTTP Methods ... 15
HTTP Status Codes ... 16
SLT1-Specific Headers 17
Response Formats ... 18

HTTP Methods

To perform operations on API resources, you can use one of the following four HTTP methods in your requests.
Each resource has a different set of rules that determines which of the four methods can be used to make
requests.

GET

GET fetches resources. The response to a GET request contains information about the resource you requested.

IMPORTANT: Sciencelogic recommends that you include an order parameter (e.g. {order. id':'ASC'}) to
the request when making multiple calls to ensure consistent data in each GET request from
api/device/.

POST
POST updates an existing resource or creates a new resource:

* To update a resource, use the POST method in a request to a specific instance of a resource. For example,
to update a ticket with ID "1", you would POST JSON or XML data to the following URI:

/ticket/1

If POST is used to update a resource, not all attributes of the resource need to be specified. The APl will
update only the attributes specified in the request.

* To create a resource, use the POST method in a request to the index for that resource. For example, to
create a ticket, you would POST JSON or XML data to the following URI:

/ticket

The system creates a unique ID for the new resource. The URI for the new resource is based on the unique
ID for the resource.

PUT

PUT adds or replaces a resource. Unlike POST, PUT will replace an entire resource. PUT requires a specific
resource URI. The result of a PUT request will be consistent if the request is repeated.

DELETE

DELETE removes resources. If a resource allows the DELETE method, a successful DELETE request will remove the
corresponding entry in the Sciencelogic Database.

15 HTTP Methods

HTTP Status Codes

The APl uses standard HTTP status codes to indicate the general result of a request. Every response from the API
will have one of the following status codes in the header:

200 OK. Indicates that the request was valid and the transaction executed normally.

201 Created. Indicates that a new resource was created. 201 Created is not used when a resource is
updated.

202 Accepted. Indicates the request was accepted for processing.

204 No Content Returned. Indicates the request was successful but the APl returned no content. This
response is typical when a file is uploaded via a PUT request.

301 Moved Permanently. Indicates that the request was made on a sub-resource, but the sub-resource ID
used in the request URI does not match a sub-resource associated with the main resource. For example, a
GET request was made for an interface (the sub-resource) for a device (the main resource), but the interface
ID in the URI is associated with a different device than the device ID used in the URI.

302 Found. Indicates that the request did not include required options or filters. If a response has a 302
Found status code, a "Location" header will be included in the response. The "Location" header will contain
the URI of your request with the default required options or filters included.

303 See Other. Indicates that the request is not the preferred means of fetching the resource. If a response
has a 303 See Other status code, a "Location" header will be included in the response. The "Location"
header will contain the URI for the preferred means of fetching the resource.

400 Bad Request. Indicates that the XML or JSON posted with the request contained bad syntax or was
missing required fields.

401 Unauthorized. Indicates invalid credentials were provided for authentication.

403 Forbidden. Indicates that the credentials provided for authentication were valid, but the user is not
permitted to access the resource.

404 Not Found. Indicates that there is no resource at the URI specified in the request.

405 Method Not Allowed. Indicates that the method used in the request is not permitted with the specified
resource. For example, the DELETE method cannot be used on a ticket resource.

406 Method Not Acceptable. Indicates that the accept header included in the request does not allow an
XML or JSON response.

415 Unsupported Media Type. Indicates that the content-type provided in a PUT or POST request is not
supported.

500 Internal Server Error. Indicates that a general error has occurred with the request that is not described
by another status code. The X-EM7-Status-Message header may contain more information.

501 Not Implemented. Indicates that the requested resource is a placeholder for future use.

HTTP Status Codes 16

SL1-Specitfic Headers

Response Headers

In addition to HTTP status codes, every response from the APl includes headers that provide additional details
about the result of a request:

X-EM7-Implemented-methods. A comma-delimited list of methods that are supported by the requested
resource. This header is intended to provide information on the actions that can be performed on a given
resource. For example, if you perform a GET request on the /device resource index, X-EM7-Implemented-
methods will contain "GET,POST", the two methods supported by /device. If you perform a GET request on
a specific device (e.g. /device/1), the X-EM7-Implemented-methods header will contain
"GET,POST,PUT,DELETE", because a specific device resource supports all available methods.

X-EM7-Applicable-resources. A comma-delimited list of base URIs for resources that can be applied to the
requested resource. For example, to start a discovery session through the API, you would POST a specific
/discovery_session resource to the /discovery_session_active resource index; therefore, if you perform a
GET request on the /discovery session_active resource index, the response will include a X-EM7-
Applicable-resources header of "/discovery_session". For more information on applying resource URIs to
other resources, see the Asynchronous Operations section.

X-EM7-authenticated-user. The URI of the user account that authenticated the request. If the request
included the X-EM7-run-as header, the X-EM7-authenticated-user will return the run-as user.

X-EM7-status-code. Typically a human-readable version of the HTTP Status Code. For certain errors, X-
EM7-status-code might include additional information about why a request was unsuccessful. For
example, if a response has the HTTP Status code "400 Bad Request", the X-EM7-status-code might be
"FAILED_INPUT_VALIDATION?".

X-EM7-status-message. A human-readable description of the result of a request. The X-EM7-status-
message can contain multiple messages delimited by a newline character (\n). For example, if a response
has the HTTP Status code "302 Found", the X-EM7-status-message might be "ticket index requires a limit",
indicating the request was missing the required limit option.

X-EM7-Last-updated. This header is returned only when requesting device configuration data from the
API. Returns the date and time that at least one value in the returned data changed.

Request Headers

The following Sciencelogic-specific headers can be used when making an APl request:

17

o X-em7-beautify-response. By default, responses from the APl use the minimum required amount of

whitespace. If you are making requests using a tool that does not format the output (such as command line
cURL), specify the X-em7-beautify-response header with a value of "1" to request additional whitespace in
the response to make it easier to read.

SL1-Specific Headers

Using the X-em7-beautify-response: 1 header can greatly increase the amount of time
required to process a request. Do not use this header in integration code.

o X-em7-run-as. The X-em7-run-as header can be used by administrator users to execute a request as a

different user. For information about the X-em7-run-as header, see the section on Authentication and
Access Permissions.

X-em7-suppress-logging. If the system is configured to write to an entry in the ticket log when a ticket is
modified via the API, the X-em7-suppress-logging header can be used to modify a ticket via the AP
without updating the ticket log. If the X-em7-suppress-logging header with a value of "1"is included in an
APl request that modifies a ticket and the request is authenticated by an administrator user, the ticket logs
will not be updated based on the result of the request.

X-em7-send-notification. When a ticket is created or updated, SL1 can automatically send notification
Emails to the ticket assignee and ticket watchers. If the system is not configured to send nofification Emails
when tickets are created or updated using the API, the X-em7-send-notification header can be used to
send notification Emails for a specific request. If the X-em7-send-notification header with a value of "1"is
included in an APl request that modifies a ticket, notification Emails will be sent based on the result of the
request.

Response Formats

The APl can respond in XML and JSON formats. Use one of the following accept headers in your requests:

accept: application/json, */*. The APl will respond in JSSON format. If the accept header is "*/*", the API
will respond with JSSON as the default response format; however, it is recommended that you explicitly
accept "application/json" for clarity.

accept: application/xml, */*. The APl will respond in XML format.

If the accept header for a request does not include application/xml, application/json or */*, the APl will
respond with a "406 Method Not Acceptable" status code.

The contents of responses are described in the Resources & URIs section.

Response Formats

Chapter

Resources & URIs

Overview

This chapter covers the available resources for the ScienceLogic APl and information about creating and
updating APl resources.

Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon (&)

« To view a page containing all of the menu options, click the Advanced menu icon (==+).

This chapter covers the following topics:

AVAIlADIE RESOUICES ... 20
URI Formatting 21
Resource Index RespoNnses 22
Constructing URIs Using a searchspec ... 23
Required Options for Indexes 27
ReSOUIrCe RESPONSES oo 27
Creating and Updating ResoUrces 28
Asynchronous Operations ... 29
Links Between Resources ... 29
Size Limits 30

Available Resources

You can interact with the following entities through the API:

20

Accounts

Account Lockouts
Alerts

Appliances

Assets

Collector Groups
CBQoS Obijects
Collection Labels
Credentials
Custom Attributes
Dashboards
Devices

Device Categories
Device Classes
Device Interfaces
Device Groups
Device Relationships
Device Templates
Discovery Sessions
Dynamic Applications
Events

Event Categories
External Contacts
File Uploads
Interfaces
Monitoring Policies
Organizations
Performance Data
PowerPacks

Product SKUs

Available Resources

o Schedules

o System Patches

o System Settings

o Tasks

o System Thresholds
o Themes

o Thresholds

o Tickets

o Ticket Categories
o Ticket Chargeback
o Ticket Logs

o Ticket Notes

o Ticket Queues

o Ticket States

» User Policies

e Vendors

NOTE: Some resources support only view access to the corresponding SL1 entity, while other resources
provide support for create, edit, and/or delete operations. For a full listing of all actions that can be
performed through the API, see the Available Actions section.

URI Formatting

All resources have a URI relative to the base URI for the API:

* For Database Servers, Administration Portals, and All-In-One Appliances, the base URI of the APl is:

https://<ip-address or hostname of appliance>/api

The full URI for a resource has the following structure:

<base URI of the API><resource-uri>

For the resource URIs listed in the previous section, the full URI of the index is:

<base URI of the API>/<resource-name>

URI Formatting 21

The URIs for specific resources combine the resource index URI and the unique ID of the specific resource. For
example, the URI for the ticket with ticket ID 1 is:

/ticket/1

Some resources include sub-resources. For example, a note is a sub-resource of a ticket. If a resource includes a
sub-resource, each instance of that resource includes an index for the sub-resource. For example, the index of
notes attached to the ticket with ticket ID 1 is:

/ticket/1l/note

And the URI for a specific note attached to ticket 1 is:

/ticket/1l/note/<note ID>

NOTE: If you are accessing the APl through an Administration Portal, Database Server, or All-In-One
Appliance, the "/api" portion of the base URI is included in all resource URIs returned by the API.

Resource Index Responses

When you perform a GET request using the URI for a resource index, the response includes the following structure
in JSON format:

{

"searchspec": {

"fields": {
"data": [
"field",
]
o

"options": {

"option name": {

22 Resource Index Responses

"type":". . .",
"description":"...",
"default":"...",

b

}y
s
"total matched":"X",
"total returned":"Y",

"result set":[

The XML response for the same request contains the same attributes in a similar structure.
The following sections are included in the response:
 searchspec. Contains filters and options that you can add to the resource index URI.

o total_matched. An integer that indicates the maximum number of resources the index could return in the
result set. Resources included in this count match the requested filters but might not be included in the
response because of the specified options, or because a required option is missing.

o total_returned. An integer that indicates the number of resources contained in the result_set.

o result_set. Contains each specific resource that matches the filters included in the request URI.

Constructing URIs Using a searchspec

A GET request for a resource index responds with a "searchspec" section by default. The searchspec indicates the

filters and options that can be added to a resource index URI to limit or change the results contained in the

Constructing URIs Using a searchspec

23

response. Filters and options are added to the URI as standard GET values:

<resource uri>?<option 1>&<option 2>&<filter 1>&<filter 2>

Any number of options and filters can be added to the URI after the question mark (2), delimited by ampersands
(&).

All resource indexes support an additional option that allows you to specify the sort order. The sort order option
can be included only once in a single request.

Filters

You can filter the results contained in the response using any of the fields contained in the "fields" section of the
searchspec. For basic equality operations, filters have the following syntax:

filter.<field name>=<value to equate>

You can add the following operators before the equals sign (=) to perform different comparisons:

o .min. The specified value is the minimum value for the field. Equivalent to a "greater than or equal to"
operation.

o .max. The specified value is the maximum value for the field. Equivalent to a "less than or equal to"
operation.

o .contains. The field contains the specified value as a sub-string.
o .begins_with. The field begins with the specified value as a sub-string.
 .ends_with. The field ends with the specified value as a sub-string.

o .isnull. The specified value must be 0 or 1. If you specify a value of O, records that have a non-null value in
the specified field will be returned. If you specify a value of 1, records that have a null (empty) value in the
specified field will be returned.

o .in. The field equates to one of the values given in a list. The value to equate must be in the following list
format:

<value 1>, <value 2>, <value 3>,

For example, to request only tickets that have a severity of major or critical (severity > 3), add the following filter
clause to the ticket URI:

filter.severity.min=3

The inverse of a filter can be created by adding ".not" to the filter clause. To request the inverse of the previous
example:

filter.severity.not.min=3

24 Constructing URIs Using a searchspec

NOTE: If you include multiple filters for the same field in a URI, the APl will return only results that match all
the filters for that field (i.e. the APl will perform an AND operation).

Options

Every resource index has a set of options that can be added to a request URI to limit or change the results
contained in the response. Each entry in the "options" section of the searchspec has the following attributes:

« type. The data type of the option value. The value you pass for this option must be of this data type.
o description. A description of how the option affects the response.

« default. The default value of the option.

The following options are available on most resource indexes:

» extended_fetch. By default, the result_set will contain only the URI and description for each returned
resource. If extended fetch is setto 1 in the URI, the response will contain all aftributes of all returned
resources.

o hide_filterinfo. If this option is set to 1 in the URI, the response will contain only the result set.

o limit. The maximum number of resources that should be returned in the response. For example, if you
include "limit=100" in the URI, the first 100 resources are returned in the response.

o offset. After the APl has assembled a list of possible resources to include in the response, based on the
specified filters, offset determines which resource will be the first entry in the response list. offset begins at
zero for the first resource, one for the second resource, and so forth. For example, if you include
"limit=5&offset=>5"in the /ticket URI, the response contains tickets six through ten from the list of the
possible tickets.

o link_disp_field. If the extended_fetch option is not enabled, you can use the link_disp_field to specify
which field will be used to populate the description for each resource. For example, the default description
of each resource returned by the /account resource index is the username. If you want the description of
each resource returned by the /account resource index to be the primary Email address of each user, set the
link_disp_field option to email.

NOTE: Although the above options are common to most resource indexes, not all resource indexes support
all of these options.

Use the following syntax to specify an option:

<option name>=<option value>

For example, to request 10 tickets with all aftributes returned from the ticketing index, use the following URI:

/ticket?limit=10&extended fetch=1

Constructing URIs Using a searchspec 25

Sorting

You can sort the order of results in the response by using the order option. This option is available for every
resource index. The syntax of the order option is:

order.<field name>=<sort order>

Valid values for the sort order are:
o ASC. Sort in ascending order.
o DESC. Sort in descending order

e <value 1>,<value 2>, <value 3>,..,*. Return the records that have value 1 as the value for the field

first, then the records that have value 2 as that value for the field, etc. Any number of specific values can be
specified, followed by an asterisk.

e * <value 1>,<value 2>, <value 3>,... Return all items that do not have one of the specified values as
the value for the field, then return the records that have value 1 as the value for the field, then the records
that have value 2 as that value for that field, etc. Any number of specific values can be specified.

For example, to sort the response for the /account resource by descending username, include the following
option:

order.user=DESC
For example, to sort the response for the /account resource with the user accounts in organization 2 first, then all
other user accounts, you would include the following option:

order.organization=/api/organization/2, *

Specifying a Query String in the Request Body

The APl accepts a maximum URL size of 8 kb. If you need to perform a GET request with a query string that
includes options and filters that would cause the URL to be larger than 8 kb, you can specify the query string in the
body of the request. To do this:

* Do notinclude the query string when specifying the URL in the request
¢ Include the query string in the body of the request, excluding the leading question mark character

¢ Include the content-type header "content-type:application/x-www-form-urlencoded" in the request

For example, the following cURL request specifies a GET request to the /ticket APl that includes options and filters
as part of the URL:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword’
"https://192.168.10.205/api/ticket?limit=100&extended
fetch=1l&filter.severity=3"

26 Constructing URIs Using a searchspec

The following cURL performs the same request, but specifies the query string in the body of the request and
includes the correct content-type header:
curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/ticket" -H "content-type:application/x-www-—
form-urlencoded" -X GET -d 'limit=100&extended fetch=l&filter.severity=3'

Required Options for Indexes

When you perform a GET request on some resource indexes, one or more options may be required. If a required
option is missing, the response will contain a "302 Found" Status Code. The "Location:" header in the response

will contain the URI for the resource with the option added. Typically the required option is a limit, which prevents
responses from becoming too large.

Resource Responses

If you perform a GET request using the URI for a specific resource, the response has the following structure in
JSON format:

{

"field":"value",

"custom fields":{

}I

"sub resource": {
"URI":"...",
"description":"..."

s

Required Options for Indexes 27

The XML response for the same request contains the same attributes in a similar structure.
The following sections are included in the response:

o field:value pairs. In the structure shown above, field is the name of an attribute that is common to every
resource of that type, e.g. "severity" for a ticket resource. value is the value of the aftribute for this specific
resource.

o custom_fields. Has the same structure as the "field":"value" pairs, but for custom fields specific to this

resource type in this SL1 systems.

e sub resource links. In the structure shown above, sub resource is name of a sub resource associated with
the resource type, e.g. "notes" for a ticket resource. Each sub resource in the response contains a URI for the
sub-resource index and a description of the sub resource.

Creating and Updating Resources

To modify a resource, PUT or POST XML or JSON data to the resource URI.

The XML or JSON you include in a POST or PUT request must have the same format as an XML or JSON
response from a GET request on the same resource. For example, if you:

1. Perform a GET request on a ticket resource and save the response in a file.

2. Inthe saved file, modify the value in a single field.

3. POST the XML or JSON back to the same ticket URI.

The modified field will be updated in the ticket.

When using POST to update a resource, the XML or JSSON can contain only the fields that need to be updated;
any fields you want to remain the same can be removed from the XML or JSON.

To create a new resource using a POST request, you must use the URI of the resource index. The new resource
will be assigned a unique ID. The APl returns the URI for the new resource in the response.

In the XML or JSON structure used in a POST request, the format of the data in each field must be identical to the
format the APl uses when responding to GET requests. For example:

» Timestamps must be in UNIX timeticks format.

 User passwords must be an MD5 hash of the actual password.

NOTE: If you create a new resource using POST, the APl ignores any links to sub-resources included in the
XML or JSON structure. The response contains new URIs for sub-resource indexes.

NOTE: For information on the difference between PUT and POST, see the HTTP Methods, Headers and
Response Formats section.

28 Creating and Updating Resources

NOTE: If you use GraphQlL for a bulk update, GraphQL will make multiple single calls to the REST API

rather than one bulk call, even if SL1 does not use the bulk capability.

Asynchronous Operations

Asynchronous operations, such as starting a discovery session, can be performed using the POST method with
the "application/em7-resource-uri' content type. The "application/em7-resource-uri" content type is proprietary
to the Sciencelogic API.

The following actions are performed by POSTing an em7-resource-uri to another resource:

Starting a discovery session. POST a /discovery session resource URI to the /discovery session_active
resource index.

Applying a device template. POST a /device template resource URI to a specific /device or /devcie
group resource.

Performing a "Save As" operation on a dashboard. POST a /dashboard resource URI to the /dashboard
resource index. All properties of the dashboard are copied, including those that cannot be modified directly
through APl requests.

Installing a PowerPack. POST a /filestore/powerpack resource URI to the /powerpack resource index.
Registering a Patch. POST a /filestore/system_patch resource URI to the /system patch resource index.
Staging a Patch. POST a /system_patch resource URI to the /system patch_stage resource index.

Installing a Patch. POST a /system_patch_stage resource URI to the /system patch deploy active
resource index.

For an example of how this content type is used, see the Example: Using the Discovery Resource section.

Links Between Resources

For fields in a resource that refer to another resource, the value for the field is the URI of the other resource. For
example, if you request a ticket resource that is aligned to the System organization, the "organization" field
contains the URI for the resource that represents the System organization:

"organization":"\/organization\/0",

NOTE: This example shows the response from an SL1 PowerFlow in JSON format with the forward slash

characters (/) escaped. If you are accessing the APl through an Administration Portal, Database
Server, or All-In-One Appliance, the "/api" portion of the base URl is included in all resource URIs
returned by the API.

Asynchronous Operations 29

If you are creating, updating or replacing a resource that includes links to other resources, ensure that you
include the URI for the other resource in the appropriate fields.

Size Limits

The APl has the following limits for URI length and POST content:
e The maximum URI length that can be used in an APl request is 8199 characters.
e The maximum size of JSON content that can be included in a POST request to the APl is 2 GB.

* The maximum size of XML content that can be included in a POST request to the APlis 1,000,000
characters.

30 Size Limits

Chapter

Avuthentication and Access Permissions

Overview

This chapter describes the authentication and access permissions needed to use the Sciencelogic API.
Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [&).

« To view a page containing all of the menu options, click the Advanced menu icon (==).

This chapter covers the following topics:

User Access to the APl 32
Account Lockouts ... 32
The _self Resource 33
AUdit Logging ... 33

31

User Access to the API

User access to the APl is controlled in the same way user access to the Administration Portal is controlled:

» Auser can interact only with entities associated with their organizations. Entities are either explicitly aligned

with organizations, aligned with organizations based on the user that created the entity, or are not aligned
with an organization.

Users of type "Administrator" can perform all actions on all resources, regardless of organization
membership.

Device groups and dashboards can be configured so that a user must be granted a specific access key to
use that device group or dashboard.

NOTE: The new user interface architecture requires APl access for all users; APl access is automatically

granted to users. The following APl-specific access hooks have been deprecated and removed from
SL1: API: Resource Indexes, API: Server Access, API: Virtual Device.

This chapter describes how the access permissions system applies to the APIl. For more information on the access
permissions system in SL1, see the Access Permissions manual.

NOTE: User accounts that use a SAML provider for authentication cannot perform APl requests unless the

authentication profile for that user also includes an EM7 Internal or AD/LDAP authentication
resource.

Account Lockouts

The account lockout functionality applies to APl requests (i.e., if an incorrect password is specified in multiple,
sequential APl requests for a valid user account, the user account will be locked out). The following settings in the
Behavior Settings page (System > Settings > Behavior) control account lockouts:

o Account Lockout Attempts. Number of times a user can supply incorrect login information (i.e., the

number of consecutive APl requests with an incorrect password before a lockout occurs). Choices are 1 time
through 10 times.

o Account Lockout Type. If a user enters incorrect login information multiple times in a row, that user will be
locked out of the user interface. In this field, you can select how the lockout will be applied. Choices are:
Lockout by IP Address. All login attempts from the IP address will be denied.

Lockout by Username and IP Address. All login attempts by the username from the IP address will be
denied.

32 User Access to the API

o

Lockout by Username (default). All login attempts by the username will be denied.

° Disabled. Lockouts are disabled.

o Account Lockout Duration. Specifies how long a user will be locked out of the user interface. Choices are
1 hour through 24 hours, in one-hour increments.

While a user account is locked out, APl requests specifying that user will return an HTTP 403 status code with the
following Sciencelogic-specific header values:

X-EM7-status-message: Authentication failed due to lock

X-EM7-status-code: LOCKED

X-EM7-info-message: Authentication temporarily locked due to too many

failed authentication attempts

Account lockouts can be removed via the APl using the /access lock resource. The /access lock resource
supports the following methods:

Action URI Method
View a list of locked-out user accounts. /access_lock GET
View details about a locked-out user /access_lock/X GET
account.

Clear a lock on a user account. /access_lock/X DELETE

The _self Resource

User accounts are granted access to their own user account information through the following resource:

/account/ self

This resource returns the equivalent of the standard /account resource for the user that authenticated the request,
even if that user account has not been granted permission to access other /account resources.

Audit Logging

All requests that use a PUT, POST, or DELETE method are included in the audit logs for the user's primary
organization. Organizational audit logs are accessible through the [Logs] tab in the Organizational Summary
page; a log for all organizations is displayed on the Audit Logs page (System > Monitor > Audit Logs). Each log
message generated by an APl request includes the following information:

1. The date when the request was made.
2. The user account that was used to authenticate the request.

3. The method used in the request.

The self Resource 33

4. The resource URI the request was made on.

5. The result of the request.

All APl audit logs have a Source of "API Server'.

34 Audit Logging

Chapte

r

Custom Attributes

Overview

This chapter describes how to view, add, and edit custom attributes for API resources.
Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [&).

« To view a page containing all of the menu options, click the Advanced menu icon (==).

This chapter covers the following topics:
Custom Attributes for APl ReSources ...
Viewing and Adding Custom Attributes
Example of How to Add Custom AHributes
Editing Custom AHribULes

Requests to Resources with Custom Attributes

Removing Custom Attributes

35

Custom Attributes for APl Resources

The Sciencelogic APl includes resources for adding custom attributes to the following resources:

/asset

/device

The /interface sub-resource under /device resources
/theme

/vendor

When you define a custom aftribute for a resource:

For any instance of that resource (e.g., a specific device), you can perform a POST operation specifying a
value for that attribute for that instance.

If you configure the aftribute as a base attribute, the attribute will appear in the list of fields for all instances
of that resource. For example, if you define a custom attribute as a base attribute for the /device resource,
the response to a GET request for any /device/device id resource includes the custom attribute in the list of

fields.

If you configure the atftribute as an extended attribute, the attribute will appear in the list of fields for
instances of that resource only if a value has been specified for the aftribute for that instance. For example,
suppose you define a custom aftribute as an extended attribute for the /device resource. The response to a
GET request on the /device resource index with the extended _fetch option enabled will include the custom
attribute only for devices that have a value for that custom attribute.

GET requests for the resource index can include filter and sort criteria that use that custom aftribute.

When you define a value for a custom attribute by performing a POST request to a resource, the value is
available through the APl and can be used in dynamic rules for device groups and viewed in the custom table
widget.

Viewing and Adding Custom Attributes

You can view information about the custom attributes for a resource by performing a GET request to one of the
following resource indexes:

36

/custom_attribute/asset
/custom_attribute/device
/custom_attribute/interface
/custom_attribute/theme
/custom_attribute/vendor

/custom_attribute/ lookup. Allows for searching across all custom aftributes for all entity types.

Custom Attributes for APl Resources

NOTE: The "limit" option is required for all resource indexes for custom aftributes.

Each resource custom attribute resource index returns a list of custom attributes including the URI for each custom

attribute. URIs for custom attributes are in the following format:

/custom attribute/<resource type>/<attribute name>

By default, no custom attributes are defined for any of the resources that support custom aftributes.
To add a custom attribute for a resource, perform a POST request to either of the following URIs:

» The corresponding /custom_attribute/resource resource index.

e The URI of the custom attribute itself, i.e. /custom_attribute/resource/name.

The body of a POST request to an /custom_attribute/resource resource index must have the following JSON
structure:

{
"name":"attribute name",
"label":"attribute label",
"type":"attribute type",
"index":"attribute index type",

"extended":"attribute extended option"

Or the following XML structure:

<custom attribute>
<name>attribute name</name>
<label>attribute label</label>
<type>attribute type</type>
<index>attribute index type</index>
<extended>attribute extended option</extended>

</custom attribute>

Viewing and Adding Custom Attributes

37

The body of a POST request to an /custom_attribute/resource/name resource must have the following JSON
structure:

{
"label":"attribute label",
"type":"attribute type",
"index":"attribute index type",

"extended":"attribute extended option"

Or the following XML structure:

<custom attribute>
<label>attribute label</label>
<type>attribute type</type>
<index>attribute index type</index>
<extended>attribute extended option</extended>

</custom attribute>

NOTE: You can request example JSON or XML content that must be posted to a /custom
attribute/resource/name resource by performing a GET request to the following URI: /custom
attribute/resource/ _example.

Where attribute name, aftribute label, attribute type, aftribute index type, and attribute extended option are
properties of the custom attribute you want to add. Attributes have the following properties:

o name. The name of the custom attribute. Names for custom attributes must conform to XML naming

standards. The aftribute name can contain any combination of alphanumeric characters, a period, a dash,

a combining character or an extending character. If you attempt to create a custom attribute with a non-
compliant name, the APl will respond with a HTTP 400 Bad Request status.

o label. A human-readable description of the aftribute, up to 128 characters in length.

38 Viewing and Adding Custom Attributes

« type. The data type of the custom attribute. You must specify one of the following two values in the type

field:

o

integer. The custom attribute will be used to store signed 64-bit integer values.

string. The custom attribute will be used to store string values up to 512 characters in length.
o index. You must specify one of the following three values in the index field:

index. When SL1 creates the database table that stores this custom attribute, the column that stores
this value will be set as an index for the table. Setting index values can speed up queries performed
on the database table, but does not affect which filter or search options will be available for this
custom attribute.

unique. When SL1 creates the database table that stores this custom attribute, the column that stores
this value will be set as a unique index for the table. The values defined for this custom attribute must
be unique for all resources. For example, if you add a custom attribute called "c-external-id" to the
/custom_attribute/device resource and define the index as unique, the value of "c-external-id" for a
/device/device_id resource cannot be re-used for another /device/device id resource. Setting index
values can speed up queries performed on the database table, but does not affect which filter or
search options will be available for this custom attribute.

> none. When SL1 creates the database table that stores this custom attribute, the column that stores
this value will not be set as an index or unique index.

» extended. A boolean value. You must specify O or 1 in this field:

o

0. The attribute is a "base" attribute. The attribute is displayed in the list of fields for all instances of the
specified resource regardless of whether a value has been specified for the attribute.

° 1. The aftribute is an "extended" attribute. The attribute is displayed in the list of fields for an instance
of the specified resource only if a value has been specified for the attribute.

When you add a custom attribute, the default value for all resources where that attribute is now defined is NULL.

Example of How to Add Custom Attributes

Suppose you are integrating SL1 with an external provisioning system and you want to include information from
the external provisioning system in each device record to make searching for devices and generating reports
easier. You could define the following two custom attributes:

e An ID value from the external provisioning system

* A name field from the external provisioning system

To add these custom attributes, you would perform two POST requests with the following JSSON structures to the
/custom_attribute/device resource to create the two custom attributes:

Request 1:
{

"name" :"external-id",

Example of How to Add Custom Attributes 39

"label":"ID from external provisioning system",
"type":"integer",
"index":"unique",

"extended":"0"

Request 2:
{

"name" :"external-name",

"label":"Name from external provisioning system",
"type":"string",

"index":"none",

"extended":"0"

Each request specifies a custom aftributes:

 external_id. An integer value that will contain the ID value from the external provisioning system. The index
field is set to unique because all ID values from the external provisioning system will be unique.

o external_name. A string value that will contain the name from the external provisioning system.

The structures look like this in XML format:
Request 1:

<custom attribute>
<name>external-id</name>
<label>ID from external provisioning system</label>
<type>integer</type>
<index>unique</index>
<extended>0</extended>

</custom attribute>

40 Example of How to Add Custom Attributes

Request 2:

<custom attribute>

<name>external-name</name>

<label>Name from external provisioning system</label>

<type>string</type>
<index>none</index>
<extended>0</extended>

</custom attribute>

Editing Custom Attributes

To edit a custom attribute, perform a POST request to the URI for that attribute. URIs for custom attributes are in

the following format:

/custom attribute/<resource type>/<attribute name>

The body of a POST request to a /custom_attribute/ <resource type>/<attribute name> resource must have the

following JSON structure:
{

"label":"attribute label",
"type":"attribute type",

"index":"attribute index type"

Or the following XML structure:

<custom attribute>
<label>attribute label</label>
<type>attribute type</type>
<index>attribute index type</index>

</custom attribute>

Editing Custom Attributes

41

NOTE: You cannot update the name or the extended option of a custom attribute.

Requests to Resources with Custom Attributes

When you define a custom aftribute for a resource:

* [fthe aftribute is a "base" attribute, the attribute is displayed in the list of fields for all instances of the
specified resource regardless of whether a value has been specified for the attribute.

* Ifthe aftribute is an "extended" attribute, the attribute is displayed in the list of fields for an instance of the
specified resource only if a value has been specified for the aftribute.

NOTE: To view or define custom attributes, you must prefix the attribute key with c-.

For example, if you created the "external_id" and "external _name" attributes described in the Example of How to
Add Custom Attributes section, both of which are base attributes, the response to a GET request for a
/device/device_id resource would look like this:

{
"name":"em7 ap",
"ip":"10.0.9.50",
"snmp cred id":"\/credentiall\/snmp\/1",
"snmp w cred id":null,
"class type":"\/device class\/20036",
"organization":"\/organization\/0",
"auto update":"1",
"event suppress mask":"00:10:00",
"auto clear":"1",
"log all":"1",
"daily port scan":"1",

"critical ping":"0",

42 Requests to Resources with Custom Attributes

#Editing
#Editing

"scan all ips":"0",

"preserve hostname":"1",

"disable asset update":"0",

"date added":"1320183224",

"c-external-id":"",

"c-external-name":"",

"parent device":null,

"child devices":{

3y

"state":0,

"notes": {
"URI":"\/device\/2\/note\/?hide filterinfo=1&limit=1000",

"description":"Notes"

}y

"app credentials":{
"URI":"\/device\/2\/device app credentials",

"description":"Read-only lookup for aligned credentials and the

device-aligned apps that are using them"

To define a value for a custom attribute for a specific instance of a resource, you can include the custom attribute
when performing a POST request to that resource. For example, to define a value for the "external-id" attribute for
the device with ID "3", you would POST to following JSON to the /device/3 resource:

Requests to Resources with Custom Attributes 43

"ip":"10.0.9.50",

"c-external-id":"4"

When you perform a GET request on a resource index, you can use custom attributes in filter and sort criteria. For
example, if you want to perform a GET request on the /device resource index and want to sort the response by the
external-id field, you would request the following URI:

/device?limit=100&order.c-external-id=ASC

If you want to perform a GET request on the /device resource index and want to filter the response to include only
devices that contain the string "server" in the "external-name" field, you would request the following URI:

/device?limit=100&filter.c-external-name.contains=server

Removing Custom Attributes

To remove a custom attribute, perform a DELETE request to the URI for that attribute. URIs for custom attributes
are in the following format:

/custom attribute/<resource type>/<attribute name>

NOTE: If you want to unalign a custom attribute for an interface, you can perform a PUT action and set the
value to null(lowercase without quotes).

44 Removing Custom Attributes

Chapter

Generating Events Using the API

Overview

The /alert APl resource can be used to generate alerts in SL1 that will appear as log messages in the Device Logs
& Messages page, similar to how SL1 processes inbound syslog and trap messages. You can optionally create
one or more event policies that will trigger when an alert generated through the APl meets the criteria specified in
the policy.

Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [&).

« Toview a page containing all of the menu options, click the Advanced menu icon (==).

This chapter covers the following topics:
Generating Alerts ... 46
Defining APl Event Policies 47

45

Generating Alerts

To generate an alert, you must perform a POST request to the /alert resource index. The content you POST must
have the following structure:

Supply the following values in each field:

46

{

"force ytype":"0",
"force yid":"O0",
"force yname":"",
"message":"",
"value":"0",
"threshold":"0",

"message time":"0",

"aligned resource":""

° 1.CPU

° 2. Disk

° 3. File System
4. Memory

5. Swap

° 7. Interface
9. Process
° 10. Port

11. Windows Service

6. Hardware Component

o force_ytype. Optional. The type of sub-entity on a device that you want to associate the alert with. This field
can be set to the following numeric values that represent sub-entity types:

Generating Alerts

12. Web Content

13. Email Monitor

For example, to associate the alert with a specific interface on a device, supply "7" in this field. If you are
not supplying information about a sub-entity, supply O (zero) in this field.

o force_yid. Optional. The ID value of the specific sub-entity on the device that you want to associate the alert
with. For example, if you are associating the alert with the interface with ID 2, supply "2" in this field. If you
are not supplying information about a sub-entity, supply O (zero) in this field.

o force_yname. Optional. The name of the specific sub-entity on the device that you want to associate the
alert with. For example, if you are associating the alert with the interface called "eth0", supply "ethQ" in this
field. If you are not supplying information about a sub-entity, supply en empty string in this field.

NOTE: If an event policy is configured to clear another event policy, an instance of the event is
cleared only when the clearing event has a matching sub-entity type, sub-entity ID, and sub-
entity name.

o message. Enter message text to associate with the alert. If the alert does not match an event, this text will be
displayed in the Device Logs & Messages page. This text will be used to match against the First Match
String and Second Match String values in event policies. If the alert triggers an event, this text will be
substituted for the %M substitution character in the event message.

« value. Optionally, supply the numeric value that triggered the alert. For example, if an alert indicates that
CPU usage is high, you might pass the current CPU usage in this field. If you are not supplying a specific
value, supply O (zero) in this field.

o threshold. Optionally, supply the numeric threshold that was exceeded for this alert to be generated. This
threshold can be used in an event policy message by using the %T substitution. If you are not supplying a
specific threshold, supply O (zero) in this field.

o message_time. The timestamp to associate with the alert in unix time format. The device log message will
be listed at this date and time. Valid values include a timestamp or an empty string, "0" (zero), or "now", the
latter three of which default to the current timestamp.

e When creating a new APl alert, the /api/alert endpoint now allows a custom timestamp. Valid values for
message_fime include a timestamp or an empty string, O, or now, the latter three of which default to the
current timestamp.

« aligned_resource. The relative URI of the device with which you want to associate the alert. For example, to
align the alert with device ID 1, supply /device/1.

Defining API Event Policies

All alerts generated using the /alert resources are matched against event policies of type "API".

When you create APl event policies, the event messages are generated by inserting messages into the main
database. These messages can be inserted by a snippet automation action, a snippet Dynamic Application, or by
a request to the Sciencelogic API.

Defining API Event Policies 47

To define an APl event policy:
1. Goto Event Policies page (Events > Event Policies).

2. Inthe Event Policies page, click the [Create Event Policy] button. The [Policy Description] tab of the
Event Policy Editor appears.

3. On the [Policy Description] tab, enter the following information:

¢ Policy Name. Type a name for the event policy.

o Enable Event Policy. Turn this toggle on to enable the event policy, or toggle it off to disable the
event policy.

« Policy Description. Type a description of the event policy.

4. Click the [Match Logic] tab, then enter the following information:
« Event Source. Specifies the source for the event. Select API.

5. Atfter selecting and defining your Event Source, enter values in the fields on the right side of the Match
Logic tab:

« String/Regular Expression. Use this drop-down to select String or Regular Expression.

e Match String. Type a text string or a regular expression to match against the originating log message
field of each alert generated through the API. The event will be generated if the message matches the
Match String and the optional Second Match String values. This string can be up to 512 characters
and length and can be any combination of alpha-numeric and multi-byte characters.

If you do not supply a value in the Match String field, your event policy will match all alerts
generated through the API.

SL1's expression matching is case-sensitive.

» Second Match String (Optional). Optionally, a second text string or regular expression to match
against the originating log message field of each alert generated through the API. The event will be
generated if the message matches the Match String and the Second Match String values.

NOTE: The other fields on this page can be used to define specific event behavior or enable advanced event
features. For a description of every option on this page, see the Events manual.

6. Click the [Event Message] tab, then enter the following information:

o Event Message. Define the message that appears in the Event Console page or the Viewing
Events page when this event occurs.

48 Defining API Event Policies

NOTE: For more information about the Event Message field and descriptions of the other fields on this
page that can be used to define the event severity, event masking, and other options, see the Events
manual.

7. Optionally, you can click the [Suppression] tab, where you can define specific devices or device groups for
which the event should not appear.

NOTE: For more information about the [Suppression] tab and the fields that appear on this page, see the
Events manual.

8. After entering information in each tab, click [Save] to save your new event policy.

Defining APl Event Policies in the Classic SL1 User Interface

All alerts generated using the /alert resources are matched against event policies of type "API".
To create an event policy of type "API" in the classic SL1 user interface:
1. Go to the Event Policy Manager page (Registry > Events > Event Manager).
2. Click the [Create] button. The Event Policy Editor page is displayed.
3. Supply values in the following fields:
o Event Source. Select API.
o Operational State. Select whether the event policy is enabled or disabled.
 Policy Name. Enter a name for your event policy.

o Event Message. Enter the event message that will be displayed in the event console when this event
is generated. You can use the %M (message), %V (value), and %T (threshold) substitution characters
in this field to include information from the API request.

« Policy Description. Enter descriptive text about your event policy. This text is displayed when a user

selects the information icon (Q) for an instance of this event.

NOTE: The Use Modifier checkbox is not applicable to APl event policies.

4. Click the [Advanced] tab. The advanced options are displayed.
5. Supply values in the following fields:

o First Match String. Enter text or a regular expression to match against the message field of each
alert generated through the API. The event will be generated if the message matches the First Match
String and the Second Match String values.

Defining API Event Policies 49

50

If you do not supply a value in the First Match String field, your event policy will
match all alerts generated through the API.

« Second Match String. Optionally, a second text string or regular expression to match against the
message field of each alert generated through the API. The event will be generated if the message
matches the First Match String and the Second Match String values.

e Match Logic. Specifies whether the First Match String and Second Match String values are
matched as text strings or regular expressions.

NOTE: The other fields on this page can be used to define specific event behavior or enable

advanced event features. For a description of every option on this page, see the Events
manual.

6. Click the [Save] button.

Defining API Event Policies

Chapter

Requesting Performance Data in Bulk

Overview

The resources /data_performance, /data_performance_raw, and their sub-resources can be used to request
performance data for multiple devices or interfaces in a single request. This chapter describes how to use these
resources to request performance data.

Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [&).

« Toview a page containing all of the menu options, click the Advanced menu icon («+).

This chapter covers the following topics:

Resource URIs ... 52
Specifying the Time Range for a Data Request 53
Specifying Data Fields .. . 54
Requesting Data for Specific Devices or Interfaces ... 78
Additional Options 82
Responses from Bulk Performance Data Resources ... 82

51

Resource URIs

The following table lists the resource URIs for the resources: /data_performance and /data_performance _raw.

NOTE: For resources that return data, you must specify a timestamp option. If you do not specify a
timespan, the APl will return an HTTP 400 (Bad Request) status code.

URI

/data_performance

Description

Returns a list of URIs for the sub-resources associated
with each available entity type (device and interface).

/data_performance/device

Returns a list of URIs that can be used to request device
performance data.

/data_performance/device/dynamic_app

Returns normalized (rolled-up) performance data from
one or more Dynamic Applications. The data matches
specified parameters.

/data_performance/device/monitor_port

Returns normalized (rolled-up) data from port
monitoring policies. The data matches specified
parameters.

/data_performance/device/monitor_cv

Returns normalized (rolled-up) data from web content
monitoring policies. The data matches specified
parameters.

/data_performance/device/monitor_tv

Returns normalized (rolled-up) data from
SOAP/XML transaction monitoring policies. The data
matches specified parameters.

/data_performance/device/monitor_process

Returns normalized (rolled-up) data from system
process monitoring policies. The data matches
specified parameters.

/data_performance/device/monitor_service

Returns normalized (rolled-up) data from Windows
service monitoring policies. The data matches
specified parameters.

/data_performance/device/monitor_email

Returns normalized (rolled-up) data from email round-
trip monitoring policies. The data matches specified
parameters.

/data_performance/device/monitor_dns

Returns normalized (rolled-up) data from
DNS monitoring policies. The data matches specified
parameters.

/data_performance/device/filesystem

Returns normalized (rolled-up) data from file system
usage policies. The data matches specified
parameters.

/data_performance/device/avail

Returns normalized (rolled-up) data about availability
and latency. The data matches specified parameters.

52

Resource URIs

URI

/data_performance/interface

Description

Returns normalized (rolled-up) data about interface
utilization. The data matches specified parameters.

/data_performance/cbqos

Returns normalized (rolled-up) data for CBQoS
metrics. The data matches specified parameters.

/data_performance raw

Returns a list of URIs for the sub-resources associated
with each available entity type (device and interface).

/data_performance raw/device

Returns a list of URIs that can be used to request raw
performance data for a device.

/data_performance raw/device/dynamic_app

Returns raw performance date from one or more
Dynamic Applications. The data matches specified
parameters.

/data_performance_raw/device/monitor_port

Returns raw data from port monitoring policies. The
data matches specified parameters.

/data_performance _raw/device/monitor_cv

Returns raw data from web content monitoring
policies. The data matches specified parameters.

/data_performance_raw/device/monitor_tv

Returns raw data from SOAP/XML transaction
monitoring policies. The data matches specified
parameters.

/data_performance raw/device/monitor_process

Returns raw data from system process monitoring
policies. The data matches specified parameters.

/data_performance raw/device/monitor_service

Returns raw data from Windows service monitoring
policies. The data matches specified parameters.

/data_performance raw/device/monitor_email

Returns raw data from email round-trip monitoring
policies. The data matches specified parameters.

/data_performance raw/device/monitor_dns

Returns raw data from DNS monitoring policies. The
data matches specified parameters.

/data_performance raw/device/filesystem

Returns raw data about file system usage. The data
matches specified parameters.

/data_performance raw/device/avail

Returns raw data about availability and latency. The
data matches specified parameters.

/data_performance raw/interface

Returns raw data about interface utilization. The data
matches specified parameters.

/data_performance raw/cbqos

Returns raw data for CBQoS metrics. The data
matches specified parameters.

Specitying the Time Range for a Data Request

All requests to sub-resources of /data_performance and /data_performance_raw that return performance data
must specify a time range for the returned data. If you do not specify a time range, the APl will return an HTTP

400 (Bad Request) status code.

You can use the following options in the resource URI to specify a time range:

Specifying the Time Range for a Data Request

53

« duration. Specifies the duration of the time range in human-readable shorthand format. A valid value for
this option includes an integer and one of the following characters:

m. The integer specifies the number of minutes in the time range.
h. The integer specifies the number of hours in the time range.

d. The integer specifies the number of days in the time range.

o beginstamp. The UNIX timestamp for the start of the time range.

o endstamp. The UNIX timestamp for the end of the time range.

You must use one of the following combinations of these options:

 Specify a beginstamp and endstamp. The time range starts at the time specified in the beginstamp option
and ends at the time specified in the endstamp option.

 Specify a beginstamp and duration. The time range starts at the time specified in the beginstamp option
and covers the amount of time specified in the duration option.

 Specify a endstamp and duration. The time range covers the amount of time specified in the duration
option ending at the time specified in the endstamp option.

« Specify only the duration option. This is equivalent to specifying an endstamp value of the current time with
the specified duration option.
For the sub-resources of /data_performance, you must also specify a value in the rollup_freq option. Valid
values for this option are:
* hourly. The response will include hourly rollup data.

* daily. The response will include daily rollup data.

Specitying Data Fields

If you do not specify a set of data fields in your request, no data will be returned in the response.

To specify data fields, supply a comma-delimited list of fields in the data_fields option. The available data fields
are different for each resource. The available fields for each resource are listed in the options section of the
searchspec returned by the resource.

Fields for Dynamic Application Resources

For the resources /data_performance/device/dynamic_app and /data_performance_
raw/device/dynamic_app , the data_fields option can include the following fields:

Description

A presentation object ID. The presentation objects for which data sets will be

t .
Presentation object IDs are different for each SL1 refurned

system and can be looked up using the /dynamic_app
resource and sub-resources.

54 Specifying Data Fields

Description

A presentation object GUID. The presentation objects for which data sets will be

returned.
Presentation object GUIDs are the same for all SL1

system and can be looked up using the /dynamic_app
resource and sub-resources.

Fields for Port Monitor Resources

For the resource /data_performance/device/monitor_port , the data_fields option can include the following
fields:

Field Description

avg_d_state The average availability of the port, calculated from the raw data points for the
rollup period. Availability values are either zero (0, unavailable) or one (1,
available); average values will range from zero to one.

max_d_state The value of the single highest availability poll for the port during the rollup period.
Values are either zero (0, unavailable) or one (1, available).

min_d_state The value of the single lowest availability poll for the port during the rollup period.
Values are either zero (0, unavailable) or one (1, available).

sum_d_state The sum of all availability values for the port during the rollup period. Availability
values are either zero (0, unavailable) or one (1, available).

std_d_state The standard deviation of availability values for the port, calculated from the raw
data points for the rollup period.

For the resource /data_performance_raw/device/monitor_port , the data_fields option can include the
following fields :

Description

d state The availability of the port. Availability values are either zero (0, unavailable) or one
(1, available).

Specifying Data Fields 55

Fields for Web Content Monitor Resources

For the resource /data_performance/device/monitor_cv, the data_fields option can include the following

fields:

Field Description

min_d_conn_time

The lowest connection time, in seconds, of all polls during the rollup period.

max_d_conn_time

The highest connection time, in seconds, of all polls during the rollup period.

avg d conn_time

The average connection time, in seconds, calculated from the raw data points for
the rollup period.

sum_d conn_time

The sum of all connection times, in seconds, during the rollup period.

std d _conn_time

The standard deviation of the connection times, calculated from the raw data points
for the rollup period.

min_d_dI size

The lowest download size, in bytes, of all polls during the rollup period.

max_d_dl size

The highest download size, in bytes, of all polls during the rollup period.

avg d dl size

The average download size, in bytes, calculated from the raw data points for the
rollup period.

sum_d dl size

The sum of all download sizes, in bytes, during the rollup period.

std d dl size The standard deviation of the download sizes, calculated from the raw data points
for the rollup period.
min_d_dI speed The lowest download speed, in bytes/second, of all polls during the rollup period.

max_d_dl speed

The highest download speed, in bytes/second, of all polls during the rollup period.

avg_d dl speed

The average download speed, in bytes/second, calculated from the raw data points
for the rollup period.

sum_d dI speed

The sum of all download speeds, in bytes/second, during the rollup period.

std d dl speed

The standard deviation of the download speeds, calculated from the raw data points
for the rollup period.

min_d_ns_time

The lowest DNS lookup time, in seconds, of all polls during the rollup period.

max_d ns time

The highest DNS lookup time, in seconds, of all polls during the rollup period.

avg d ns_time

The average DNS lookup time, in seconds, calculated from the raw data points for
the rollup period.

sum_d ns_time

The sum of all DNS lookup times, in seconds, during the rollup period.

std d ns time

The standard deviation of the DNS lookup times, calculated from the raw data
points for the rollup period.

avg_d_state

The average availability of the web page, calculated from the raw data points for the
rollup period. Availability values are either zero (0, unavailable) or one (1,
available); average values will range from zero to one.

max_d_state

The value of the single highest availability poll for the web page during the rollup
period. Values are either zero (0, unavailable) or one (1, available).

min_d_state

The value of the single lowest availability poll for the web page during the rollup

period. Values are either zero (0, unavailable) or one (1, available).

56

Specifying Data Fields

Field Description

sum_d state

The sum of all availability values for the web page during the rollup period.
Availability values are either zero (0, unavailable) or one (1, available).

std d state

The standard deviation of availability values for the web page, calculated from the
raw data points for the rollup period.

min_d trans_time

The lowest transaction time, in seconds, of all polls during the rollup period.

max_d_trans_time

The highest transaction time, in seconds, of all polls during the rollup period.

avg_d trans_time

The average transaction time, in seconds, calculated from the raw data points for
the rollup period.

sum_d_trans_time

The sum of all transaction times, in seconds, during the rollup period.

std_d trans_time

The standard deviation of the transaction times, calculated from the raw data points
for the rollup period.

For the resource /data_performance_raw/device/monitor_cv, the data_fields option can include the

following fields:

Field Description

d conn_time

The connection time, in seconds.

d dl size The download size, in bytes.

d dl speed The download speed, in bytes/second.

d ns_time The DNS lookup time, in seconds.

d state The availability of the web page. Availability values are either zero (0, unavailable)

orone (1, available).

d trans_time

The transaction time, in seconds.

Specifying Data Fields

57

Fields for SOAP/XML Transaction Monitor Resources

For the resource /data_performance/device/monitor_tv, the data_fields option can include the following

fields:

Field Description

min_d_conn_time

The lowest connection time, in seconds, of all polls during the rollup period.

max_d_conn_time

The highest connection time, in seconds, of all polls during the rollup period.

avg d conn_time

The average connection time, in seconds, calculated from the raw data points for
the rollup period.

sum_d conn_time

The sum of all connection times, in seconds, during the rollup period.

std d _conn_time

The standard deviation of the connection times, calculated from the raw data points
for the rollup period.

min_d_dI size

The lowest download size, in bytes, of all polls during the rollup period.

max_d_dl size

The highest download size, in bytes, of all polls during the rollup period.

avg d dl size

The average download size, in bytes, calculated from the raw data points for the
rollup period.

sum_d dl size

The sum of all download sizes, in bytes, during the rollup period.

std d dl size The standard deviation of the download sizes, calculated from the raw data points
for the rollup period.
min_d_dI speed The lowest download speed, in bytes/second, of all polls during the rollup period.

max_d_dl speed

The highest download speed, in bytes/second, of all polls during the rollup period.

avg_d dl speed

The average download speed, in bytes/second, calculated from the raw data points
for the rollup period.

sum_d dI speed

The sum of all download speeds, in bytes/second, during the rollup period.

std d dl speed

The standard deviation of the download speeds, calculated from the raw data points
for the rollup period.

min_d_ns_time

The lowest DNS lookup time, in seconds, of all polls during the rollup period.

max_d ns time

The highest DNS lookup time, in seconds, of all polls during the rollup period.

avg d ns_time

The average DNS lookup time, in seconds, calculated from the raw data points for
the rollup period.

sum_d ns_time

The sum of all DNS lookup times, in seconds, during the rollup period.

std d ns time

The standard deviation of the DNS lookup times, calculated from the raw data
points for the rollup period.

avg_d_state

The average availability of the web service, calculated from the raw data points for
the rollup period. Availability values are either zero (0, unavailable) or one (1,
available); average values will range from zero to one.

max_d_state

The value of the single highest availability poll for the web service during the rollup
period. Values are either zero (0, unavailable) or one (1, available).

min_d_state

The value of the single lowest availability poll for the web service during the rollup

period. Values are either zero (0, unavailable) or one (1, available).

58

Specifying Data Fields

Field

sum_d state

Description

The sum of all availability values for the web service during the rollup period.
Availability values are either zero (0, unavailable) or one (1, available).

std d state

The standard deviation of availability values for the web service, calculated from
the raw data points for the rollup period.

min_d trans_time

The lowest transaction time, in seconds, of all polls during the rollup period.

max_d_trans_time

The highest transaction time, in seconds, of all polls during the rollup period.

avg_d trans_time

The average transaction time, in seconds, calculated from the raw data points for
the rollup period.

sum_d_trans_time

The sum of all transaction times, in seconds, during the rollup period.

std_d trans_time

The standard deviation of the transaction times, calculated from the raw data points
for the rollup period.

For the resource /data_performance_raw/device/monitor_tv, the data_fields option can include the following

fields:

Field

d conn_time

Description

The connection time, in seconds.

d dl size The download size, in bytes.

d dl speed The download speed, in bytes/second.

d ns_time The DNS lookup time, in seconds.

d state The availability of the web service. Availability values are either zero (0, unavailable)

orone (1, available).

d trans_time

The transaction time, in seconds.

Fields for Process Monitor Resources

For the resource /data_performance/device/monitor_process, the data_fields option can include the

following fields:

Field

min_d_check

Description

The average availability of the process, calculated from the raw data points for the
rollup period. Availability values are either zero (0, valid process is not running or
illicit process is running) or one (1, valid process is running or illicit process is not
running); average values will range from zero to one.

max_d check

The value of the single highest availability poll for the process during the rollup
period. Values are either zero (0, valid process is not running or illicit process is
running) or one (1, valid process is running or illicit process is not running).

avg d check

The value of the single lowest availability poll for the process during the rollup
period. Values are either zero (0, valid process is not running or illicit process is
running) or one (1, valid process is running or illicit process is not running).

sum_d check

The sum of all availability values for the process during the rollup period.
Availability values are either zero (0, valid process is not running or illicit process is
running) or one (1, valid process is running or illicit process is not running).

Specifying Data Fields

Field

std d check

Description

The standard deviation of availability values for the process, calculated from the
raw data points for the rollup period.

min_d counter

The average number of instances of the process, calculated from the raw data points
for the rollup period.

max_d counter

The number of instances of the process at the single poll with the highest value.

avg_d_counter

The number of instances of the process at the single poll with the logest value.

sum_d counter

The sum of the number of instances of the process running at each poll during the
rollup period.

std _d_counter

The standard deviation of number of instances of the process running, calculated
from the raw data points for the rollup period.

For the resource /data_performance_raw/device/monitor_process, the data_fields option can include the

following fields:

Field

Description

d check The availability of the process. Availability values are either zero (0, valid process is
not running or illicit process is running) or one (1, valid process is running or illicit
process is not running).

d counter The number of instances of the processes running.

Fields for Windows Service Monitor Resources

For the resource /data_performance/device/monitor_service, the data_fields option can include the following

fields:

Field

Description

avg_d state

The average availability of the service,calculated from the raw data points for the
rollup period. Availability values are either zero (0, valid service is not running or
illicit service is running) or one (1, valid service is running or illicit service is not
running); average values will range from zero to one.

max_d_state

The value of the single highest availability poll for the service during the rollup
period. Values are either zero (0, valid service is not running or illicit service is
running) or one (1, valid service is running or illicit process is not running).

min_d_state

The value of the single lowest availability poll for the service during the rollup period.
Values are either zero (0, valid service is not running or illicit service is running) or
one (1, valid service is running or illicit service is not running).

sum_d state

The sum of all availability values for the service during the rollup period.
Availability values are either zero (0, valid service is not running or illicit service is
running) or one (1, valid service is running or illicit service is not running).

std_d_state

The standard deviation of availability values for the service, calculated from the
raw data points for the rollup period.

For the resource /data_performance_raw/device/monitor_service, the data_fields option can include the

following fields:

Specifying Data Fields

Description

d state The availability of the service. Availability values are either zero (0, valid service is
not running or illicit service is running) or one (1, valid service is running or illicit
service is not running).

Fields for Email Round-Trip Monitor Resources

For the resource /data_performance/device/monitor_email, the data_fields option can include the following

fields:

Field Description

min_d rt time The lowest email round-trip time, in seconds, of all polls during the rollup period.
max_d rt fime The highest email round-trip time, in seconds, of all polls during the rollup period.
avg d rt time The average email round-trip time, in seconds, calculated from the raw data points

for the rollup period.

sum_d rt time The sum of all email round-trip times, in seconds, during the rollup period.

std d rt time The standard deviation of the email round-trip times, calculated from the raw data
points for the rollup period.

min_d state The value of the single lowest availability poll for the mail process during the rollup
period. Values are either zero (0, email response was not received within the
threshold time) or one (1, email response was received within the threshold time).

max_d_state The value of the single highest availability poll for the mail process during the rollup
period. Values are either zero (0, email response was not received within the
threshold time) or one (1, email response was received within the threshold time).

avg_d state The average availability of the mail process, calculated from the raw data points
for the rollup period. Availability values are either zero (0, email response was not
received within the threshold time) or one (1, email response was received within
the threshold time); average values will range from zero to one.

sum_d_state The sum of all availability values for the mail process during the rollup period.
Availability values are either zero (0, email response was not received within the
threshold time) or one (1, email response was received within the threshold time).

std_d state The standard deviation of availability values for the mail process, calculated from
the raw data points for the rollup period.

For the resource /data_performance_raw/device/monitor_email, the data_fields option can include the
following fields:

Field Description

d_rt ftime The email round-trip time, in seconds.

d state The availability of the mail service. Availability values are either zero (0, email
response was not received within the threshold time) or one (1, email response was
received within the threshold time).

Specifying Data Fields 61

Fields for DNS Monitor Resources

For the resource /data_performance/device/monitor_dns, the data_fields option can include the following

fields:

Field Description

min_d _ns_time The lowest DNS lookup time, in seconds, of all polls during the rollup period.
max_d_ns_time The highest DNS lookup time, in seconds, of all polls during the rollup period.
avg d ns_time The average DNS lookup time, in seconds, calculated from the raw data points for

the rollup period.

sum _d ns_time The sum of all DNS lookup times, in seconds, during the rollup period.

std d _ns_time The standard deviation of the DNS lookup times, calculated from the raw data
points for the rollup period.

min_d_state The value of the single lowest availability poll for the DNS record during the rollup
period. Values are either zero (0, no response or DNS record does not match the
policy) or one (1, DNS record matches the policy).

max_d_state The value of the single highest availability poll for the DNS record during the rollup
period. Values are either zero (0, no response or DNS record does not match the
policy) or one (1, DNS record matches the policy).

avg_d state The average availability of the DNS record, calculated from the raw data points for
the rollup period. Availability values are either zero (0, no response or DNS record
does not match the policy) or one (1, DNS record matches the policy); average
values will range from zero to one.

sum_d_state The sum of all availability values for the DNS record during the rollup period.
Availability values are either zero (0, no response or DNS record does not match
the policy) or one (1, DNS record matches the policy).

std _d_state The standard deviation of availability values for the DNS record, calculated from
the raw data points for the rollup period.

For the resource /data_performance_raw/device/monitor_dns, the data_fields option can include the
following fields:

Field Description

d ns_time The DNS lookup time, in seconds.

d_state The availability of the DNS record. Availability values are either zero (0, no response
or DNS record does not match the policy) or one (1, DNS record matches the
policy).

Fields for File System Resources

For the resource /data_performance/device/filesystem, the data_fields option can include the following fields:

Description

min_d_used The lowest file system usage, in kilobytes, of all polls during the rollup period.

62 Specifying Data Fields

Field Description

max_d used The highest file system usage, in kilobytes, of all polls during the rollup period.

avg d used The average file system usage, in kilobytes, calculated from the raw data points for
the rollup period.

sum_d used The sum of file system usage values, in kilobytes, during the rollup period.

std_d used The standard deviation of the file system usage values, calculated from the raw data
points for the rollup period.

min_d used percent The lowest file system utilization, in percent, of all polls during the rollup period.

max_d used percent The highest file system utilization, in percent, of all polls during the rollup period.

avg_d used percent The average file system utilization, in percent, calculated from the raw data points
for the rollup period.

sum_d _used percent The sum of all file system utilization values, in percent, during the rollup period.

sum_d _used percent The standard deviation of the file system usage values, calculated from the raw data

points for the rollup period.

For the resource /data_performance_raw/device/filesystem, the data_fields option can include the following

fields:

Field Description

d used File system usage in kilobytes.

d used percent File system utilization in percent.

Specifying Data Fields 63

Fields for Availability Resources

For the resource /data_performance/device/avail, the data_fields option can include the following fields:

Field Description

min_d check

The value of the single lowest availability poll for the device during the rollup period.
Values are either zero (0, unavailable) or one (1, available).

max_d check

The value of the single highest availability poll for the device during the rollup
period. Values are either zero (0, unavailable) or one (1, available).

avg_d check

The average availability of the device, calculated from the raw data points for the
rollup period. Availability values are either zero (0, unavailable) or one (1,
available); average values will range from zero to one.

sum_d check

The sum of all availability values for the device during the rollup period. Availability
values are either zero (0, unavailable) or one (1, available).

std d check

The standard deviation of availability values for the device, calculated from the raw
data points for the rollup period.

min_d_latency

The value of the single lowest latency poll, in milliseconds, for the device during the
rollup period.

max_d_latency

The value of the single highest latency poll, in milliseconds, for the device during the
rollup period.

avg_d latency

The average latency of the device, in milliseconds, calculated from the raw data
points for the rollup period.

sum_d_latency

The sum of all latency values, in milliseconds, for the device during the rollup
period.

std_d_latency

The standard deviation of latency values for the device, calculated from the raw
data points for the rollup period.

For the resource /data_performance_raw/device/avail, the data_fields option can include the following fields:

Field Description

d check The availability of the device. Availability values are either zero (0, unavailable) or
one (1, available).

d_latency The latency of the device, in milliseconds.

64 Specifying Data Fields

Fields for Interface Resources

For the resource /data_performance/interface, the data_fields option can include the following fields for

utilization, error, and discard metrics:

NOTE: Asingle request to /data_performance/interface cannot include data fields from this list and data
fields for packet metrics.

Field Description

min_d_bps_in

The lowest inbound bandwidth, in bits per second, per poll for the interface during
the rollup period.

max_d bps in

The highest inbound bandwidth, in bits per second, per poll for the interface during
the rollup period.

avg d bps in The average inbound bandwidth, in bits per second, per poll for the interface during
the rollup period.

sum_d bps in The total number of discarded inbound bandwidth, in bits per second, per poll for
the interface during the rollup period.

std d bps_in The standard deviation of discarded inbound bandwidth, in bits per second, per poll

for the interface during the rollup period.

min_d_bps_out

The lowest number of discarded outbound bandwidth, in bits per second, per poll
for the interface during the rollup period.

maox_d bps out

The highest number of discarded outbound bandwidth, in bits per second, per poll
for the interface during the rollup period.

avg d bps out

The average number of discarded outbound bandwidth, in bits per second, per poll
for the interface during the rollup period.

sum_d bps out

The total number of discarded outbound bandwidth, in bits per second, per poll for
the interface during the rollup period.

std d _bps_out

The standard deviation of discarded outbound bandwidth, in bits per second, per
poll for the interface during the rollup period.

min_d discards_in

The lowest number of discarded inbound packets per poll for the interface during the
rollup period.

min_d discards_in

The lowest number of discarded inbound packets per poll for the interface during the
rollup period.

maox_d_discards_in

The highest number of discarded inbound packets per poll for the interface during
the rollup period.

avg_d discards_in

The average number of discarded inbound packets per poll for the interface during
the rollup period.

sum_d discards_in

The total number of discarded inbound packets for the interface during the rollup
period.

std_d discards_in

The standard deviation of discarded inbound packets for the interface, calculated
from the raw data points for the rollup period.

Specifying Data Fields

65

Field Description

min_d discards_out

The lowest number of discarded outbound packets per poll for the interface during
the rollup period.

max_d discards_out

The highest number of discarded outbound packets per poll for the interface during
the rollup period.

avg d discards out

The average number of discarded outbound packets per poll for the interface during
the rollup period.

sum_d discards out

The total number of discarded outbound packets for the interface during the rollup
period.

std d discards_out

The standard deviation of discarded outbound packets for the interface, calculated
from the raw data points for the rollup period.

min_d errors_in

The lowest number of inbound packet errors per poll for the interface during the
rollup period.

max_d_errors in

The highest number of inbound packet errors per poll for the interface during the
rollup period.

avg d errors_in

The average number of inbound packet errors per poll for the interface during the
rollup period.

sum_d errors_in

The total number of inbound packet errors for the interface during the rollup period.

std d errors in

The standard deviation of inbound packet errors for the interface, calculated from
the raw data points for the rollup period.

min_d_errors_out

The lowest number of outbound packet errors per poll for the interface during the
rollup period.

max_d_errors_out

The highest number of outbound packet errors per poll for the interface during the
rollup period.

avg_d_errors_out

The average number of outbound packet errors per poll for the interface during the
rollup period.

sum_d_errors_out

The total number of outbound packet errors for the interface during the rollup
period.

std d errors out

The standard deviation of outbound packet errors for the interface, calculated from
the raw data points for the rollup period.

min_d_octets_in

The lowest number of inbound octets per poll for the interface during the rollup
period.

max_d octets in

The highest number of inbound octets per poll for the interface during the rollup
period.

avg d octets_in

The average number of inbound octets per poll for the interface during the rollup
period.

sum_d octets_in

The total number of inbound octets for the interface during the rollup period.

std_d octets in

The standard deviation of inbound octets for the interface, calculated from the raw
data points for the rollup period.

min_d octets_out

The lowest number of outbound octets per poll for the interface during the rollup
period.

max_d_octets_out

The highest number of outbound octets per poll for the interface during the rollup

66

Specifying Data Fields

Field Description

period.

avg d_octets_out

The average number of outbound octets per poll for the interface during the rollup
period.

sum_d octets_out

The total number of outbound octets for the interface during the rollup period.

std_d octets out

The standard deviation of outbound octets for the interface, calculated from the raw
data points for the rollup period.

min_d perc_discards_in

The lowest percentage of discarded inbound packets per poll for the interface during
the rollup period.

max_d perc_discards in

The highest percentage of discarded inbound packets per poll for the interface
during the rollup period.

avg_d_perc_discards_in

The average percentage of discarded inbound packets per poll for the interface
during the rollup period.

sum_d perc_discards in

The sum of all percentages of discarded inbound packets for the interface during the
rollup period.

std_d_perc_discards_in

The standard deviation of discarded inbound packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d perc_discards_out

The lowest percentage of discarded outbound packets per poll for the interface
during the rollup period.

max_d perc_discards out

The highest percentage of discarded outbound packets per poll for the interface
during the rollup period.

avg_d perc_discards out

The average percentage of discarded outbound packets per poll for the interface
during the rollup period.

sum_d perc_discards out

The sum of all percentages of discarded outbound packets for the interface during
the rollup period.

std d_perc_discards out

The standard deviation of discarded outbound packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d perc_errors_in

The lowest percentage of inbound packet errors per poll for the interface during the
rollup period.

max_d_perc_errors_in

The highest percentage of inbound packet errors per poll for the interface during the
rollup period.

avg d_perc_errors_in

The average percentage of inbound packet errors per poll for the interface during
the rollup period.

sum_d_perc_errors_in

The sum of all percentages of inbound packet errors for the interface during the
rollup period.

std_d perc_errors_in

The standard deviation of inbound packet errors in percent for the interface,
calculated from the raw data points for the rollup period.

min_d perc_errors_out

The lowest percentage of outbound packet errors per poll for the interface during the
rollup period.

max_d_perc_errors_out

The highest percentage of outbound packet errors per poll for the interface during
the rollup period.

avg d_perc_errors_out

The average percentage of outbound packet errors per poll for the interface during

Specifying Data Fields

67

Field Description

the rollup period.

sum _d perc_errors_ out | The sum of all percentages of outbound packet errors for the interface during the
rollup period.

std_d perc_errors_out The standard deviation of outbound packet errors in percent for the interface,
calculated from the raw data points for the rollup period.

min_d perc_in The lowest inbound utilization, in percent, per poll for the interface during the rollup
period.

max_d_perc_in The highest inbound utilization, in percent, per poll for the interface during the rollup
period.

avg d perc_in The average inbound utilization, in percent, for the interface during the rollup
period.

sum_d perc_in The sum of all percentage values for inbound utilization for the interface during the

rollup period.

std_d_perc_in The standard deviation of inbound utilization values for the interface, calculated
from the raw data points for the rollup period.

min_d perc_out The lowest outbound utilization, in percent, per poll for the interface during the
rollup period.

max_d perc_out The highest outbound utilization, in percent, per poll for the interface during the
rollup period.

avg d perc_out The average outbound utilization, in percent, for the interface during the rollup
period.
sum_d perc_out The sum of all percentage values for outbound utilization for the interface during the

rollup period.

std_d_perc_out The standard deviation of outbound utilization values for the interface, calculated
from the raw data points for the rollup period.

For the resource /data_performance/interface, the data_fields option can include the following fields for
packet metrics:

NOTE: Asingle request to /data_performance_raw/interface cannot include data fields from this list and
data fields for utilization, error, and discard metrics.

Field Description

min_d_ifp_unicast_perc_in | The lowest percentage of inbound unicast packets per poll for the interface during
the rollup period.

max_d_ifp_unicast_perc_ | The highest percentage of inbound unicast packets per poll for the interface during
in the rollup period.

avg_d ifp_unicast perc_in |The average percentage of inbound unicast packets per poll for the interface during
the rollup period.

sum_d ifp_unicast perc_ | The sum of all percentages of inbound unicast packets for the interface during the

68 Specifying Data Fields

Field Description

in

rollup period.

std d ifp_unicast perc_in

The standard deviation of inbound unicast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_ifp_multicast_perc_
in

The lowest percentage of inbound multicast packets per poll for the interface during
the rollup period.

max_d_ifp_multicast
perc_in

The highest percentage of inbound multicast packets per poll for the interface during
the rollup period.

avg d ifp_multicast perc
in

The average percentage of inbound multicast packets per poll for the interface
during the rollup period.

sum_d_ifp_multicast
perc_in

The sum of all percentages of inbound multicast packets for the interface during the
rollup period.

std d ifp_multicast perc
in

The standard deviation of inbound multicast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_ifp_broadcast_
perc_in

The lowest percentage of inbound broadcast packets per poll for the interface
during the rollup period.

max d_ifp_broadcast
perc_in

The highest percentage of inbound broadcast packets per poll for the interface
during the rollup period.

avg d ifp broadcast
perc_in

The average percentage of inbound broadcast packets per poll for the interface
during the rollup period.

sum d ifp_broadcast
perc_in

The sum of all percentages of inbound broadcast packets for the interface during the
rollup period.

std d ifp_broadcast perc
in

The standard deviation of inbound broadcast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_ifp_unicast_perc_
out

The lowest percentage of outbound unicast packets per poll for the interface during
the rollup period.

max_d_ifp_unicast perc
out

The highest percentage of outbound unicast packets per poll for the interface during
the rollup period.

avg_d ifp_unicast perc
out

The average percentage of outbound unicast packets per poll for the interface
during the rollup period.

sum_d ifp_unicast perc
out

The sum of all percentages of outbound unicast packets for the interface during the
rollup period.

std d ifp_unicast perc
out

The standard deviation of outbound unicast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d_ifp_multicast_perc_
out

The lowest percentage of outbound multicast packets per poll for the interface
during the rollup period.

max_d_ifp_multicast
perc_out

The highest percentage of outbound multicast packets per poll for the interface
during the rollup period.

avg_d ifp_multicast perc
out

The average percentage of outbound multicast packets per poll for the interface
during the rollup period.

sum_d_ifp_multicast
perc_out

The sum of all percentages of outbound multicast packets for the interface during
the rollup period.

Specifying Data Fields

69

Field Description

std d ifp_multicast perc_
out

The standard deviation of outbound multicast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d ifp_broadcast
perc_out

The lowest percentage of outbound broadcast packets per poll for the interface
during the rollup period.

max_d ifp_broadcast
perc_out

The highest percentage of outbound broadcast packets per poll for the interface
during the rollup period.

avg d ifp broadcast
perc_out

The average percentage of outbound broadcast packets per poll for the interface
during the rollup period.

sum_d ifp_broadcast
perc_out

The sum of all percentages of outbound broadcast packets for the interface during
the rollup period.

std d ifp_broadcast perc
out

The standard deviation of outbound broadcast packets in percent for the interface,
calculated from the raw data points for the rollup period.

min_d ifp_unicast in

The lowest inbound unicast packet rate (packets/second) per poll for the interface
during the rollup period.

max_d ifp_unicast in

The highest inbound unicast packet rate (packets/second) per poll for the interface
during the rollup period.

avg d ifp_unicast in

The average inbound unicast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d ifp_unicast in

The total of all inbound unicast packet rates (packets/second) for the interface
during the rollup period.

std d ifp_unicast in

The standard deviation of inbound unicast packet rates (packets/second) for the
interface, calculated from the raw data points for the rollup period.

min_d ifp_multicast in

The lowest inbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

max_d ifp_multicast in

The highest inbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

avg d ifp_multicast in

The average inbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d ifp_multicast in

The total all inbound multicast packet rates (packets/second) for the interface
during the rollup period.

std d ifp_multicast in

The standard deviation of inbound multicast packet rates (packets/second) for the
interface, calculated from the raw data points for the rollup period.

min_d ifp_broadcast in

The lowest inbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

max_d ifp_broadcast in

The highest inbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

avg d ifp_broadcast in

The average inbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d ifp_broadcast in

The total of all inbound broadcast rates (packets/second) for the interface during
the rollup period.

std d ifp_broadcast in

The standard deviation of inbound broadcast packet rates (packets/second) for the

70

Specifying Data Fields

Field Description

interface, calculated from the raw data points for the rollup period.

min_d_ifp_unicast_out

The lowest outbound unicast packet rate (packets/second) per poll for the interface
during the rollup period.

max_d_ifp_unicast out

The highest outbound unicast packet rate (packets/second) per poll for the
interface during the rollup period.

avg_d ifp_unicast out

The average outbound unicast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d ifp_unicast out

The total of all outbound unicast packet rates (packets/second) for the interface
during the rollup period.

std d ifp_unicast out

The standard deviation of outbound unicast packet rates (packets/second) for the
interface, calculated from the raw data points for the rollup period.

min_d_ifp_multicast_out

The lowest outbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

max_d_ifp_multicast_out

The highest outbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

avg_d ifp_multicast out

The average outbound multicast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d ifp_multicast out

The total all outbound multicast packet rates (packets/second) for the interface
during the rollup period.

std d _ifp_multicast out

The standard deviation of outbound multicast packet rates (packets/second) for the
interface, calculated from the raw data points for the rollup period.

min_d ifp_broadcast out

The lowest outbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

max_d_ifp_broadcast out

The highest outbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

avg_d ifp_broadcast out

The average outbound broadcast packet rate (packets/second) per poll for the
interface during the rollup period.

sum_d ifp_broadcast out

The total of all outbound broadcast rates (packets/second) for the interface during
the rollup period.

std d ifp_broadcast out

The standard deviation of outbound broadcast packet rates (packets/second) for
the interface, calculated from the raw data points for the rollup period.

For the resource /data_performance_raw/interface, the data_fields option can include the following fields for

utilization, error, and discard metrics:

NOTE: Asingle request to /data_performance_raw/interface cannot include data fields from this list and
data fields for packet metrics.

Field Description

d discards_in

The number of inbound packet discards for an interface.

d discards out

The number of outbound packet discards for an interface.

Specifying Data Fields

71

Field Description

d errors in

The number of inbound packet errors for an interface.

d errors_out

The number of outbound packet errors for an interface.

d_octets_in

The number of inbound octets for an interface.

d octets out

The number of outbound octets for an interface.

d bps in

The inbound utilization for an interface, in bytes per second.

d bps out

The outbound utilization for an interface, in bytes per second.

d_perc_discards_in

The percentage of inbound packets that were discarded for an interface.

d_perc_discards out

The percentage of outbound packets that were discarded for an interface.

d perc_errors_in

The percentage of inbound packets that caused errors for an interface.

d perc_errors_out

The percentage of outbound packets that caused errors for an interface.

d perc_in

The inbound utilization for an interface, in percent.

d perc_out

The outbound utilization for an interface, in percent.

For the resource /data_performance_raw/interface, the data_fields option can include the following fields for

packet metrics:

NOTE: Asingle request to /data_performance_raw/interface cannot include data fields from this list and
data fields for utilization, error, and discard metrics.

Field Description

d_ifp_unicast perc_in

The percentage of inbound packets that were unicast for an interface.

d_ifp_multicast_perc_in

The percentage of inbound packets that were multicast for an interface.

d ifp_broadcast perc_in

The percentage of inbound packets that were broadcast for an interface.

d_ifp_unicast perc_out

The percentage of outbound packets that were unicast for an interface.

d ifp_multicast perc_out

The percentage of outbound packets that were multicast for an interface.

d ifp_broadcast perc out

The percentage of outbound packets that were broadcast for an interface.

d_ifp_unicast in

The number of inbound unicast packets per second for an interface.

d_ifp_multicast_in

The number of inbound multicast packets per second for an interface.

d ifp_broadcast in

The number of inbound broadcast packets per second for an interface.

d_ifp_unicast out

The number of outbound unicast packets per second for an interface.

d_ifp_multicast_out

The number of outbound multicast packets per second for an interface.

d_ifp_broadcast out

The number of outbound broadcast packets per second for an interface.

Fields for CBQoS Resources

For the resource /data_performance/cbqos, the data_fields option can include the following fields:

72

Specifying Data Fields

Field Description

min_classmap_pre_policy
rate_bits_per second

The lowest interface utilization, in bps, before applying the CBQoS policy during the
rollup period.

max_classmap_pre
policy rate bits_per
second

The highest interface utilization, in bps, before applying the CBQoS policy during
the rollup period.

avg_classmap_pre_policy
rate_bits_per second

The average interface utilization, in bps, before applying the CBQoS policy during
the rollup period.

sum_classmap_pre_
policy rate_bits per
second

The total interface utilization, in bps, before applying the CBQoS policy during the
rollup period.

std_classmap_pre_policy
rate_bits_per second

The standard deviation of the interface utilization values (calculated from the raw
data points for the rollup period), before applying the CBQoS policy .

min_classmap_post
policy rate_bits per
second

The lowest interface utilization, in bps, after applying the CBQoS policy during the
rollup period.

max_classmap_post
policy rate_bits per
second

The highest interface utilization, in bps, after applying the CBQoS policy during the
rollup period.

avg_classmap_post
policy rate bits per
second

The average interface utilization, in bps, after applying the CBQoS policy during the
rollup period.

sum_classmap_post
policy rate bits per
second

The total interface utilization, in bps, after applying the CBQoS policy during the
rollup period.

std_classmap_post policy
rate_bits_per second

The standard deviation of the interface utilization, in bps (calculated from the raw
data points for the rollup period), after applying the CBQoS policy.

min_classmap_drop rate
bits_per second

The lowest drop rate, in bps, for the class map during the rollup period.

max_classmap_drop rate
bits_per second

The highest drop rate, in bps, for the class map during the rollup period.

avg_classmap drop rate
bits_per second

The average drop rate, in bps, for the class map during the rollup period.

sum_classmap_drop rate
bits_per second

The total drop rate, in bps, for the class map during the rollup period.

std_classmap_drop_rate
bits_per second

The standard deviation of drop rate values (calculated from the raw data points for
the rollup period), in bps, for the class map.

min_classmap_pre_policy
inbound_bytes

The lowest inbound interface utilization, in bytes, before applying the CBQoS policy
during the rollup period.

max_classmap_pre
policy inbound bytes

The highest inbound interface utilization, in bytes, before applying the CBQoS policy
during the rollup period.

avg_classmap _pre policy
inbound_bytes

The average inbound interface utilization, in bytes, before applying the CBQoS
policy during the rollup period.

Specifying Data Fields

73

Field Description

sum_classmap_pre_
policy inbound_bytes

The total inbound interface utilization, in bytes, before applying the CBQoS policy
during the rollup period.

std classmap_pre policy
inbound_bytes

The standard deviation of inbound interface utilization values (calculated from the
raw data points for the rollup period), before applying the CBQoS policy.

min_classmap_post
policy outbound bytes

The lowest outbound interface utilization, in bytes, after applying the CBQoS policy
during the rollup period.

max_classmap_post
policy outbound bytes

The highest outbound interface utilization, in bytes, after applying the CBQoS policy
during the rollup period.

avg_classmap_post
policy outbound bytes

The average outbound interface utilization, in bytes, after applying the CBQoS
policy during the rollup period.

sum_classmap_post
policy outbound bytes

The total outbound interface utilization, in bytes, after applying the CBQoS policy
during the rollup period.

std classmap_post policy
outbound_bytes

The standard deviation of outbound interface utilization values (calculated from the
raw data points for the rollup period), after applying the CBQoS policy.

min_policing_conforming
rate_bits_per second

The lowest collected traffic value, in bps, that conformed to the policing policy
during the rollup period.

max_policing
conforming_rate bits per
second

The highest collected traffic value, in bps, that conformed to the policing policy
during the rollup period.

avg_policing_conforming
rate_bits_per second

The average collected traffic value, in bps, that conformed to the policing policy
during the rollup period.

sum_policing
conforming_rate_bits_per
second

The total collected traffic value, in bps, that conformed to the policing policy during
the rollup period.

std_policing_conforming
rate_bits_per second

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that conformed to the policing policy.

min_classmap_drops
bytes

The lowest drop rate, in bytes, for the class map during the rollup period.

max_classmap_drops_
bytes

The highest drop rate, in bytes, for the class map during the rollup period.

avg_classmap_drops
bytes

The average drop rate, in bytes, for the class map during the rollup period.

sum_classmap_drops
bytes

The total drop rate, in bytes, for the class map during the rollup period.

std_classmap_drops_bytes

The standard deviation (calculated from the raw data points for the rollup period) of
collected drop rate values.

min_policing_non_
conforming_rate_bits_per
second

The lowest collected traffic value, in bps, that did not conform to the policing policy
during the rollup period.

max_policing non
conforming_rate_bits_per
second

The highest collected traffic value, in bps, that did not conform to the policing policy
during the rollup period.

74

Specifying Data Fields

Field Description

avg_policing non
conforming_rate bits per
second

The average collected traffic value, in bps, that did not conform to the policing
policy during the rollup period.

sum_policing_non_
conforming_rate_bits_per
second

The total collected traffic value, in bps, that did not conform to the policing policy
during the rollup period.

std_policing_non_
conforming_rate_bits_per
second

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that did not conform to the policing policy.

min_policing_violation_
rate_bits_per second

The lowest collected traffic value, in bps, that violated the policing policy during the
rollup period.

max_policing_violation_
rate_bits_per second

The highest collected traffic value, in bps, that violated the policing policy during the
rollup period.

avg_policing_violation_
rate_bits_per second

The average collected traffic value, in bps, that violated the policing policy during
the rollup period.

sum_policing_violation_
rate_bits_per second

The total collected traffic value, in bps, that violated the policing policy during the
rollup period.

std_policing_violation
rate_bits_per second

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that violated the policing policy.

min_policing_conforming
bytes

The lowest collected traffic value, in bytes, that conformed to the policing policy
during the rollup period.

max_policing
conforming_bytes

The highest collected traffic value, in bytes, that conformed to the policing policy
during the rollup period.

avg_policing_conforming
bytes

The average collected traffic value, in bytes, that conformed to the policing policy
during the rollup period.

sum_policing_
conforming_bytes

The total collected traffic value, in bytes, that conformed to the policing policy during
the rollup period.

std_policing_conforming
bytes

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that conformed to the policing policy.

min_policing_non_
conforming_bytes

The lowest collected traffic value, in bytes, that did not conform to the policing policy
during the rollup period.

max_policing_non_
conforming_bytes

The highest collected traffic value, in bytes, that did not conform to the policing
policy during the rollup period.

avg_policing_non_
conforming_bytes

The average collected traffic value, in bytes, that did not conform to the policing
policy during the rollup period.

sum_policing_non_
conforming_bytes

The total collected traffic value, in bytes, that did not conform to the policing policy
during the rollup period.

std_policing_non_
conforming_bytes

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that did not conform to the policing policy.

min_policing_violations
bytes

The lowest collected traffic value, in bytes, that violated the policing policy during the
rollup period.

max_policing_violations_

The highest collected traffic value, in bytes, that violated the policing policy during

Specifying Data Fields

75

Field Description

bytes

the rollup period.

avg_policing_violations_
bytes

The average collected traffic value, in bytes, that violated the policing policy during
the rollup period.

sum_policing_violations_
bytes

The total collected traffic value, in bytes, that violated the policing policy during the
rollup period.

std_policing_violations
bytes

The standard deviation of the collected traffic values (calculated from the raw data
points for the rollup period) that violated the policing policy.

min_queueing_discards_
bytes

The lowest discarded traffic, in bytes, for the queueing policy during the rollup
period.

max_queueing_discards_
bytes

The highest discarded traffic, in bytes, for the queueing policy during the rollup
period.

avg_queueing_discards
bytes

The average discarded traffic, in bytes, for the queueing policy during the rollup
period.

sum_queueing_discards_
bytes

The total discarded traffic, in bytes, for the queueing policy during the rollup period.

std_queueing discards
bytes

The standard deviation of collected discarded traffic values (calculated from the raw
data points for the rollup period) for the queueing policy.

min_queueing current
queue_depth_bytes

The lowest queue depth, in bytes, for the queueing policy during the rollup period.

max_queueing_current
queue_depth_bytes

The highest queue depth, in bytes, for the queueing policy during the rollup period.

avg_queueing_current
queue_depth_bytes

The average queue depth, in bytes, for the queueing policy during the rollup period.

sum_queueing current
queue_depth_bytes

The total queue depth, in bytes, for the queueing policy during the rollup period.

std_queueing current
queue_depth_bytes

The standard deviation of collected queue depth values (calculated from the raw
data points for the rollup period) for the queueing policy.

min_classmap_pre_policy
inbound _utilization
percent

The lowest inbound interface utilization, in percent, before applying the CBQoS
policy during the rollup period.

max_classmap_pre
policy_inbound
utilization_percent

The highest inbound interface utilization, in percent, before applying the CBQoS
policy during the rollup period.

avg_classmap_pre_policy
inbound_utilization
percent

The average inbound interface utilization, in percent, before applying the CBQoS
policy during the rollup period.

sum_classmap_pre
policy inbound
utilization_percent

The total inbound interface utilization, in percent, before applying the CBQoS policy
during the rollup period.

std_classmap_pre_policy
inbound_ufilization_
percent

The standard deviation of the percent inbound interface utilization values (calculated
from the raw data points for the rollup period), before applying the CBQoS policy.

76

Specifying Data Fields

Field Description

min_classmap_post
policy_outbound
utilization_percent

The lowest outbound interface utilization, in percent, after applying the CBQoS
policy during the rollup period.

max_classmap_post
policy outbound
utilization_percent

The highest outbound interface utilization, in percent, after applying the CBQoS
policy during the rollup period.

avg_classmap_post
policy outbound
utilization_percent

The average outbound interface utilization, in percent, after applying the CBQoS
policy during the rollup period.

sum_classmap_post
policy outbound
utilization_percent

The total outbound interface utilization, in percent, after applying the CBQoS policy
during the rollup period.

std_classmap_post policy
outbound_utilization
percent

The standard deviation of the percent outbound interface utilization values
(calculated from the raw data points for the rollup period, after applying the CBQoS

policy.

min_queueing_discard
rate_bytes per second

The lowest discard rate, in bps, for the queueing policy during the rollup period.

max_queueing_discard
rate_bytes per second

The highest discard rate, in bps, for the queueing policy during the rollup period.

avg_queueing_discard
rate_bytes per second

The average discard rate, in bps, for the queueing policy during the rollup period.

sum_queueing_discard
rate_bytes per second

The total discard rate, in bps, for the queueing policy during the rollup period.

std_queueing discard
rate_bytes per second

The standard deviation of collected discard rate values (calculated from the raw
data points for the rollup period) for the queueing policy.

For the resource /data_performance_raw/cbqos, the data_fields option can include the following fields:

Field Description

classmap_drop_rate bits
per_second

The drop rate, in bps, for the class map.

classmap_drops_bytes

The drop rate, in bytes, for the class map.

classmap_pre_policy
rate_bits per second

The total interface utilization, in bps, before applying the CBQOoS policy.

classmap_post policy
rate_bits per second

The total interface utilization, in bps, after applying the CBQoS policy.

classmap_pre_policy
inbound_bytes

The inbound interface utilization, in bps, before applying the CBQoS policy.

classmap_post policy
outbound_bytes

The outbound interface utilization, in bps, after applying the CBQoS policy.

classmap_pre_policy
inbound _utilization
percent

The inbound interface utilization, in percent, before applying the CBQoS policy.

Specifying Data Fields

77

Field Description

outbound_utilization
percent

classmap_post policy The outbound interface utilization, in percent, after applying the CBQoS policy.

bits_per second

policing_conforming_rate | The total traffic, in bps, that conformed to the policing policy.

rate_bits_per second

policing_non_conforming_ | The total traffic, in bps, that did not conform to the policing policy.

bits_per second

policing violation _rate | The total traffic, in bps, that violated the policing policy.

policing_conforming_bytes | The total traffic, in bytes, that conformed to the policing policy.

bytes

policing non_conforming_ | The total traffic, in bytes, that did not conform to the policing policy.

policing violations_bytes | The total traffic, in bytes, that violated the policing policy.

queueing_discards bytes |The discarded traffic, in bytes, for the queueing policy.

depth_bytes

queueing_current_queue_ |The queue depth, in bytes, for the queueing policy.

bytes per second

queueing discard rate |The discard rate, in bps, for the queueing policy.

Requesting Data for Specific Devices or Interfaces

By default, the sub-resources of /data_performance and /data_performance_raw return data for all devices

or interfaces for which data of the specified type exists.

The default response from the sub-resources of /data_performance and /data_performance_raw include a
searchspec section. The fields section of the searchspec includes a list of aftribute values for devices or interfaces.
The attribute values can be used to filter the result. See the chapter on Resources and URIs for information on

how to use these fields to filter results.

Filtering Device Resources

The following fields can be used to filter device data:

Field Description

device

Supply numeric values to match against device IDs. The response will include
devices with matching IDs.

device/class_type/class

Supply string values to match against Device Class (typically vendors or
manufacturers, e.g. "Cisco Systems"). The response will include devices with a
matching device class.

device/class_type/description

Supply string values to match against Device Class descriptions (typically device
models, e.g. "Catalyst 3750"). The response will include devices with a matching
device class.

device/class_type/device

Supply string values to match against device categories, e.g.

78

Requesting Data for Specific Devices or Interfaces

Field Description

category/cat_name

"Network.Switches". The response will include devices with a matching device
category.

device/class_type/device
category/guid

Supply string values to match against device category GUIDs. The response will
include devices with a matching device category.

device/class_type/guid

Supply string values to match against device class GUIDs. The response will
include devices with a matching device class.

device/merged class
type/class

Supply one or more Device Classes (typically vendors or manufacturers, e.g.
"Cisco Systems") to filter on. The response will include physical devices that are
merged with a component device and that component device has matching
device class.

device/merged class_
type/description

Supply string values to match against Device Class descriptions (typically device
models, e.g. "Catalyst 3750"). The response will include physical devices that
are merged with a component device and that component device has matching
device class.

device/merged class_
type/device category/cat
name

Supply string values to match against device categories, e.g.
"Network.Switches". The response will include physical devices that are merged
with a component device and that component device has matching device
category.

device/merged class
type/device category/guid

Supply string values to match against device category GUIDs. The response will
include physical devices that are merged with a component device and that
component device has matching device category.

device/merged class
type/guid

Supply string values to match against device class GUIDs. The response will
include physical devices that are merged with a component device and that
component device has matching device class.

device/name

Supply string values to match against device names. The response will include
devices with matching names.

device/organization

Supply URIs to match against organizations. The response will include devices in
the matching organizations.

device/organization/company

Supply string values to match against organization names. The response will
include devices in the matching organizations.

idx Supply numeric values to match against:
» For Dynamic Applications, the index values assigned to each time series.
The response will include time series with matching indexes.
» For monitoring policies, the policy IDs. The response will include
monitoring policies with matching IDs.
 Forfile systems, the file system IDs. The response will include file systems
with matching IDs.
This option is not available for the resources /data_
performance/device/avail or /data_performance_raw/device/avail.
idx_label Supply string values to match against:

Requesting Data for Specific Devices or Interfaces 79

Field Description

» For Dynamic Applications, the labels associated with each time series.
The response will include time series with matching labels.

» For Windows service and system process monitoring policies, the name
of the service or process. The response will include policies with matching
service or process names.

* For email round-trip, web content, and SOAP/XML transaction policies,
the name of the policy. The response will include policies with matching
names.

¢ For DNS monitoring policies, the DNS record. The response will include
policies that monitor matching DNS records.

¢ For port monitoring policies, the IP address and port number in the
format ip:port. The response will include policies that monitor a matching
ip:port string.

 Forfile systems, the file system names. The response will include file

systems with matching names.

This option is not available for the resources /data_
performance/device/avail or /data_performance_raw/device/avail.

This option applies only to the resources /data_
performance/device/monitor_port and /data_performance _
raw/device/monitor_port. Supply string values to match against policy
IP addresses. The response will include monitoring policies with matching
IP addresses.

port

This option applies only to the resources /data_
performance/device/monitor_port and /data_performance _
raw/device/monitor_port. Supply numeric values to match against policy port
numbers. The response will include monitoring policies with matching port

numbers.

Filtering Interface Resources

The following fields can be used to filter interface data:

Field Description

device

Supply numeric values to match against device IDs. The response will include
interfaces associated with devices with matching IDs.

device/class_type/class

Supply string values to match against Device Classes (typically vendors or
manufacturers, e.g. "Cisco Systems"). The response will include interfaces
associated with devices with a matching device class.

device/class_type/description

Supply string values to match against Device Class descriptions (typically device
models, e.g. "Catalyst 3750"). The response will include interfaces associated
with devices with a matching device class.

device/class_type/device
category/cat_name

Supply string values to match against device categories, e.g.
"Network.Switches". The response will include interfaces associated with devices

80

Requesting Data for Specific Devices or Interfaces

Field Description

with a matching device category.

device/class_type/device
category/guid

Supply string values to match against device category GUIDs. The response will
include interfaces associated with devices with a matching device category.

device/class_type/guid

Supply string values to match against device class GUIDs. The response will
include interfaces associated with devices with a matching device class.

device/merged class
type/class

Supply one or more Device Classes (typically vendors or manufacturers, e.g.
"Cisco Systems") to filter on. The response will include interfaces associated with
physical devices that are merged with a component device and that component
device has matching device class.

device/merged class_
type/description

Supply string values to match against Device Class descriptions (typically device
models, e.g. "Catalyst 3750"). The response will include interfaces associated
with physical devices that are merged with a component device and that
component device has matching device class.

device/merged class_
type/device category/cat
name

Supply string values to match against device categories, e.g.
"Network.Switches". The response will include interfaces associated with physical
devices that are merged with a component device and that component device
has matching device category.

device/merged class
type/device category/guid

Supply string values to match against device category GUIDs. The response will
include interfaces associated with physical devices that are merged with a
component device and that component device has matching device category.

device/merged class
type/guid

Supply string values to match against device class GUIDs. The response will
include interfaces associated with physical devices that are merged with a
component device and that component device has matching device class.

device/name

Supply string values to match against device names. The response will include
interfaces associated with devices with matching names.

device/organization

Supply URIs to match against organizations. The response will include interfaces
associated with devices in the matching organizations.

device/organization/company

Supply string values to match against organization names. The response will
include interfaces associated with devices in the matching organizations.

interface

Supply numeric values to match against interface IDs. The response will include
interfaces with matching IDs.

interface/alias

Supply string values to match against interface aliases. The response will include
interfaces with matching aliases.

interface/ifDescr

Supply string values to match against interface descriptions. The response will
include interfaces with matching descriptions.

interface/name

Supply string values to match against interface names. The response will include
interfaces with matching names.

interface/organization

Supply string values to match against organization names. The response will
include interfaces in the matching organizations.

interface/tag

Supply string values to match against interface tags. The response will include
interfaces with matching tags.

Requesting Data for Specific Devices or Interfaces 81

Filtering CBQoS Resources

The fields listed for Interface resources can also be used to filler CBQoS data. The following CBQoS-specific
fields can be used to filter cbqos data:

Field Description

cbqos_obiject Supply numeric values to match against CBQoS object IDs. The response will
include CBQoS metrics associated with objects with matching IDs. CBQoS obijects
can be searched and filtered using the /api/cbgos_object resource index.

cbqos_object/name Supply string values to match against CBQoS object names. The response will
include CBQoS metrics associated with objects with matching names.

cbqos_object/type Supply numeric values to match against CBQoS object types. The response will
include CBQoS metrics associated with objects that have a matching type. CBQoS
object types can be searched and filtered using the /api/cbgos_type resource index.

Additional Options

The default response from the sub-resources of /data_performance and /data_performance_raw include a
searchspec section. The options section of the searchspec includes a list of options that can be included in a
request. The following option appears in addition to the options described in the Specifying the Time Range for
a Data Request section:

o hide_filterinfo. If this option is set to 1 in the URI, the response will contain only the result set; the response
will not include the searchpec section.

Responses from Bulk Performance Data Resources

The response from sub-resources of /data_performance and /data_performance_raw that return
performance data include one of the following:

* An HTTP 400 response code and a human-readable message indicating required options were not
included.

e An HTTP 500 response code and a human-readable message indicating that the appliance servicing the
request does not have sufficient memory to generate the requested data set. If you receive this response, you
must split your request in to multiple smaller requests.

» Zero or more data sets that match the options specified in the request. A data set is represented as a JSON
array or an XML structure bounded by <dataset> tags. Each data set represents:

For interface data, the data from a single interface.
For CBQoS data, the data from a single interface for a single CBQoS object.
For Dynamic Application data, the data for a single index (fime series) for a device.

For all other device data, the data from a single device.

82 Additional Options

Each data set includes:

* The URI of the device, interface (where applicable), and CBQoS metric (where applicable) the data set is
associated with.

 [fapplicable, the index and index label for the data series.

 The list of field names included for each data point in the data set. This list of fields will include the time
stamp field and the data fields specified in the request options.

* Alist of data points. Each data point is a list that includes an entry for each field (time stamp and data fields).
To improve performance, the field names are not included with each data point. The field order for each
data point matches the list of field names that appears at the beginning of each data set.

Responses from Bulk Performance Data Resources 83

Chapter

Best Practices for Requesting Bulk
Performance Data

Overview

This chapter describes the best practices that Sciencelogic recommends you follow when requesting performance
data in bulk. This chapter describes how to use these resources to request performance data in bulk.

Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [E&).

« Toview a page containing all of the menu options, click the Advanced menu icon (==+).

This chapter covers the following topics:

Best PracCtiCes 85

84

Best Practices

Sciencelogic offers REST APIs for extraction of collected performance data in bulk: data_performance and
data_performance_raw. These APIs provide a flexible way to extract data from multiple devices and network
interfaces for use in downstream systems. The potentially large volume of data and extensive database queries
mean that is very important to follow best practice with these APls, particularly for data_performance_raw.

1.

2.

3.

85

Work should be spread across multiple concurrent client workers.

Reason: Each data_performance_raw request that fetches data for multiple devices will be serial
internally to SL1 (i.e. request data for the first matching device, then the second, etc). Splitting the requests
and running them concurrently will result in a faster overall response time.

Use longer timespans in requests as these are generally more efficient than shorter spans

Reason: Each request to data_performance_raw includes overhead to check for the existence of raw
data tables, apply filters to see what devices and/or series match, etc. This overhead is consistent,
regardless of the time-span length of the request. Secondly, the SQL for timeseries data ends up being a
range scan using the collection_time index — it is a sequential read.

If possible, use administrative accounts for requests since they will generally return data faster and with less
overhead from the Database Server than user accounts.

Reason: Administrative accounts can leverage an optimization where all multi-tenancy predicates are left
out of the queries. In cases where a user has very limited visibility to a small number of elements, a user
account is faster, but for bulk data extraction across multiple organizations, an administrative account is
faster and more efficient.

"Chunking" should be done by element ID directly in the filter by date range and explicit filters. For example:

Interfaces: https://API HOST/api/data performance raw/interfacebeginstamp=1477537442&data
fields=d discards in,d discards out,d errors in,d errors out,d octets in,d octets out,d util in,d util
out&endstamp=1477555442&extended
fetch=1&{ilter.interface.in=52290,52291,52292,52293,52295&hide filterinfo=1

Dynamic Applications: https://API HOST/api/data performance raw/device/dynamic app?presentation
objects=B224D22664610BC325EA1929DF3D2325&collection=FA9707E3F4F286D
3B267C6DAF3CC4000&duration=24h&filter.0.device.in=1,2,3,4,5,101,202,303&endstamp=now

Tune collection according to data set where possible.

If the data in question is generally at a lower polling frequency, then increase the size of the window of data
being pulled (i.e. 15 hours of 15-minute data = the same number of datapoints per series as 1 hour of 1
minute data).

When fetching multiple Dynamic Application presentations at once, group them by application (i.e.
presentation_objects=a,b,c where "a,b,c" is a comma-delimited list of presentation GUIDs for the same
application).

Best Practices

https://api_host/api/data_performance_raw/interface?beginstamp=1477537442&data_fields=d_discards_in,d_discards_out,d_errors_in,d_errors_out,d_octets_in,d_octets_out,d_util_in,d_util_out&endstamp=1477555442&extended_fetch=1&filter.interface.in=52290,52291,52292,52293,52295&hide_filterinfo=1
https://api_host/api/data_performance_raw/interface?beginstamp=1477537442&data_fields=d_discards_in,d_discards_out,d_errors_in,d_errors_out,d_octets_in,d_octets_out,d_util_in,d_util_out&endstamp=1477555442&extended_fetch=1&filter.interface.in=52290,52291,52292,52293,52295&hide_filterinfo=1
https://api_host/api/data_performance_raw/interface?beginstamp=1477537442&data_fields=d_discards_in,d_discards_out,d_errors_in,d_errors_out,d_octets_in,d_octets_out,d_util_in,d_util_out&endstamp=1477555442&extended_fetch=1&filter.interface.in=52290,52291,52292,52293,52295&hide_filterinfo=1
https://api_host/api/data_performance_raw/interface?beginstamp=1477537442&data_fields=d_discards_in,d_discards_out,d_errors_in,d_errors_out,d_octets_in,d_octets_out,d_util_in,d_util_out&endstamp=1477555442&extended_fetch=1&filter.interface.in=52290,52291,52292,52293,52295&hide_filterinfo=1
https://api_host/api/data_performance_raw/device/dynamic_app?presentation_objects=B224D22664610BC325EA1929DF3D2325&collection=FA9707E3F4F286D3B267C6DAF3CC4000&duration=24h&filter.0.device.in=1,2,3,4,5,101,202,303&endstamp=now
https://api_host/api/data_performance_raw/device/dynamic_app?presentation_objects=B224D22664610BC325EA1929DF3D2325&collection=FA9707E3F4F286D3B267C6DAF3CC4000&duration=24h&filter.0.device.in=1,2,3,4,5,101,202,303&endstamp=now

Example

Using the Ticket Resource

Overview

In SL1, a ticket is a request for work. This request can be in response to a problem that needs to be fixed, for
routine maintenance, or for any type of work required by your enterprise. A ticket can be assigned to a specific
user, to inform and remind that user of requests for work.

This chapter describes how to use the APl to perform some basic tasks for managing tickets.
Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [E).

« To view a page containing all of the menu options, click the Advanced menu icon (+).

This chapter covers the following topics:

Requirements 88
Getting Started ... 88
Connecting to the APl 89
Viewing a List of Tickets ... 95
Viewing a List of Tickets and Ticket Details ... 102
Filtering a List of TICkets 104
Retrieving Information about a Specific Ticket 105
Updating a Ticket ... 108
Creating a New Ticket . 114
Viewing Notes for a Ticket . 125
Adding a Note to a Ticket ... 129
Viewing the Attachments for a Ticket 132

Adding an Attachment to a Ticket Note

87

Requirements

* This chapter assumes that you have a working version of cURL installed and can run cURL from a command
prompt. For information on cURL, see http://curl.haxx.se/.

o To connect o the API, you must use HTTPS. If you have not installed or configured a security certificate or if
your appliance uses a self-signed certificate, you must use include the "-k" option each time you execute
cURL. The "-k" option tells cURL to perform the HTTPS connection without checking the security certificate.

¢ Through the API, you can perform only actions for which you have permission in SL1. To perform the tasks in

this chapter, you must connect to the API using an account (username and password), that account must
have Access Keys that grant the following:

View tickets and ticket details

View Ticket Queues

Edit a ticket

Create a ticket

Assign a ticket to a user

Add a new note to a ticket

Getting Started

* Inthe examples in this chapter, we will connect to the example Administration Portal with the IP address of
192.168.10.205. To run these examples on your system, you should replace this IP address with the base
URI of the APl on the appliance you are using.

* Inthe examples in this chapter, we will connect to the APl using the default account "em7admin" with the
example password "examplepassword". To run these examples on your system, you should replace this
username and password with a valid username and password for your system.

¢ Inthe examples in this chapter, we will execute each HTTP request at a shell prompt or command prompt.
However, you can include these requests in a script or program.

The examples in this chapter use the custom-header option "X-em7-beautify-response: 1". This
header tells the APl to include white-space in a response, to make it easier to read. However, this
header can greatly increase the amount of time required to process a request. Sciencelogic
recommends you use this header only when testing requests. Sciencelogic strongly
discourages you from using this header in integration code.

Requirements 88

http://curl.haxx.se/

Connecting to the API

To connect to the APl and view the root directory (with an HTTP GET request), enter the following at the command
prompt:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api"

curl -v. Executes the cURL request. The -v option tells cURL to use verbose mode (displays all header
information and all status and error messages). In the response, lines that start with ">" include header data
returned by cURL. Lines that start with "<" include header data received by cURL.

-H 'X-em7-beautify-response: 1'. The -H option tells cURL to include an additional header in the request.
In this case, we're including a Sciencelogic custom header that tells the APl to include white-space in the
response.

-u 'em7admin:examplepassword'. The -u option tells cURL to authenticate as a specified user. In our
example, we authenticated as the user "em7admin" with the password "examplepassword".

"hitps://192.168.10.205/api". Connect to the specified URL. In our example, we connected to the APl at
192.168.10.205.

The response will look like this (however, we've added line numbers for reference):

89

1) * About to connect() to 192.168.10.205 port 443 (#0)

2) * Trying 192.168.10.205... connected

3) * Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)
4) * Server auth using Basic with user 'em7admin'

5) > GET / HTTP/1.1

6) > Authorization: Basic ZWO3YWRtaW46ZWO3YWRtaWd=

7) > User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3
OpenSSL/0.9.71 zlib/1.2.3

8) > Host: 192.168.10.205

9) > Accept: */*

10) > X-em7-beautify-response:l
11) >

12) < HTTP/1.1 200 OK

Connecting to the API

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

293)

26)

27)

28)

29)

30)

31)

32)

33)

34)

35)

< Date: Wed, 25 Aug 2010 15:47:40 GMT

< Server: Apache

< X-EM7-Implemented-methods: GET

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow

< Content-Length: 1451

< Content-Type: application/json

"URI":"\/account",

"description":"Get\/Update\/Add\/Delete User Accounts"

}y

"URI":"\/alert",

"description":"Create Alerts"

}y

"URI":"\/credential",

"description":"View Credentials"

}y

"URI":"\/device?limit=100",

"description":"Get\/Update\/Add\/Delete Devices and Get

Data"

Connecting to the API

Collected

90

91

36)

37)

38)

39)

40)

41)

42)

43)

44)

45)

46)

47)

48)

49)

50)

51)

52)

53)

54)

55)

56)

57)

58)

59)

}y

"URI":"\/device group?limit=100",
"description":"Get\/Update\/Add\/Delete Device Groups"

}y

"URI":"\/device template?limit=100",
"description":"Get\/Update\/Add\/Delete Device Templates"

}y

"URI":"\/discovery session?limit=100",
"description":"Get\/Update\/Add\/Delete Device Discovery Sessions"

}y

"URI":"\/discovery session active?limit=100\/",
"description":"View\/Start\/Stop Active Device Discovery Sessions"

}y

"URI":"\/dynamic app\/",
"description":"Get Dynamic Application Resources"

}y

"URI":"\/event",

"description":"View\/Update\/Clear Events"

Connecting to the API

60)

61)

62)

63)

64)

65)

66)

67)

68)

69)

70)

71)

72)

73)

74)

75)

76)

77)

78)

79)

80)

81)

82)

83)

}y

"URI":"\/monitor",
"description":"Get\/Update\/Add\/Delete Monitor Policies"

}y

"URI":"\/organization",
"description":"Get\/Update\/Add\/Delete Organizations"

}y

"URI":"\/ticket?limit=100",
"description":"Get\/Update\/Add\/Delete Tickets"

}y

"URI":"\/ticket queue",

"description":"Get Ticket Queues"

"URI":"\/ticket state?limit=100",
"description":"Get\/Update\/Add\/Delete Custom Ticket States"

}y

Connection #0 to host 192.168.10.205 left intact

Closing connection #0

Connecting to the API

92

* Lines 1-4 show cURL trying to connect to and authenticate with the API.

e Lines 5-11 show the HTTP GET request we sent. The initial request performs a GET on the root directory of
the API.

accept: */*. Specifies that we will use the default accept header. The accept header tells the APl how
to format the response. The APl can respond in XML or JSON. Because we didn't specify an accept
header, the APl will use the default format, which is JSON. If you want to view the response in XML,
you can include the header option "

-H'Accept:application/xml" in the cURL command.

X-em7-beautify-response: 1. Tells the APl to include white-space in the response, for easier
reading.

¢ Line 12 shows the HTTP version and the HTTP status code for the response.

¢ Lines 12-19 show the header information for the response.

¢ Lines 20-81 display the response to the HTTP GET request on the root directory of the API.
The response for the HTTP GET request displays a list of resources. A resource is a functional area in SL1 that you
can access through the API.
You can inferact with the following entities through the API:

o Accounts

» Account Lockouts

o Alerts

» Appliances

o Assets

o Collector Groups

o CBQoS Objects

 Collection Labels

» Credentials

o Custom Attributes

» Dashboards

» Devices

o Device Categories

 Device Classes

« Device Interfaces

o Device Groups

o Device Relationships

o Device Templates

93 Connecting to the API

» Discovery Sessions
o Dynamic Applications
e Events

o Event Categories
o External Contacts
 File Uploads

o Interfaces

o Monitoring Policies
» Organizations

o Performance Data
o PowerPacks

o Product SKUs

o Schedules

o System Patches

o System Settings

o Tasks

o System Thresholds
o Themes

o Thresholds

o Tickets

o Ticket Categories
o Ticket Chargeback
o Ticket Logs

o Ticket Notes
 Ticket Queues

o Ticket States

o User Policies

e Vendors

For each resource, the response displays the associated URI for accessing the resource and a description that lists

the actions you can perform on the resource.

For our example, we'll be looking at the ticket resource. The ticket resource uses the following URI and includes

the following description:

69) {

70) "URI":"\/ticket?limit=100",

Connecting to the API

94

71) "description":"Get\/Update\/Add\/Delete Tickets"

72) '}

NOTE: The response is in JSON format. Notice that the URI for the ticket includes escaped forward slash
characters ("\/").

Viewing a List of Tickets

In the previous section, we used an HTTP GET request to retrieve information about the root directory of the API.
The response included a list of resources. From the previous response, we learned that we can retrieve
information about fickets.

To access a resource, like ticket, we can append its URI to the URI of the root directory. So to access the resource
ticket, we could enter the following at the command line.

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/ticket"

The response looks like this:

* About to connect() to 192.168.10.205 port 443 (#0)

* Trying 192.168.10.205... connected

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)
* Server auth using Basic with user 'em7admin'

> GET /ticket HTTP/1.1

> Authorization: Basic ZWO3YWRtaW46ZWO3YWRtaW4=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3
OpenSSL/0.9.71 zlib/1.2.3

> Host: 192.168.10.205

\%

Accept: */*

> em7-beautify-response:l

< HTTP/1.1 302 Found

95 Viewing a List of Tickets

< Date: Wed, 25 Aug 2010 15:48:40 GMT

< Server: Apache

< X-EM7-Implemented-methods: GET, POST

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow
< Location: /api/ticket?limit=100

< X-EM7-status-message: ticket index requires a limit

< X-EM7-status-code: FOUND

< Content-Length: 833

< Content-Type: application/json

{"searchspec":
{"fields":

{"data":["class", "severity", "status", "source", "date create","date
update", "assigned

to","resolution", "cause","escalation", "chargeback", "date close", "auto
close","organization", "description", "opened by", "updated by","closed

by","ticket queue","parent ticket"]},

"options":

"extended fetch":

{"type":"boolean", "description":"Fetch entire resource if 1 (true), or

resource link only if 0 (false)","default":"0"},
"hide filterinfo":

{"type":"boolean", "description":"Suppress filterspec and current filter
info if 1 (true)","default":"0"},

"limit":

Viewing a List of Tickets

96

{"type":"int", "description":"Number of records to

retrieve", "default":"100"},

"offset":

{"type":"int", "description":"Specifies the index of the first returned
resource within the entire result set","default":"0"}

}

by

"total matched":"102","total returned":0,"result set":[]}
* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

The response does not contain the results we wanted, that is, information about the tickets in SL1. Instead, the
response contains:

HTTP/1.1 302 Found. This status code indicates that ticket resources were found, but our request was
missing required filtering and options.

Location: /ticket2limit=100. This is a redirect header. Most browsers would automatically redirect our
request to this URI. However, cURL requires an additional option to use redirects.

"X-EM7-status-message: ticket index requires a limit" and "X-EM7-status-code: FOUND". Human-
readable status messages provided by the API. These messages indicate that our APl does include ticket
resources and that our HTTP request was missing the "limit" option.

"searchspec". The response includes a list of searchspec options. These options allow us to filter the items
(in this case, tickets) that are included in a response.

"total_matched":"102", "total_returned":"0, "result_set":[]. This line indicates that the request could have
returned 102 tickets, but that our request returned zero fickets.

Let's run the command again with the correct URI that contains the required option. To do this, enter the following
at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/ticket?1limit=100"

The response looks like this:

97

* About to connect() to 192.168.10.205 port 443 (#0)
* Trying 192.168.10.205... connected

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)

Viewing a List of Tickets

* Server auth us

\4

GET /api/ticke

\

Authorization:

ing Basic with user 'em7admin'

£?1imit=100 HTTP/1.1

Basic ZWO3YWRtaW46ZWO3YWRtaWd=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3

OpenSSL/0.9.71 z

> Host: 192.168.

> Accept: */*

lib/1.2.3

10.205

> X-em7-beautify-response:1l

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 15:49:40 GMT

< Server: Apache

< X-EM7-Implemen

< X-Powered-By:

ted-methods: GET, POST

Sciencelogic, LLC - EM7 API/SL1 PowerFlow

< Transfer-Encoding: chunked

< Content-Type:

"searchspec": {
"fields": {
"data": [
"class",
"severity",

"status",

Viewing a List of Tickets

application/Jjson

98

99

"source",

"date create",
"date update",
"assigned to",
"resolution",
"cause",
"escalation",
"chargeback",
"date close",
"auto close",
"organization",
"description",
"opened by",
"updated by",
"closed by",
"ticket queue",

"parent ticket"

}y
"options": {
"extended fetch"

"type":"boolean"

"description":"Fetch entire resource if 1

0 (false)",

g {

(true),

or resource link only if

Viewing a List of Tickets

"default":"0"

b

"hide filterinfo":{

"type":"boolean",

"description":"Suppress filterspec and current filter info if 1 (true)",
"default":"Q"

b

"limit":{

"type":"int",

"description":"Number of records to retrieve",
"default":"100"

b

"offset":{

"type":"int",

"description":"Specifies the index of the first returned resource within

the entire result set",

"default":"0"

}y
"total matched":"102",
"total returned":100,

"result set":|[

Viewing a List of Tickets 100

"URI":"\/api\/ticket\/1",

"description" :"TICKET FOR ORGANIZATION: Device not responding to critical

plng w

s

"URI":"\/api\/ticket\/2",

"description" :"TICKET FOR ORGANIZATION: Connection refused to port:

Timeout while requesting http:\/\/www.google.com"

o

[.... REMOVED TICKETS 3-98 FROM response, FOR BREVITY]

"URI":"\/api\/ticket\/99",
"description":"Rollback Configuration on Device CustB 2821-1.cisco.com"

}y

"URI":"\/api\/ticket\/100",

"description":"Physical Memory usage has exceeded threshold: (80%)

currently (99%)"

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

101 Viewing a List of Tickets

Notice that the response includes:
o HTTP/1.1 200 OK. Status code that indicates that our HTTP request was successful.

» An entry for each of the first 100 tickets found. The response includes basic information about the first
100 tickets found (as specified in the "limit" option). For each found ticket, The response includes:

URI of the ticket, which includes the ticket ID.

NOTE: Our response is in JSON format. Notice that the URI for the ticket includes escaped
forward slash characters ("\/").

Description text from the ticket.

To retrieve all information about a ticket, you can use the extended_fetch option. This is described
in the following section.

Viewing a List of Tickets and Ticket Details

We can use the HTTP GET method and the extended_fetch option to retrieve all information about each
returned ticket. If we append "&extended fetch=1"to our URI, we can retrieve all information about the specified
tickets. To do so, we enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/ticket?1limit=100&extended fetch=1"

For each returned ticket, The response will include something like the following structure:

{

"class":"1",

"severity":"2",

"status":"0",

"source":"43",

"date create":"2010-01-18 20:12:06",
"date update":"2010-01-18 20:12:06",
"assigned to":"\/api\/account\/0",

"resolution":"0",

Viewing a List of Tickets and Ticket Details 102

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date close":"0000-00-00 00:00:00",

"auto close":"0",

"custom fields":{

3y

"organization":"\/api\/organization\/0",
"description":"Rollback Configuration On Device CustB 2821-1l.cisco.com",
"opened by":"\/api\/account\/1",

"updated by":"\/api\/account\/1",

"closed by":"\/api\/account\/1",

"ticket queue":"\/api\/ticket queue\/8",

"parent ticket":"\/api\/ticket\/0",

"aligned resource":null,

"notes": {

"URI":"\/api\/ticket\/99\/note\/?hide filterinfo=1&1imit=1000",

"description":"Notes"

Notice that the response now includes information about all the ticketing fields

Also notice that some fields, like organization, include URIs. The URl is a link to a different resource (for example,
an organization resource).

103 Viewing a List of Tickets and Ticket Details

NOTE: Our response is in JSON format. Notice that these URIs include escaped forward slash characters
(ll\/ll).

Filtering a List of Tickets

We can use the fields listed in searchspec to filter the list of tickets that will appear in the response. For the tick
resource, the searchspec includes:

* class

* severity

e status

* source

* date create
 date_update
* assigned to
* resolution

* cause

* escalation
» chargeback
» date close
* auto close
¢ organization
* description
» opened by
e updated by
e closed by
o ticket queue

* parent_ticket

In our example, we'll filter the list of tickets by severity.

* |f we wanted to request only tickets with a severity of "major", we would append "&filter.severity=3" o the
URI for our request. To view tickets of a specific severity, use the format:

o

"&filter.severity=number of severity"

¢ If we wanted to view all tickets with a severity of major or higher, we would append "&filter.severity. min=
to the URI for our request. You can use the following operators in a filter clause:

Filtering a List of Tickets

et

3"

104

.not (not equal to)
.min (greater than or equal to)
.max (less than or equal to)
.contains (string comparison)
.in (isin alist)
To request all tickets with a severity of "major", enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/ticket?1limit=100&extended
fetch=1&filter.severity=3"

The response contains all ticket information for all tickets with a severity of "major".

To request all tickets with a severity equal to or greater than major (major and critical), enter the following at the
command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword’
"https://192.168.10.205/api/ticket?1imit=100&extended _

fetch=1l&filter.severity.min=3"

The response contains all ticket information for all tickets with a severity of "'major" or "critical'.

Retrieving Information about a Specific Ticket

We can use the HTTP GET method and the URI for a specific ticket to request information about only that specific
ticket.

NOTE: When you include the URI for a specific ticket, the results automatically include all the information
for the ticket. If you include the URI for a specific ticket, you do not need to include "&extended
fetch=1"

For example, if we wanted to request information about ticket 99, we could enter the following at the command
prompt:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/ticket/99”

The response would look like this:

* About to connect() to 192.168.10.205 port 443 (#0)

105 Retrieving Information about a Specific Ticket

* Trying 192.168.10.205... connected

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)
* Server auth using Basic with user 'em7admin'

> GET /ticket/99 HTTP/1.1

> Authorization: Basic ZWO3YWRtaW46ZWO3YWRtaWi=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3
OpenSSL/0.9.71 zlib/1.2.3

> Host: 192.168.10.205
> Accept: */*

> X-em7-beautify-response:1l

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 15:51:40 GMT

< Server: Apache

< X-EM7-Implemented-methods: GET, PUT, POST

< X-Powered-By: SciencelLogic,LLC - EM7 API/SL1 PowerFlow
< X-EM7-status-message: Ticket tid:99 loaded successfully
< X-EM7-status-code: OK

< Content-Length: 812

< Content-Type: application/json

"ClaSS":"l",

"severity":"2",

Retrieving Information about a Specific Ticket 106

"status":"0",

"source":"43",

"date create":"1263845526",

"date update":"1263845526",

"assigned to":"\/api\/account\/0",
"resolution":"0",

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date close":"0",

"auto close":"0",
"organization":"\/api\/organization\/0",
"description":"Rollback Configuration On Device CustB 2821-1l.cisco.com",
"opened_by":"\/api\/account\/1",
"updated by":"\/api\/account\/1",
"closed_by":"\/api\/account\/1",

"ticket queue":"\/api\/ticket queue\/8",
"parent ticket":"\/api\/ticket\/0",
"aligned resource":null,

"custom fields":{

3y

"notes": {
"URI":"\/api\/ticket\/99\/note\/?hide filterinfo=1&limit=1000",

"description":"Notes"

107 Retrieving Information about a Specific Ticket

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

» Notice the HTTP status message and the Sciencelogic status messages.

 The response includes all the details about the specified ticket.

Updating a Ticket

The easiest way to update a ticket is to:

1. Use an HTTP GET request to capture the ticket's current values and store them in a file.
2. Editthat captured file.
3. Use an HTTP POST method to update the ticket with the contents of the edited file.

In this section, we'll update some values for ticket 99.
Capture Ticket Information in a File

To update a ticket, first we will capture the information from ticket 99 and store it in a file. To do this, enter the
following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/ticket/99" > ticket99.json

We have now captured the information from ticket 99 and stored it in the file ticket29.json. The file looks like
this:

"class":"1",
"severity":"2",
"status":"0",
"source":"43",

"date create":"1263845526",

"date update":"1263845526",

Updating a Ticket

108

"assigned to":"\/api\/account\/0",

"resolution":"0",

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date close":"0",

"auto close":"0",

"organization":"\/api\/organization\/0",
"description":"Rollback Configuration On Device CustB 2821-1l.cisco.com",
"opened by":"\/api\/account\/1",

"updated by":"\/api\/account\/1",

"closed by":"\/api\/account\/1",

"ticket queue":"\/api\/ticket queue\/8",

"parent ticket":"\/api\/ticket\/0",

"aligned resource":null,

"custom fields":{

3y

"notes": {

"URI":"\/api\/ticket\/99\/note\/?hide filterinfo=1&limit=1000",

"description":"Notes"

109 Updating a Ticket

Edit the Captured File

To update the ticket, we'll edit one or more values in the file ticket99.json. Let's change the severity (from "2"

(minor) to "4" (critical)) and status (from "0" (open) to "1" (working)) of the ticket and then save our changes to the

file.

example.

NOTE: Do not make changes to the value for notes. This is a sub-resource, which are explained later in this

"class":"1",

"severity":"4
"status":"1",
"source":"43"
"date create"
"date update"
"assigned to"
"resolution":
"cause":"0",

"escalation":
"chargeback":
"date close":

"auto close":

"organization":"\/api\/organization\/0",

"description":"Rollback Configuration On

"opened by":"

"updated by":

Updating a Ticket

"
4

4

:"1263845526",

:"1263845526",

:"\/api\/account\/0",

"O"
4

"O"
4

"O",

"O"
4

"O",

\/api\/account\/1",

"\/api\/account\/1",

Device CustB 2821-1

.cisco.com",

110

"closed by":"\/api\/account\/1",

"ticket queue":"\/api\/ticket queue\/8",

"parent ticket":"\/api\/ticket\/0",

"aligned resource":null,

"custom fields":{

}y

"notes": {

"URI":"\/api\/ticket\/99\/note\/?hide filterinfo=1&1imit=1000",

"description":"Notes"

Use HTTP POST to Update the Ticket with the Edited File

We'll now use an HTTP POST method to update the ticket with the contents of the file ticket99.json. To do this,
enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/ticket/99" -H 'content-type:application/json’
--data-binary Qticket99.json

In addition to the optional "beautify response" header and the URI for the ticket, you must specify:
« 'content-type:application/json'. So the APl knows that the incoming data is in JSON format.

o --data-binary @file_name.json. Specifies that HTTP POST should transmit the data exactly as is, with no
extra processing. The @ symbol tells cURL that the data is stored in a file.

The response should look like the following:

* About to connect() to 192.168.10.205 port 443 (#0)
* Trying 192.168.10.205... connected
* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)

* Server auth using Basic with user 'em7admin'

111 Updating a Ticket

> POST /ticket/99 HTTP/1.1

> Authorization: Basic ZWO3YWRtaW46ZWO3YWRtaW4d=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.

OpenSSL/0.9.71 zlib/1.2.3

> Host: 192.168.10.205

> Accept: */*

> X-em7-beautify-response:1l

> content-type:application/json

> Content-Length: 722

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 15:53:40 GMT

< Server: Apache

< X-EM7-Implemented-methods: GET, PUT, POST

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow
< X-EM7-status-message: Ticket tid:99 updated.

< X-EM7-status-code: OK

< Content-Length: 812

< Content-Type: application/json

"ClaSS":"l",
"severity":"4",

"status":"1",

Updating a Ticket

112

113

"source":"43",

"date create":"1263845526",

"date update":"1263845526",

"assigned to":"\/api\/account\/0",
"resolution":"0",

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date close":"0",

"auto_close":"0",
"organization":"\/api\/organization\/0",
"description":"Rollback Configuration On Device CustB 2821-1
"opened by":"\/api\/account\/1",
"updated by":"\/api\/account\/1",
"closed by":"\/api\/account\/1",

"ticket queue":"\/api\/ticket queue\/8",
"parent_ticket":"\/api\/ticket\/0",
"aligned resource":null,

"custom fields":{

}y

"notes" : {

.cisco.com",

"URI":"\/api\/ticket\/99\/note\/?hide filterinfo=1&1imit=1000",

"description":"Notes"

Updating a Ticket

* Connection #0 to host 192.168.10.205 left intact
* Closing connection #0
* Notice that the status codes and status messages specify that the ticket was updated and also specify the

ticket ID. The response contains the ticket with the edits applied, so an additional GET request on the
/api/ticket/99 URI is not necessary to see the changes.

o [fourfile ticket99.json had included bad syntax, we would get:

HTTP/1.1 400 Bad Request
< X-EM7-status-message: Unable to decode JSON string.

< X-EM7-status-code: BAD REQ

Sending Only Changes in the ticket99.json File

Our ticket99.json file included all the ticket information. However, we could have edited our file ticket99.json
to include only changes to the ticket. That is, our file could contain only:

{
"severity":"4",

"status":"1"

We could have sent this shortened file with an HTTP POST method and had the same result.

Creating a New Ticket

We can use the HTTP POST method to create a new ticket. To create a ticket, we must perform the following
steps:

1. Capture an existing ticket and store the information in a file. We will use this file as our template for creating
a new ticket.

2. Determine the URI for a user account. This is the user that will appear in the opened_by, assigned_to, and
updated by fields.

3. Edit the captured file to create the new ticket.
4. Perform an HTTP POST method to create a new ticket from the edited file.

The following sections explain each step.

Creating a New Ticket 114

Capturing an Existing Ticket and Storing the Information in a File

First, we will request all the information from an existing ticket and store that information in a file. We will then use
the file as a template for creating a new ticket.

To do this, enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword’
"https://192.168.10.205/api/ticket/1" > new_ticket.json

We will use the file new_ticket.json as our template.

Determining the URI for a User Account

The fields opened_by, assigned_to, and updated_by require a reference to a user account. Because account
is another resource in the API, the reference for each of these fields is a URI for a specific account.

First, let's request the index for the account resource. To do this, enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/account"

The response looks like this:

[REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM RESPONSE,
FOR BREVITY]

< HTTP/1.1 302 Found

< Date: Wed, 25 Aug 2010 15:54:52 GMT

< Server: Apache

< X-Implemented-methods: GET,POST

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow
< Location: /account?limit=100

< X-EM7-status-message: account index requires a limit

< X-EM7-status-code: FOUND

< Content-Length: 1828

< Content-Type: application/Jjson

115 Creating a New Ticket

"searchspec": {
"fields": {
"data": [
"default map type",
"user",

"email",

"state",
"restrict ip",
"admin",
"active",

"create date",
"edit date",
"timezone",
"default map",
"refresh",
"barred",

"page results",
"event severity",
"ldap",

"console height",
"date format",

"iflabel pref",

Creating a New Ticket

116

117

"all orgs",

"contact fname",

"contact lname",

Tedela™,
"dept",
"phone",
"fax",
"cell",
"pager",
"email 2",
"address",
"office",
"city",
"zip",
"country",
"billing id",
"crm id",
"tollfree",
"email 3",

n im

"
"im type",
"role",

"critical",

"notes",

Creating a New Ticket

"verification question",
"verification answer",
"organization",

"theme",

"created by",

"updated by",

"user policy"

}y

"options": {
"extended fetch":{
"type":"boolean",

"description":"Fetch entire resource if 1 (true), or resource link only if
0 (false)",

"default":"0"

}y

"hide filterinfo":{

"type":"boolean",

"description":"Suppress filterspec and current filter info if 1 (true)",
"default":"0"

3y

"limit":{

"type":"int",

"description":"Number of records to retrieve",

Creating a New Ticket 118

"default":"100"
}y

"offset":{
"type":"int",

"description":"Specifies the index of the first returned resource within

the entire result set",

"default":"0"

}y
"total matched":"26",
"total returned":O0,

"result set":|[

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

The response tells us that:

» The account URI requires the limit option (like the previous example for the ticket resource).

* We can filter accounts by user-name.

We can now try to find the URI for our current user ID, em7admin. To do this, enter the following at the command
prompt:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/account?1limit=100&filter.user=em7admin"

The response will look like this:

119 Creating a New Ticket

[...REMOVED CONNECTION INFORMATION, HEADER INFORMATION, and
SEARCHSPEC INFORMATION FOR BREVITY]

b
"total matched":"1",
"total returned":1,

"result set":[

"URI":"\/api\/account\/1",

"description":"em7admin"

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

* We now know that the URI for the user "em7admin" is "/api/account/1".

NOTE: Our response is in JSON format. Notice that the URI for the account includes escaped forward slash
characters ("\/").

Editing the Captured File

We'll edit our captured file like this:

{

"class":"1",
"severity":"3",
"status":"1",

"source":"43",

Creating a New Ticket 120

"assigned to":"\/api\/account\/1",

"resolution":"0",
"cause" : "O",
"escalation":"0",

"chargeback":"0",

"date close":"0",

"auto close":"0",

"organization":"\/api\/organization\/0",
"description":"TICKET FOR ORGANIZATION: System | ID: 0",
"opened_by":"\/api\/account\/1",

"updated by":"\/api\/account\/1",
"closed_by":"\/api\/account\/0",

"ticket queue":"\/api\/ticket queue\/7",

"parent ticket":"\/ticket\/0",

"aligned resource":null,

"custom fields":{

3y

"notes": {

"URI":"\/api\/ticket\/1\/note\/?hide filterinfo=1&1imit=1000",
"description":"Notes"

3y

"logs": {

"URI":"\/api\/ticket\/1\/log\/?hide filterinfo=1&1limit=1000",

"description":"Logs"

121 Creating a New Ticket

o We changed the assigned_to, opened_by, and updated_by field to the URI for the user "em7admin".
Because the file is in JSON format, we must escape the forward slash characters (/). Notice that we did so
when specifying the account URI.

o We removed the entire line that contains "date_create". The APl will automatically insert the current date
and time in the new ticket.

» We removed the entire line that contains "date_update". The APl will automatically insert the current date
and time in the new ficket.

o We set the organization field to reference the System organization (URI is "/api/organization/0").

* We accepted the previous ticket's values for all other fields. However, you can edit these fields as you want.
To determine a URI value for a field, do an HTTP GET request for the referenced resource (account,
organization, ticket, ticket queue).

* We left the entries for "'notes" and "logs" sub-resources. The APl ignores these fields and replaces them with
empty fields that reference the new ticket's URI.

Using the Edited File to Create a New Ticket

To use the file new_ticket.json to create a new ticket, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/ticket" -H 'content-type:application/json' --data-

binary @new_ticket.json

 Notice that unlike when we updated the ticket, in this example we POST to the URI for the general index for
the ticket resource instead of POSTing to a UR| for a ticket ID. This is because we do not yet have a ticket
ID.

¢ Like when we updated a ticket, we include the following in the POST:

'content-type:application/json'. So the APl knows that the incoming data is in JSON format.

--data-binary @file_name.json. Specifies that HTTP POST should transmit the data exactly as is,
with no extra processing. The @ symbol tells cURL that the data is stored in a file.

You should get a response that looks something like this:

[...REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM RESPO
NSE, FOR BREVITY]]

< HTTP/1.1 201 Created

< Date: Wed, 25 Aug 2010 15:54:52 GMT

Creating a New Ticket 122

123

< Server: Apache

< X-Implemented-methods: GET, PUT, POST

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow

< Location: /ticket/279

< X-EM7-status-message: Ticket tid:279 added successfully

< X-EM7-status-code: CREATED

< Content-Length: 788

< Content-Type: application/json

"ClaSS":"l",

"severity":"3

"status":"1",

"source":"43"

"date create":

"date_update":

"assigned to"

A\
4

4

"1260402605",

"1260402605",

:"\/account\/1",

"resolution":"0",

"cause":"0",

"escalation":"0",

"chargeback":"0",

"date close":"0",

"auto close":"0",
"organization":"\/api\/organization\/0",

Creating a New Ticket

"description":"TICKET FOR ORGANIZATION: System | ID: Q",
"opened by":"\/api\/account\/1",

"updated by":"\/api\/account\/1",

"closed by":"\/api\/account\/0",

"ticket queue":"\/api\/ticket queue\/7",

"parent ticket":"\/api\/ticket\/0",

"aligned resource":null,

"custom fields":{

3y

"notes" : {

"URI":"\/api\/ticket\/note\/?hide filterinfo=1&limit=1000",

"description":"Notes"

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

* Notice that the status codes and status messages specify that the ticket was created successfully and also
specify the ticket ID.

o If ourfile new_ticket.json had included bad syntax, we would get:

HTTP/1.1 400 Bad Request
< X-EM7-status-message: Unable to decode JSON string.

< X-EM7-status-code: BAD REQ

* Notice that the APl automatically inserted the current time (in UNIX timestamp format) for the "date_created"

Creating a New Ticket 124

and "date_updated" fields.

* Notice that the APl automatically inserted an appropriate URI for the "notes" sub-resource.

Viewing Notes for a Ticket

When you request information about a ticket, the response includes a sub-resource: notes. Sub-resources are
always associated with their parent resource. Sub-resources have their own URI, appended to that of their parent
resource. In our examples, notes is a sub-resource of a ticket resource.

We could look at the response from the ticket we just created (ticket 279). In the response, the reference to the
notes a sub-resource looks like this:

"notes": {
"URI":"\/ticket\/note\/?hide filterinfo=1&1imit=1000",

"description":"Notes"

To view all the notes for the ticket we just created (ticket 279), enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/ticket/279/note"

Because we have not yet added a note to this ticket, the response looks like this:

[.... REMOVED CONNECTION INFORMATION, HEADER INFORMATION,
AND SEARCHSPEC INFORMATION FROM response, FOR BREVITY]

"total matched":"0",
"total returned":0,

"result set":|[

* Connection #0 to host 192.168.10.205 left intact
* Closing connection #0
Suppose we know that ticket ID 97 includes two notes. Let's request all the notes in this ticket. To do this, enter the

following at the command line:

125 Viewing Notes for a Ticket

curl -v -H 'X-em7-beautify-response:1'
"https://192.168.10.205/api/ticket/97/note"

The response would look like this:

[.... REMOVED CONNECTION INFORMATION, HEADER INFORMATION,
AND SEARCHSPEC INFORMATION FROM response, FOR BREVITY]

"total matched":"2",
"total returned":2,

"result set":[

"URI":"\/api\/ticket\/97\/note\/96",

"description":"Someone or some event altered the configuration on this
device. Roll back configuration to last-known-good.<br \/>\r\n<br
\/>\r\nEvent occured on device CustB 2821-1.cisco.com.<br \/>\r\n<br
\/>\r\nSee detail of event at
http:\/\/ap.server.url\/\/em7\/index.em7?exec=events&q_type=aidé&qg
arg=17710&q_sev=1&q sort=0&g oper=0.<br \/>\r\n<br \/>\r\n<br \/>\r\n<br
\/>\r\n<br \/>"

o

"URI":"\/api\/ticket\/97\/note\/270",

"description":"For security, immediately performed rollback.<br \/>\r\n<br
\/>\r\nCurrently analyzing logs to determine where change came from.<br
\/>\r\n<br \/>"

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

Viewing Notes for a Ticket 126

In the response:

* We see that there are two notes in ticket 97: note 96 and note 270.

* We can view the text included in each note.

Now let's request a specific note. Using ticket 97 and our results above, we can request information about note
96 in ticket 97. To do this, enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword’
"https://192.168.10.205/api/ticket/97/note/96"

127 Viewing Notes for a Ticket

The response would look like this:

About to connect () to 192.168.10.205 port 443 (#0)

[.... REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION
FROM RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 15:59:52 GMT

< Server: Apache

< X-Implemented-methods: GET, PUT, POST

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow
< X-EM7-status-message: Note id:96 loaded successfully

< X-EM7-status-code: OK

< Content-Length: 475

< Content-Type: application/Jjson

"note_text":"Someone or some event altered the configuration on this
device. Roll back configuration to last-known-good.<br \/>\r\n<br
\/>\r\nEvent occured on device CustB 2821-1l.cisco.com.<br \/>\r\n<br
\/>\r\nSee detail of event at
http:\/\/ap.server.url\/\/em7\/index.em7?exec=events&q type=aid&q
arg=17710&q_sev=1&q sort=0&g oper=0.<br \/>\r\n<br \/>\r\n<br \/>\r\n<br
\/>\r\n<br \/>",

"edited by":"\/api\/account\/1",
"date_edit":"1263845526",
"ip":"192.168.10.206"
"hidden":"0",

"mime type":"text\/html",

Viewing Notes for a Ticket 128

"media": {
"URI": "\/api\/ticket\/97\/note\/96\/media",

"description": "Associated Note Media"

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

The response contains the following:

e HTTP code 200 OK. The APl was able to successfully find note 96 within ticket 97. If note 96 did not exist,
we would see the following:

HTTP/1.1 404 Not Found
X-EM7-status-message: Note 1d:96 is not a valid note for ticket tid:97

X-EM7-status—-code: NOT_ FOUND

 Our note contains the following fields:

note_text
edited by
date_edit
iP

hidden

mime_type

Adding a Note to a Ticket

Now let's try adding a note to an existing ticket. To do this:

We can use the HTTP POST method to add a note to an existing ticket. We will add a note to the ticket we created
earlier, ticket 279. To add a note to a ticket, we must perform the following steps:

129 Adding a Note to a Ticket

1. Request an existing note and store the information in a file. We will use this file as our template for creating
a new nofte.

2. Editthe captured file.

3. Execute an HTTP POST method to create a new note from the edited file.
The following sections explain each step.
Capturing an Existing Note and Storing the Information in a File

To add a note to a ticket, first we will request the information from note 96 in ticket ID 97 and store it in a file. We
will then use this file as a template. To do this, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/ticket/97/note/96" > new_note.Jjson

The information from the note will be stored in the file new_ note.json. We will use this file as our template.
Editing the Captured File

Wel'll edit our file new_note.json like this:

{

"hidden":"0",

"note_ text":"This is a test note from the API",
"mime type":"text\/html",

"edited by":"\/api\/account\/1"

o We removed the lines that contain "date_edit" and "ip". The APl will automatically insert the current date
and time and the source IP of the request in the new note.

e We removed the "media" section.

* Inthe mime_type field, we accepted the value from the previous ticket (text/html).

o Inthe hidden field, we accepted the value from the previous ticket ("0", zero).

When "hidden" is set to "0" (zero), the note is not cloaked.

When "hidden" is setto "1" (one), the note is cloaked.

Adding a Note to a Ticket 130

o We changed the value of the note_text field to "This is a test note from the API".

o We changed the edited_by field to the URI for the user "em7admin" (/api/account/1). Because the file is in
JSON format, we must escape the forward slash characters (/). Notice that we did so when specifying the
account URI.

Creating a New Note Using the Edited File

To use the file new_note.json to create a new note in ticket 279, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/ticket/279/note" -H 'content-

type:application/json' --data-binary @new_note.json

» Notice that we POST to the URI for the index for the note sub-resource for this ticket, instead of to a specific
note ID. This is because we do not yet have a note ID.

* We include the following in the POST:

'content-type:application/json'. So the APl knows that the incoming data is in JSON format.

--data-binary @file_name.json. Specifies that HTTP POST should transmit the data exactly as is,
with no extra processing. The @ symbol tells cURL that the data is stored in a file.

The response should look like the following:

[.... REMOVED CONNECTION INFORMATION and SOME HEADER INFORMATION
FROM RESPONSE, FOR BREVITY]

< HTTP/1.1 201 Created

< Date: Wed, 25 Aug 2010 16:01:49 GMT

< Server: Apache

< X-Implemented-methods: GET, PUT, POST

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow
< Location: /api/ticket/279/note/273

< X-EM7-status-message: Note /ticket/279/note/273 added.
< X-EM7-status-code: CREATED

< Content-Length: 142

< Content-Type: application/json

131 Adding a Note to a Ticket

"date edit":"1264525835",
"hidden":"0",
"note text":"This is a test note from the API",

"edited by":"\/api\/account\/1"

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

* Notice that the status codes and status messages specify that the note was created successfully and also
specify the note ID (note 273).

o Ifourfile new_ticket.json had included bad syntax, we would get:

HTTP/1.1 400 Bad Request
< X-EM7-status-message: Unable to decode JSON string.

< X-EM7-status-code: BAD REQ

» Notice that the APl automatically inserted the current date and time (in UNIX timestamp format) in the date_

edited field.

Viewing the Attachments for a Ticket

In a ticket, each note can include one or more attachments. Each ticket note has a /media sub-resource that can
be used to search and view the attachments associated with that ticket note.

For example, to view the attachments for ticket 2058, at note 11, we could enter the following at the command
prompt:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/ticket/2058/note/11/media?limit=100"

The response would look like this:

Viewing the Attachments for a Ticket 132

[.... REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION
FROM RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 16:03:11 GMT

< Server: Apache

< X-Implemented-methods: GET

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: Fileindex found with 1 resources.

< X-EM7-status-code: OK

< Content-Disposition: inline; filename="test_attachment.rtf"
< Content-Length: 357

< Content-Type: application/rtf

"searchspec": {
"fields": [

"creation date",
"file length",
"is attachment",
"is complete",
"mime type",
"modified date",
"total size",

"user owner"

133 Viewing the Attachments for a Ticket

1,
"options": {
"hide filterinfo": {
"type": "boolean",

"description": "Suppress filterspec and current filter info if 1

(true) ",
"default": "0O"
}y
"limit": |
"type": "int",
"description”": "Number of records to retrieve",
"default": "100"
by
"offset": {
"type": "int",

"description": "Specifies the index of the first returned resource

within the entire result set",
"default": "0"

by

"extended fetch": {
"type": "boolean",

"description": "Fetch entire resource if 1 (true), or resource

link only if 0 (false)",
"default": "O"

by

Viewing the Attachments for a Ticket 134

"link disp field": {
"type" . "enum",

"description": "When not using extended fetch, this determines

which field is used for the \"description\" of the resource link",
"default": "mime type",
"values": [

"is attachment",

"mime type",

"is complete",

"user owner",

"total size",

"file length",

"creation date",

"modified date"

s
"total matched": 1,
"total returned": 1,

"result set": [

"URI": "\/api\/ticket\/2058\/note\/11\/media\/Penguins.jpg\/info",

"description": "image\/jpeg"

135 Viewing the Attachments for a Ticket

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

In the response, notice that:
¢ The status codes and messages specify that one attachment was found.

* If no attachments were found, the response would include:

X-EM7-status-message: Fileindex found with 0 resources.

* The result set includes an entry for each attachment.

* The entry for each attachment includes the URI that can be used to request detailed information about the
attachment.

Now let's request a specific attachment. Using ticket 2058, note 11 and our results above, we can request
information about the "Penguins.jpg" attachment. To do this, enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/ticket/2058/note/11/media/Penguins.jpg/info"

The response would look like this:

About to connect () to 192.168.10.205 port 443 (#0)

[.... REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION
FROM RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 25 Aug 2010 15:59:52 GMT

< Server: Apache

< X-Implemented-methods: GET,POST,PUT, DELETE

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: /ticket/2058/note/ll/media/Penguins.jpg loaded

successfully

< X-EM7-status-code: OK

Viewing the Attachments for a Ticket 136

137

Content-Length: 475

Content-Type: application/json

"mime type": "image\/jpeg",

"is complete": "1",

"user owner": "\/api\/account\/0",
"total size": 777835,

"file length": 777835,

"creation date": "1445379816",
"modified date": "1445379816",

"is attachment": "1",

"chunks": [

"offset": O,
"length": 777835,

"md5": "9d377b1l0ce778c4938b3c7e2c63a229%a"

i

"data": |

"URI": "\/api\/ticket\/2058\/note\/11\/media\/Penguins.

"description": "File Contents"

Viewing the Attachments for a Ticket

jpg",

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

The response contains the following:
o HTTP code 200 OK. The APl was able to successfully find the Penguins.jpg attachment.

» The URI field in the data section specifies the download link for the file.

NOTE: For FIPS-compliant systems, the response will include a SHA hash, not an MD5 hash.

Adding an Attachment to a Ticket Note

You can add an attachment to an existing ticket note. To do this, we must use the HTTP PUT method instead of
the HTTP POST method. The HTTP PUT method is used for explicitly adding or replacing (where HTTP POST is
used for creating or updating).

The APl will not allow you to add an attachment with an HTTP POST method. If you try, the response will look like
this:

[.... REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION
FROM RESPONSE, FOR BREVITY]

< HTTP/1.1 405 Method Not Allowed

< Date: Wed, 25 Aug 2010 16:04:25 GMT

< Server: Apache

< X-Implemented-methods: GET,PUT, DELETE

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: POST not allowed for note media. PUT an explicitly

named new attachment or image
< X-EM7-status-code: BAD METHOD
< Content-Length: 214

< Content-Type: application/json

Adding an Attachment to a Ticket Note 138

"errors": [

"errorcode":"BAD METHOD",

"message" :"POST not allowed for ticket attachments. PUT an explicitly

named new attachment or image"

i

"messages": [

i

"resource body":null

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

To use HTTP PUT, we must include the "-T" option with the cURL command.

Suppose we want to add the image file "spidey.png" to ticket 97, note 96. We could enter the following at the
command prompt:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/ticket/97/note/96/media/spidey.png" -H
"content-type:image/png" -T ./spidey.png

« attachment/spidey.png. Tells the APl the filename to use when saving the attachment in the system.
o -H'"content-type:image/png". Tells the APl that the attachment will be an image file of type png.

o -T.Tells cURL to perform an HTTP PUT.

» ./spidey.png. Full pathname of the file to attach. "./" means "current directory".

» Notice that unlike HTTP POST, the HTTP PUT method does not require the "--data-binary option" or the "@"
characters before the filename.

139 Adding an Attachment to a Ticket Note

NOTE: If an attachment has been prohibited in the Ticket Attachment Blacklist page (Registry . Ticketing
> Attachment Blacklist), the APl will not attach the file to the ticket note. The API will not allow you to
attach files with a file extension that matches a blacklist entry.

Adding an Attachment to a Ticket Note 140

Example

Using the Discovery Resource

Overview

Discovery is the process by which SL1 retrieves data from the devices in a network and then adds and configures
those devices. SL1 runs discovery to perform the initial discovery of your network and then nightly to collect and
update information about your network. You can also manually initiate discovery, for a single device or for a
range of devices, at any time.

To start discovery, you must provide the discovery tool with one or more IP addresses and other information
about how you want SL1 to perform the discovery. You save the list of IP addresses and other information about
how you want SL1 to perform the discovery in a discovery session. When you execute the discovery session, SL1

then finds all the devices and components in the range. For each discovered device or component, SL1 gathers
detailed data. This data is used throughout SL1.

This chapter will show you how to use the APl to perform some basic tasks for managing discovery sessions.
Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [&).

« Toview a page containing all of the menu options, click the Advanced menu icon (==+).

This chapter covers the following topics:

ReqUIremMeNts 143
Getting Started ... 143
Connecting to the APl . 143
Viewing a List of Discovery Sessions 148
Viewing Details about All Discovery Sessions 155
Filtering the List of Discovery SeSSiONS 156
Retrieving Information about a Specific Discovery Session ... 158

141

Starting @ DiScoVery SESSiON 160

Viewing a List of All Active Discovery SeSSIONS ... 162
Retrieving Information about a Specific Active Discovery-Session .. 164
Viewing Logs for a Discovery Session 165
Stopping a Currently Running Discovery-Session ... 168
Deleting a Discovery Session 170

142

Requirements

* This chapter assumes that you have a working version of cURL installed and can run cURL from a command
prompt. For information on cURL, see http://curl.haxx.se/.

o To connect o the API, you must use HTTPS. If you have not installed or configured a security certificate or if
your appliance uses a self-signed certificate, you must use include the "-k" option each time your execute
cURL. The "-k" option tells cURL to perform the HTTPS connection without checking the security certificate.

» Through the API, you can perform only actions for which you have permission in the system. To perform the
tasks in this chapter, you must connect to the APl using an account (username and password). The account
must have Access Keys that grant the following:

Access the Discovery page

Schedule or execute a discovery session

¢ |n order for the hooks you specify during the creation of a Discovery Session using the Sciencelogic APl to
be effective, you must also run the discovery through the Sciencelogic API. If the discovery is run from the
user interface, the APl will disregard the hooks.

Getting Started

* Inthe examples in this chapter, we will connect to the example Administration Portal with the IP address of
192.168.10.205. To run these examples on your system, you should replace this IP address with the base
URI of the APl on the appliance you are using.

* Inthe examples in this chapter, we will connect using the default account "em7admin" with the example
password "examplepassword". To run these examples on your system, you should replace this username and
password with a valid username and password for your system.

* Inthe examples in this chapter, we will execute each request at a shell prompt or command prompt.
However, you can include these requests in a script or program.

The examples in this chapter use the custom-header option "X-em7-beautify-response: 1". This
header tells the APl to include white-space in a response, to make it easier to read. However, this
header can greatly increase the amount of time required to process a request. Sciencelogic
recommends you use this header only when testing requests. Sciencelogic strongly
discourages you from using this header in integration code.

Connecting to the API

To connect to the APl and view the root directory (with an HTTP GET request), enter the following at the command
prompt:

Requirements 143

http://curl.haxx.se/

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api"

o curl -v. Executes the cURL request. The -v option tells cURL to use verbose mode (displays all header
information and all status and error messages). In the response, lines that start with ">" include header data
returned by cURL. Lines that start with "<" include header data received by cURL.

o -H'X-em7-beautify-response:1'. The -H option tells cURL to include an additional header in the request.
In this case, we're including a Sciencelogic custom header that tells the APl to include white-space in the
response.

o -u'em7admin:examplepassword'. The -u option tells cURL to authenticate as a specified user. In our
example, we authenticated as the user "em7admin" with the password "examplepassword".

o "https://192.168.10.205/api". Connect to the specified URL. In our example, we connected to the APl at
192.168.10.205.

The response will look like this (however, we've added line numbers for reference):

1) * About to connect() to 192.168.10.205 port 443 (#0)

2) * Trying 192.168.10.205... connected

3) * Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)
4) * Server auth using Basic with user 'em7admin'

5) GET / HTTP/1.1

6) Authorization: Basic ZWO3YWRtaW46ZWO3YWRtaWd=

7) User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3
OpenSSL/0.9.71 zlib/1.2.3

8) Host: 192.168.10.205

9) Accept: */*

10) X-em7-beautify-response:l
11) >

12)

A

HTTP/1.1 200 OK
13) < Date: Wed, 20 Jan 2010 23:03:46 GMT
14) < Server: Apache/2.2.9 (Unix) mod ssl1/2.2.9 OpenSSL/0.9.8e-fips-rhelb

15) < X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow

144 Connecting to the API

16) < Content-Length: 703

17) < Content-Type: application/json
18) <

19) |

20) "data":{

21) "account":{

22) "URI":"\/account",

23) "description":"Get\/Update\/Add\/Delete User Accounts"
24) '},

25) "device":{

26) "URI":"\/device?limit=100",

27) "description":"Get\/Update\/Add\/Delete Devices and Get Collected
Data"

28) '},

29) "discovery session":{

30) "URI":"\/discovery session\/",

31) "description":"Get\/Update\/Add\/Delete Device Discovery Sessions"
32) },

33) "dynamic_app":{

34) "URI":"\/dynamic_app\/",

35) "description":"Get Dynamic Application Resources"
36) 1},
37) "organization": {

38) "URI":"\/organization",

Connecting to the API 145

39) "description":"Get\/Update\/Add\/Delete Organizations"
40) 1},

41) "ticket":{

42) "URI":"\/ticket?limit=100",

43) "description":"Get\/Update\/Add\/Delete Tickets"

44) 1},

45) "ticket queue":({

46) "URI":"\/ticket queue",

47) "description":"Get Ticket Queues"
48) }
49) }
50) }

51) Connection #0 to host 192.168.10.205 left intact

52) Closing connection #0

* Lines 1-4 show cURL trying to connect to and authenticate with the API.

e Lines 5-11 show the HTTP GET request we sent. The initial request performs a GET on the root directory of
the API.

accept: */*. Specifies that we will use the default accept header. The accept header tells the APl how
to format the response. The APl can respond in XML or JSON. Because we didn't specify an accept
header, the APl will use the default format, which is JSON. If you want to view the response in XML,
you can include the header option "

-H'Accept:application/xml" in the cURL command.

X-em7-beautify-response: 1. Tells the APl to include white-space in the response, for easier
reading.

* Line 12 shows the HTTP version and the HTTP status code for the response.
* Lines 12-18 show the header information for the response.

* Lines 19-52 display the response to the HTTP GET request on the root directory of the API.

146 Connecting to the API

The response for the HTTP GET request displays a list of resources. A resource is a functional area in SL1 that you

can access through the API.

You can inferact with the following entities through the API:

Accounts

Account Lockouts
Alerts

Appliances

Assets

Collector Groups
CBQoS Obijects
Collection Labels
Credentials
Custom Attributes
Dashboards
Devices

Device Categories
Device Classes
Device Interfaces
Device Groups
Device Relationships
Device Templates
Discovery Sessions
Dynamic Applications
Events

Event Categories
External Contacts
File Uploads
Interfaces
Monitoring Policies
Organizations
Performance Data
PowerPacks
Product SKUs
Schedules

Connecting to the API

147

o System Patches

o System Settings

o Tasks

o System Thresholds

o Themes

o Thresholds

o Tickets

o Ticket Categories

o Ticket Chargeback

o Ticket Logs

o Ticket Notes

» Ticket Queues

o Ticket States

o User Policies

» Vendors
For each resource, the response displays the associated URI for accessing the resource and a description that lists
the actions you can perform on the resource.

For our example, we'll be looking at the discovery_session resource. The entry for the discovery _session
resource includes the URI of the discovery_session resource and includes the following description:

29) "discovery session":{
30) "URI":"\/discovery session\/",
31) "description":"Get\/Update\/Add\/Delete Device Discovery Sessions"

32) },

Viewing a List of Discovery Sessions

In the previous section, we used an HTTP GET request to retrieve information about the root directory of the API.
Our response included a list of resources. We learned that we can request information about discovery sessions.

To access a resource, like discovery_session, we can use an HTTP GET and append a discovery session's URI to
the URI of the root directory. To access the resource discovery_session, we could enter the following at the
command line.

148 Viewing a List of Discovery Sessions

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/discovery session"

The response looks like this:

... [REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM
RESPONSE, FOR BREVITY]

< HTTP/1.1 302 Found

< Date: Wed, 27 Jan 2010 16:32:05 GMT

< Server: Apache

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow

< Location: /discovery session?limit=100

< X-EM7-status-message: discovery session index requires a limit
< X-EM7-status-code: FOUND

< Content-Length: 977

< Content-Type: application/json

"searchspec": {

"fields":{
"data": [
"dgid",
"date edit",

"date run",
"scan ports",
"organization",

"collector id",

Viewing a List of Discovery Sessions 149

"edited by",

"discover non_snmp"

3y

"options": {
"extended fetch":{
"type":"boolean",

"description":"Fetch entire resource if 1 (true), or resource link only if

0 (false)",

"default":"0"

3y

"hide filterinfo":{

"type":"boolean",

"description":"Suppress filterspec and current filter info if 1 (true)",
"default":"0"

}y

"limit":{

"type":"int",

"description":"Number of records to retrieve",
"default":"100"

3y

"offset":{

"type" . "j_nt",

150 Viewing a List of Discovery Sessions

"description":"Specifies the index of the first returned resource within

the entire result set",

"default":"0"

by
"total matched":"14",
"total returned":O0,

"result set":|[

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

The response does not contain the results we wanted, that is, information about the discovery sessions in SL1.
Instead, the response contains:

HTTP/1.1 302 Found. This status code indicates that discovery_session resources were found, but our
request was missing required filtering and options.

Location: /discovery session2limit=100. This is a redirect header. Most browsers would automatically
redirect our request to this URI. However, cURL requires an additional option to use redirects.

"X-EM7-status-message: discovery_session index requires a limit" and "X-EM7-status-code:
FOUND". Human-readable status messages provided by the API. These messages indicate that our AP
does include discovery_session resources and that our HTTP request was missing the "limit" option.

"searchspec". The response include a list of searchspec options. These options allow use to filter content
contained in the response.

"total_matched":"14", "total_returned":"0, "result_set":[]. This line indicates that the default "limit" option
would have returned 14 discovery sessions, but that our request returned zero discovery sessions.

Let's run the command again with the correct URI that contains the required option. To do this, enter the following
at the command line:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/discovery session?limit=100"

The response looks like this:

Viewing a List of Discovery Sessions 151

... [REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM
RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 27 Jan 2010 16:36:20 GMT

< Server: Apache

< X-Powered-By: SciencelLogic,LLC - EM7 API/SL1 PowerFlow
< Content-Length: 2530

< Content-Type: application/json

"searchspec": {
"fields":{
"data": [
"dgid",

"date edit",
"date run",
"scan ports",
"organization",
"collector_ id",
"edited by",

"discover non_ snmp"

s

"options": {

152 Viewing a List of Discovery Sessions

"extended fetch":{
"type":"boolean",

"description":"Fetch entire resource if 1 (true), or resource link only if
0 (false)",

"default":"0"

}y

"hide filterinfo":{

"type":"boolean",

"description":"Suppress filterspec and current filter info if 1 (true)",
"default":"0"

by

"limit":{

"type":"int",

"description":"Number of records to retrieve",
"default":"100"

}y

"offset":{

"type":"int",

"description":"Specifies the index of the first returned resource within

the entire result set",

"default":"0"

}y

"total matched":"14",

Viewing a List of Discovery Sessions 153

"total returned":14,

"result set":|[

"":{
"URI":"\/discovery session\/1",

"description" :"SNMP:1:2"

s

"":{
"URI":"\/discovery session\/2",

"description":"21:22:23:25:80"

}y

[...REMOVED SESSONS 3-13 FROM RESPONSE, FOR BREVITY]

"":{
"URI":"\/discovery session\/14",

"description":"21:22:23:25:80"

}y

"".{

"URI":"\/discovery session\/15",

154 Viewing a List of Discovery Sessions

"description":"21:22:23:25:80"

* Connection #0 to host 192.168.10.205 left intact
* Closing connection #0

Notice that the response includes:
o HTTP/1.1 200 OK. Status code that indicates that our HTTP request was successful.

» An entry for all of the discovery sessions found. The response includes basic information about 14
discovery sessions, because only 14 sessions exist on our example system. Because we set the limit option to
"100", the response could contain information about the first 100 discovery sessions. For each found
discovery session, the response includes:

URI of the discovery session.

NOTE: Our response is in JSON format. Notice that the URI for the discovery session includes
escaped forward slash characters ("\/").

Description of the discovery method. A list of values that were selected in the Detection Method &
Port field (in the System > Manage > Classic Discovery page). The possible values are described in
the following section, in the description of the scan_ports field.

To request all information about all discovery sessions, you can use the extended_fetch option. This
is described in the following section.

Viewing Details about All Discovery Sessions

We can use the HTTP GET request and the extended_fetch option to request all information about each
returned discovery session. If we append "&extended fetch=1"to our URI, we can request all information about
the first 100 discovery sessions. To do so, we enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword’
"https://192.168.10.205/api/discovery session?limit=100&extended fetch=1"

The response will return a list of the first 100 discovery sessions, with the following information for each session:

Viewing Details about All Discovery Sessions 155

 Discovery Session ID. The unique numeric identifier, assigned to this session by SL1.

NOTE: The Discovery Session ID and the numbered list in the Session Register pane in the System >
Manage > Classic Discovery page may not match. The Session Register pane in the System
> Manage > Classic Discovery page is sorted by date and changes when a discovery session
is edited.

« dgid. ID of the Device Group associated with this discovery session. If no device group is associated with
this discovery session, this field will contain the value "NULL".

» date_edit. Date and time the discovery session was last edited.
o date_run. Date and time the discovery session was last executed.

o scan_ports. A list of values that were selected in the Detection Method & Port field (in the System >
Manage > Classic Discovery page).

If in the Detection Method & Port field, a user selected the "Default method, this list includes the
default TCP ports that are used during discovery (21, 22, 23, 25, and 80).

If in the Detection Method & Port field, a user selected one or more TCP ports, the list includes
those ports.

If in the Detection Method & Port field, a user selected "UDP 161", the list includes the string
"SNMP".

ip_list. The start IP and end IP for each IP range included in the discovery session.

credentials. One or more credentials selected for this discovery session.

 organization. Link to the organization resource associated with the discovery session.

collector_id. The appliance ID of the Data Collector associated with the discovery session.

edited_by. Link to the account resource for the user who last edited this discovery session.

« discover_non_snmp. Specifies whether this session will discover devices that don't support SNMP. These
devices are called "pingables" in SL1."0" (zero) means do not include pingables; "1" (one) means include
pingables.

* logs. Link to the logs sub-resource for this discovery session.

NOTE: Our response is in JSON format. Notice that the URIs for other resources include escaped forward
slash characters ("\/").

Filtering the List of Discovery Sessions

We can use the fields listed in searchspec to filter the list of discovery sessions that will appear in the
response. For the discovery_session resource, the searchspec includes:

156 Filtering the List of Discovery Sessions

 dgid. Selected Device Group.

» date_edit. Date and time the session was last edited.

o date_run. Date and time the session was last run.

» scan_ports. Value selected in the Detection Method & Ports field.
 organization. Organization associated with the discovery session.

o collector_id. Appliance ID of a single Data Collector (not a collector group). Currently, there is no way to
query Appliance information through the API.

o edited_by. The user account that last edited the discovery session.

« discover_non_snmp. Specifies whether this session will discover devices that don't support SNMP. These
devices are called "pingables" in SL1."0" (zero) means do not include pingables; "1" (one) means include
pingables.

If we wanted to view details about only discovery sessions that do not include pingables, we could enter the
following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/discovery session?limit=100&extended

fetch=l&filter.discover non_snmp=0"

The response would display full details about the first 100 discovery sessions that do not discover pingables.

We can also use the following operators in the searchspec:

o

.not (not equal to)

.min (greater than or equal to)
.max (less than or equal to)
.contains (string comparison)
.in (isin alist)

For example, if we wanted to view full details about the first 100 discovery sessions that are not associated with
the Data Collector with the ID of 3, we could enter the following at the command line:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/discovery session?limit=100&extended
fetch=l&filter.collector_id.not=3"

Filtering the List of Discovery Sessions 157

Retrieving Information about a Specific Discovery Session

We can use the HTTP GET method and the URI for a specific discovery session to request information about that
specific discovery session.

NOTE: When you include the URI for a specific discovery session, the response automatically includes all
the information for the session. If you include the URI for a specific discovery session, you do not
need to include "extended fetch=1"

For example, if we wanted to request information about discovery session ID "1", we could enter the following at
the command prompt:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/discovery session/1”

The response would look like this:

... [REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM
RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 27 Jan 2010 19:16:49 GMT

< Server: Apache

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: discovery session seq:1l loaded successfully
< X-EM7-status-code: OK

< Content-Length: 625

< Content-Type: application/json

"dgid":null,

"date edit":"1264540686",

158 Retrieving Information about a Specific Discovery Session

"date run":"1264544101",
"scan ports":[

"SNMP",

e,

womn

i

"ip lists": [

"start ip":"192.168.9.1",
"end ip":"192.168.9.100"

}y

"start ip":"192.168.10.200",

"end ip":"192.168.10.203"

i

"credentials": [
"\/api\/credential\/snmp\/1",

"\ /api\/credential\/snmp\/2",
"\/api\/credential\/db\/10"

1,
"organization":"\/api\/organization\/0",
"collector id":"3",

"edited by":"\/api\/account\/28",

Retrieving Information about a Specific Discovery Session 159

"discover non snmp":"0",
"logs": {
"URI":"\/api\/discovery session\/1\/log",

"description":"Discovery Session Logs"

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

» Notice the HTTP status message and the Sciencelogic status messages.
 The response includes all the details about the specified discovery session

o If the discovery session did not exist (for example, if we supplied an incorrect ID), the response would
include:

HTTP/1.1 404 Not Found
X-EM7-status-message: Unable to find discovery session w/ id of '401'

X-EM7-info-message: Use /discovery session search to find valid

discovery session resources

Starting a Discovery Session

After the initial discovery, SL1 automatically polls monitored devices and applications to retrieve new and
updated data. SL1 performs these updates at regular intervals. However, you can manually execute a discovery
session at any time.

You can use the APl to manually execute an existing discovery session. To do this, we use the URI of the existing
discovery session, the HTTP POST method, and an additional resource called discovery_session_active.

The discovery_session_active resource allows you to execute a discovery session, view a list of currently active
discovery sessions, and stop a currently active discovery session.

In our example, we'll POST the URI for a discovery session to the discovery_session_active resource. We'll use
discovery session ID 1 as the discovery session.

To execute discovery session 1, enter the following at the command prompt:

160 Starting a Discovery Session

The

e The HTTP status code is 202, because the action did not complete within the HTTP response time. This is

 Notice the Sciencelogic status messages, which specify that the session has been queued for execution.

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/discovery session_active" -H 'content-
type:application/em7-resource-uri' --data-binary "/api/discovery

session/1"

"https://192.168.10.205/api/discovery_session_active". Notice that the address for the HTTP Post
includes the discovery_session_active resource in the URI.

'content-type:application/em7-resource-uri'. Tells the APl that the incoming data is a resource URI.

--data-binary "/api/discovery_session/1". Specifies that HTTP POST should transmit use the URI exactly

as is, with no extra processing. The URI of the discovery session must be surrounded by double-quotes.

response looks like this:

[...REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM
RESPONSE, FOR BREVITY]

< HTTP/1.1 202 Accepted

< Date: Wed, 27 Jan 2010 19:36:44 GMT

< Server: Apache

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: Discovery session queued for discovery
< X-EM7-status-code: ACCEPTED

< Content-Length: 1

< Content-Type: application/json

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

because the discovery session is still running when the APl generates the response.

o If the discovery session is already running or is already queued, the response includes:

HTTP/1.1 400 Bad Request

Starting a Discovery Session

161

X-EM7-status-message: /discovery session/l is already active

X-EM7-status-code: BAD REQ

Viewing a List of All Active Discovery Sessions

You can use HTTP GET and the discovery_session_active resource index to request a list of all currently active
discovery sessions.

To view a list of all currently active discovery sessions, enter the cURL command from the previous section, to start
a discovery session:
curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword’
"https://192.168.10.205/api/discovery session_active" -H 'content-
type:application/em7-resource-uri' --data-binary "/api/discovery

session/1"

162 Viewing a List of All Active Discovery Sessions

Then immediately enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/discovery session_active?limit=100"

The response looks like this:

* About to connect () to 192.168.10.205 port 443 (#0)

* Trying 192.168.10.205... connected

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)
* Server auth using Basic with user 'em7admin'

> GET /discovery session active?limit=100 HTTP/1.1

> Authorization: Basic ZWO3YWRtaW46ZWO3YWRtaW4=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3
OpenSSL/0.9.71 zlib/1.2.3

> Host: 192.168.10.205
> Accept: */*

> X-em7-beautify-response:1

< HTTP/1.1 200 OK

< Date: Wed, 27 Jan 2010 19:42:51 GMT

< Server: Apache

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow
< Content-Length: 1087

< Content-Type: application/json

[.... REMOVED SEARCHSPEC INFORMATION FROM response, FOR BREVITY]

"total matched":"1",

Viewing a List of All Active Discovery Sessions

163

"total returned":1,

"result _set":[

nmn ° {
"URI":"\/api\/discovery_ session_active\/1",

"description":"SNMP:1:2"

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

* We receive the HTTP status code and a Sciencelogic status message.
* We found one active discovery session.

* The ID for the active discovery session is "1", with a URI of /api/discovery_session_active/1.

NOTE: Our response is in JSON format. Notice that the URI for the discovery session includes escaped
forward slash characters ("\/").

Retrieving Information about a Specific Active Discovery-
Session

We can request information about a specific, active discovery session using the HTTP GET method with the URI
for a specific discovery_session_active resource.

To request details about an active discovery session, perform the following:

First, start a discovery session. Enter the following at the command prompt:

164 Retrieving Information about a Specific Active Discovery-Session

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/discovery session_active" -H 'content-
type:application/em7-resource-uri' --data-binary "/api/discovery

session/1"

Before the discovery session completes, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword’
"https://192.168.10.205/api/discovery session_active/1l

o The response will be the same as if you requested all the details about the discovery session.

o Ifthe specified discovery session is not active, the response will include the following:

HTTP/1.1 303 See Other

X-EM7-status-message: The requested discovery session is not currently

active.

X-EM7-status-code: FOUND

and will also include a redirect to the discovery_session resource for the discovery session.

Viewing Logs for a Discovery Session

When you request information about a discovery session, the returned data includes a sub-resource: logs. Sub-
resources are always associated with their parent resource. Sub-resources have their own URI, appended to that
of their parent resource. In our example, logs is a sub-resource of a discovery_session resource.

If we look at the response from an HTTP GET of discovery session 1, the logs sub-resource looks like this:

"lOgS": {
"URI":"\/api\/discovery session\/1\/log",

"description":"Discovery Session Logs"

Each discovery session has only a single log. Each time the discovery session is executed, the previous log is
overwritten with information from the current session.

To view the log for a discovery session, enter the following HTTP GET command at the command prompt:

Viewing Logs for a Discovery Session 165

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'
"https://192.168.10.205/api/discovery session/1/log?limit=100

Note that we appended the URI of the log to the URI of the discovery session, as referenced in the HTTP GET of
discovery session 1.

The response looks like this:

[...REMOVED CONNECTION INFORMATION AND SOME HEADER INFORMATION FROM
RESPONSE, FOR BREVITY]

< HTTP/1.1 200 OK

< Date: Wed, 27 Jan 2010 20:07:34 GMT

< Server: Apache

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow
< Transfer-Encoding: chunked

< Content-Type: application/json

[.... REMOVED SEARCHSPEC INFORMATION FROM response, FOR BREVITY]
"total matched":null,
"total returned":71,

"result set":|[

"log tstamp":"1264621963",
"msg_id":"124",
"msg_txt":"Beginning auto-discovery session"

by

"did":"\/device\/113",

"ip":"192.168.9.71",

166 Viewing Logs for a Discovery Session

"log tstamp":"1264621979",
"msg_1id":"500",
"msg txt":"Discovered and modeled existing device"

s

"did":"\/device\/114",

"ip":"192.168.9.70",

"log tstamp":"1264621979",

"msg_id":"500",

"msg_txt":"Discovered and modeled existing device"

}y

"did":"\/device\/115",

"ip":"192.168.9.72",

"log tstamp":"1264621979",

"msg_id":"500",

"msg txt":"Discovered and modeled existing device"

s

"ip":"192.168.9.12",

"log tstamp":"1264621994",

"msg_id":"504",

"msg_txt":"Discovered, not modeled, pingable device"

s

Viewing Logs for a Discovery Session 167

[...REMOVED REMAINING 66 DEVICE ENTRIES, FOR BREVITY]

"log tstamp":"1264622228",
"msg_id":"125",

"msg_ txt":"Auto-discovery session completed"

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

* We receive the HTTP status code and a Sciencelogic status message.

* The log includes an entry for each discovered device, including device IP, device name for SNMP devices,
date and time device was discovered, and a description of what was performed on the device.

Stopping a Currently Running Discovery-Session

We can perform an HTTP DELETE method on a discovery_session_active resource to stop a currently running
discovery session.

Let's first start discovery session 1 again. To do this, enter the following at the command prompt:

curl -v -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword'’
"https://192.168.10.205/api/discovery session_active" -H 'content-
type:application/em7-resource-uri' --data-binary "/api/discovery
session/1"

Before the discovery session completes, enter the following at the command prompt to stop the discovery session:

curl -v -H 'X-em7-beautify-response:1l' -u 'em7admin:examplepassword'

"https://192.168.10.205/api/discovery session_active/l" -X DELETE

» /api/discovery_session_active/1. We used the URI of the currently active discovery session.

o —X DELETE. We simply appended "-X DELETE" to our HTTP statement to use the DELETE method.

168 Stopping a Currently Running Discovery-Session

The response looks like this:

* About to connect() to 192.168.10.205 port 443 (#0)

* Trying 192.168.10.205... connected

* Connected to 192.168.10.205 (192.168.10.205) port 443 (#0)
* Server auth using Basic with user 'em7admin'

> DELETE /discovery session active/1 HTTP/1.1

> Authorization: Basic ZWO3YWRtaW46ZWO3YWRtaWd=

> User-Agent: curl/7.16.3 (powerpc-apple-darwin9.0) libcurl/7.16.3
OpenSSL/0.9.71 zlib/1.2.3

> Host: 192.168.10.205
> Accept: */*

> X-em7-beautify-response:1l

< HTTP/1.1 202 Accepted

< Date: Wed, 27 Jan 2010 20:49:59 GMT

< Server: Apache

< X-Powered-By: Sciencelogic,LLC - EM7 API/SL1 PowerFlow

< X-EM7-status-message: Collector signaled to stop Discovery Session
< X-EM7-status-code: ACCEPTED

< Content-Length: 1

< Content-Type: application/json

* Connection #0 to host 192.168.10.205 left intact

* Closing connection #0

Stopping a Currently Running Discovery-Session 169

» Notice that the Sciencelogic status message indicates that the discovery session will be stopped.

o [fthe discovery session was not currently running, the response would include the following:

HTTP/1.1 400 Bad Request

X-EM7-status-message: The requested discovery session is not currently

active.

X-EM7-status—-code: BAD REQ

Deleting a Discovery Session

You can use the HTTP DELETE method on a discovery_session resource to remove a discovery session from SL1.
When you remove a discovery session from SL1, the entry is removed from the Session Register in the System >
Manage > Classic Discovery page, and users can no longer execute this discovery session.

To delete a discovery session from SL1, enter the following at the command line:

curl -v -k -H 'X-em7-beautify-response:1' -u 'em7admin:examplepassword’
"https://192.168.10.205/api/discovery session/l1" -X DELETE

o discovery_session/1. We used the URI of the discovery session we want to delete.

o —X DELETE. We simply appended "-X DELETE" to our HTTP statement, to specify that this is a
DELETE method.

170 Deleting a Discovery Session

Example

Searching Component Trees

Overview

The /device resource can be filtered using the following fields, which can be used to search a component tree:
e component_ancestor_device
e component_parent_device
e component_root_device

» component_unique_id

This chapter describes examples of filters that use these fields.
Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [&).

« To view a page containing all of the menu options, click the Advanced menu icon (==+).

This chapter covers the following topics:

Searching for All the Components in @ Tree ... 172
Searching for the Direct Children of a Device ... 173
Searching for the Componentsin a Sub-Tree ... 174
Searching for a Component by Unique ID 178

171

Searching for All the Components in a Tree

To search for all the component devices in a tree, i.e., all the component devices under a root device:

* Perform a GET request to the /device resource.

¢ Inthe URL of the GET request, include a filter option that matches the component_root device field to the
device ID of the root device.

For example, suppose that you want to get a list of all component devices associated with a NetApp Cluster.
Suppose that the NetApp Cluster has a device ID of 1656. To get the list of component devices, you can perform
a GET request using the following URL:

https://<base URL of the API>/device?limit=100&filter.component root
device=1656

In this example, the result_set in the response looks like this in XML format:

<result

set elemtype="1list">

<link URI="/api/device/1673" description="KNT NetApp 83 C2-01:/vol/volQ"

elemtype="href"/>

<link URI="/api/device/1697" description="/vol/vserverl iscsi

vol2/vserverl mixed voll 1lunOl" elemtype="href"/>

<link

voll"

<link

<link

vol2"

<link

URI="/api/device/1680"
elemtype="href"/>

URI="/api/device/1671"

URI="/api/device/1679"
elemtype="href"/>

URI="/api/device/1675"

elemtype="href"/>

<link

URI="/api/device/1687"

elemtype="href"/>

<link

URI="/api/device/1678"

elemtype="href"/>

<link

URI="/api/device/1660"

elemtype="href"/>

172

description="vserverl:/vol/vserverl mix

description="data aggrl" elemtype="href"/>

description="vserverl:/vol/vserverl iscsi

description="aggr0 KNT NetApp 83 C2 02 0"

description="vserver2:/vol/vs2 sm dest 1"

description="KNT NetApp 83 C2-02:/vol/vol0"

description="KNT NetApp 83 C2-01"

Searching for All the Components in a Tree

<link URI="/api/device/1682"
elemtype="href"/>

<link URI="/api/device/1663"

<link URI="/api/device/1681"
elemtype="href"/>

<link URI="/api/device/1672"

<link URI="/api/device/1670"

<link URI="/api/device/1662"
elemtype="href"/>

<link URI="/api/device/1677"

<link URI="/api/device/1665"

<link URI="/api/device/1688"
elemtype="href"/>

<link URI="/api/device/1676"

<link URI="/api/device/1664"

<link URI="/api/device/1686"
elemtype="href"/>

<link URI="/api/device/l661"

<link URI="/api/device/1674"
elemtype="href"/>

description="vserverl:/vol/vsl sm dest 1"

description="vserverl" elemtype="href"/>

description="vserverl:/vol/root"

description="aggr0" elemtype="href"/>
description="data aggr2" elemtype="href"/>

description="KNT NetApp 83 C2-02"

description="data aggr4" elemtype="href"/>
description="vserver2" elemtype="href"/>

description="vserver2:/vol/root"

description="data aggr3" elemtype="href"/>
description="vserver3" elemtype="href"/>

description="vserver3:/vol/root"

description="vserver4" elemtype="href"/>

description="vserverd4:/vol/root"

</result set>

The default response includes the relative APl URI and name of each component device. You can add additional
options to adjust the response, e.g., the extended fetch option can be used to return all attributes of the
component devices in the response.

Searching for the Direct Children of a Device

To search for all the component devices that are direct children of another device, typically another component
device:

Searching for the Direct Children of a Device 173

* Perform a GET request to the /device resource.

¢ Inthe URL of the GET request, include a filter option that matches the component parent device field to the
device ID of the device for which you want to see the children devices.

For example, suppose that you want to get a list of all component devices that are directly associated with an ACI
Pod, which includes APIC, Leaf, and Spine devices. Suppose that the ACI Pod has a device ID of 3. To get the list
of component devices, you can perform a GET request using the following URL:

https://<base URL of the API>/device?limit=100&filter.component parent

device=3

In this example, the result_set in the response looks like this in XML format:

<result set elemtype="list">
<link URI="/api/device/4" description="Leafl" elemtype="href"/>
<link URI="/api/device/5" description="Leaf2" elemtype="href"/>
<link URI="/api/device/6" description="apic2" elemtype="href"/>
<link URI="/api/device/7" description="apic3" elemtype="href"/>
<link URI="/api/device/8" description="apicl" elemtype="href"/>
<link URI="/api/device/9" description="Spine2" elemtype="href"/>
<link URI="/api/device/10" description="Spinel" elemtype="href"/>

</result set>

The default response includes the relative APl URI and name of each component device. You can add additional
options to adjust the response, e.g., the extended _fetch option can be used to return all attributes of the
component devices in the response.

Searching for the Components in a Sub-Tree

To search for all the component devices in a sub-tree, i.e., all the component devices under a specific component
device:

* Perform a GET request to the /device resource.
* Inthe URL of the GET request, include a filter option that matches the component_ancestor_device field to

the device ID of the root device.

For example, suppose that you want to get a list of all component devices under the US East region component
device in an Azure component tree. Suppose that the US East component device has a device ID of 682. To get
the list of component devices, you can perform a GET request using the following URL:

174 Searching for the Components in a Sub-Tree

https://<base URL of the API>/device?limit=100&filter.component ancestor

device=682

In this example, the result_set in the response looks like this in XML format:

<result set elemtype="list">

<link URI="/api/device/693" description="Data & Storage"
elemtype="href"/>

<link URI="/api/device/694" description="Compute" elemtype="href"/>
<link URI="/api/device/695" description="Networking" elemtype="href"/>
<link URI="/api/device/724" description="Storage" elemtype="href"/>

<link URI="/api/device/725" description="Cloud Services"

elemtype="href"/>

<link URI="/api/device/726" description="Virtual Machines"

elemtype="href"/>

<link URI="/api/device/727" description="Virtual Networks"
elemtype="href"/>

<link URI="/api/device/786" description="portalvhdsr5fxx3bdbnld5"
elemtype="href"/>

<link URI="/api/device/787" description="temp0ltdj" elemtype="href"/>

<link URI="/api/device/788" description="ywtmpstrgacct"
elemtype="href"/>

<link URI="/api/device/789" description="wintempeull" elemtype="href"/>
<link URI="/api/device/790" description="storagepeul" elemtype="href"/>

<link URI="/api/device/791" description="Group Group-10 deletemenettjn"
elemtype="href"/>

<link URI="/api/device/792" description="VNetPEU1" elemtype="href"/>

<link URI="/api/device/793" description="virtualnetwork-perm-2"

elemtype="href"/>

Searching for the Components in a Sub-Tree 175

176

<link URI="/api/device/794"

description="Group Api-Default-East-US

WinTempEUO1" elemtype="href"/>

<link URI="/api/device/825"

<link URI="/api/device/850"

<link URI="/api/device/852"

<link URI="/api/device/853"
elemtype="href"/>

<link URI="/api/device/854"
elemtype="href"/>

<link URI="/api/device/855"
elemtype="href"/>

<link URI="/api/device/946"

description="em7-cu3-perm" elemtype="href"/>

description="em7-cu3-perm" elemtype="href"/>

description="VmPEAl" elemtype="href"/>

description="CloudServicePEU2"

description="VmServicePEUL"

description="CloudServicePEUL"

description="WADDiagnosticInfrastructurelLogsTable" elemtype="href"/>

<link URI="/api/device/947"

<link URI="/api/device/948"
elemtype="href"/>

<link URI="/api/device/949"
elemtype="href"/>

<link URI="/api/device/950"
elemtype="href"/>

<link URI="/api/device/951"
elemtype="href"/>

<link URI="/api/device/952"

<link URI="/api/device/953"
elemtype="href"/>

<link URI="/api/device/957"

<link URI="/api/device/959"

<link URI="/api/device/960"

description="SchemasTable" elemtype="href"/>

description="WADMetricsPT1MP10DV2S20150720"

description="WADMetricsPT1HP10DV2S20150720"

description="WADWindowsEventLogsTable"

description="WADPerformanceCountersTable"

description="vhds" elemtype="href"/>

description="ywtmpcontainter"

description="vhds" elemtype="href"/>
description="vhds" elemtype="href"/>

description="disks" elemtype="href"/>

Searching for the Components in a Sub-Tree

<link URI="/api/device/961" description="vm-images" elemtype="href"/>

<link URI="/api/device/988" description="WADMetricsPTIMP10DV2S20150630"
elemtype="href"/>

<link URI="/api/device/989" description="WADMetricsPTIMP10DV2S20150620"
elemtype="href"/>

<link URI="/api/device/990" description="WADMetricsPTIMP10DV2S20150720"
elemtype="href"/>

<link URI="/api/device/991" description="WADMetricsPT1MP10DV2520150710"
elemtype="href"/>

<link URI="/api/device/992" description="WADPerformanceCountersTable"

elemtype="href"/>

<link URI="/api/device/993" description="LinuxDiskVer2v0"
elemtype="href"/>

<link URI="/api/device/994" description="LinuxCpuVer2vQ"
elemtype="href"/>

<link URI="/api/device/995" description="LinuxsyslogVer2vQ"
elemtype="href"/>

<link URI="/api/device/996" description="LinuxMemoryVer2vQ"

elemtype="href"/>

<link URI="/api/device/997"

description="WADDiagnosticInfrastructurelLogsTable" elemtype="href"/>
<link URI="/api/device/998" description="SchemasTable" elemtype="href"/>

<link URI="/api/device/999" description="WADMetricsPT1HP10DV2520150630"
elemtype="href"/>

<link URI="/api/device/1000" description="WADMetricsPT1HP10DV2S20150620"
elemtype="href"/>

<link URI="/api/device/1001" description="WADMetricsPT1HP10DV2S20150720"

elemtype="href"/>

Searching for the Components in a Sub-Tree 177

<link URI="/api/device/1778" description="WADMetricsPT1HP10DV2S20151008"
elemtype="href"/>

<link URI="/api/device/1795" description="vmTraffMgrTEU"
elemtype="href"/>

<link URI="/api/device/1796" description="vmTraffMgrTEU"
elemtype="href"/>

<link URI="/api/device/1798" description="TMcloudl" elemtype="href"/>

<link URI="/api/device/1918" description="tempcpuEUSga"
elemtype="href"/>

<link URI="/api/device/1919" description="tempcpuEUSga"
elemtype="href"/>

<link URI="/api/device/1920" description="testcpueus0l"
elemtype="href"/>

</result set>
The default response includes the relative APl URI and name of each component device. You can add additional

options to adjust the response, e.g., the extended _fetch option can be used to return all attributes of the
component devices in the response

Searching for a Component by Unique ID

To search for a specific component device based on the unique identifier of that component device:
* Perform a GET request to the /device resource.

¢ Inthe URL of the GET request, include a filter option that matches the component_unique_id field to the
unique identifier of the component device. The unique identifier format will be different for each type of
component device. For example, the unique identifier of an AWS EC2 instance is the instance ID specified
by Amazon.

* Typically, you would also use the extended_fetch option to return all the attributes of the specified device.

For example, suppose that you want to get all the attributes of an AWS EC2 instance discovered in SL1. Suppose
that the EC2 instance has an instance ID, which is used by SL1 as the unique identifier, of i-c5cf573a. To get all
the attributes of the device, you can perform a GET request using the following URL:

https://<base URL of the API>/device?limit=100&filter.component unique
id=i-c5cf573a&extended fetch=1

In this example, the result_set in the response looks like this in XML format:

<result set elemtype="1list">

178 Searching for a Component by Unique ID

<device key="/api/device/74">

<name>us-east-la student34: c3.large: i-c5cf573a</name>

<ip/>

<hostname elemtype="null"/>

<snmp cred id>/api/credential/snmp/0</snmp cred id>

<snmp w _cred id elemtype="null"/>

<class_ type>/api/device class/451</class_type>

<collector group>/api/collector group/l</collector group>

<active>
<user-disabled>0</user-disabled>
<unavailable>1</unavailable>
<maintenance>0</maintenance>
<system-disabled>0</system-disabled>
<user-initiated-maintenance>0</user-initiated-maintenance>

</active>

<organization>/api/organization/0</organization>

<auto update>1</auto update>

<event suppress mask>00:00:00</event suppress mask>

<auto clear>1</auto clear>

<log all>1</log all>

<daily port scan>1</daily port scan>

<critical ping>0</critical ping>

<scan_all ips>0</scan_all ips>

<preserve hostname>1</preserve hostname>

Searching for a Component by Unique ID 179

180

<disable asset update>0</disable asset update>

<date added>1433793323</date added>

<alert avail and latency fail>0</alert avail and latency fail>
<13 topo elemtype="null"/>

<dashboard elemtype="null"/>

<last poll elemtype="null"/>

<parent device elemtype="null"/>

<state>3</state>

<child devices elemtype="1list"/>

<link name="notes" URI="/api/device/74/note/?hide

filterinfo=1&1imit=1000" description="Notes" elemtype="href"/>

<link name="logs" URI="/api/device/74/log/?hide
filterinfo=1&1imit=1000" description="Logs" elemtype="href"/>

<link name="applications" URI="/api/device/74/aligned app"

description="Aligned Dynamic Applications" elemtype="href"/>

<link name="performance data" URI="/api/device/74/performance data"

description="Collected Performance Dynamic App Data" elemtype="href"/>

<link name="config data" URI="/api/device/74/config data"
description="Collected Config Dynamic App Data" elemtype="href"/>

<link name="vitals" URI="/api/device/74/vitals"
description="Component-mapped (CPU/MEM/FS) Performance App Data and
Availability/Latency Data" elemtype="href"/>

<link name="interfaces" URI="/api/device/74/interface?limit=1000"

description="Index of interfaces for a device" elemtype="href"/>

<link name="thresholds" URI="/api/device/74/device thresholds"

description="Current device threshold values" elemtype="href"/>

<link name="details" URI="/api/device/74/detail" description="Current

device details" elemtype="href"/>

Searching for a Component by Unique ID

<link name="app credentials" URI="/api/device/74/device app
credentials" description="Read-only lookup for aligned credentials and

the device-aligned apps that are using them" elemtype="href"/>
</device>

</result set>

Searching for a Component by Unique ID 181

Example

Simple Provisioning System

Overview

This chapter describes a simple provisioning system written in PHP. The provisioning system is designed to be
used by a managed service provider that uses SL1 to provide monitoring services to its customers.

Using customer information supplied through a simple user interface, the example code makes requests to the

APl to:
» Create an organization record for the customer.
e Configure SNMP credentials using the supplied community strings.
» Create and run a discovery session.
 Display a list of devices for a specific customer.
» Configure selected devices using device templates.
* Remove a customer from SL1 by deleting devices, discovery sessions, credentials, and the organization
record.
Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [E).

« Toview a page containing all of the menu options, click the Advanced menu icon (==).

This chapter covers the following topics:

SYSTOM DSIgN . 184
PrerequUISIteS ... 185
System-Specific FUNCHONS ... 186
Utility Functions (Utils.php) . . 188
UserInterface ... 217

182

Provisioning a Customer (provision_customer.php)

Retrieving and Configuring Devices (configure_devices.php) ...

Removing a Customer (delete_customer.php)

183

System Design

The example provisioning system comprises the following front-end files that display the user interface:

index.php. Provides a user interface for provisioning a new customer and discovering additional devices for
an existing customer.

devices.php. Provides a user interface for configuring customer devices that have been discovered in SL1.

remove.php. Provides a user interface for removing a customer from SL1.

The following back-end files handle the provisioning procedures:

provision_customer.php. Processes the input values from index.php and performs the following
provisioning tasks:

If an organization record does not currently exist for the customer, creates an organization record for
the customer.

Configures SNMP credentials for each supplied SNMP community string.

Creates a discovery session for the customer using the configured SNMP credentials and the supplied
list of IP addresses.

Runs the discovery session.

If all of these tasks are successful, provision_customer.php redirects to configure_devices.php, which will
return a list of discovered devices to the devices.php page. If a provisioning task is unsuccessful, provision
customer.php returns an error message to index.php.

configure_devices.php. The configure devices.php script returns a list of devices and associated device
classes for a specified customer. The list of devices can be all devices associated with the customer's
organization record, all devices from the last discovery session for that customer, or new devices from the
last discovery session for that customer. Additionally, if a user selects the [Configure Devices] button in the
devices.php page, the configure_devices.php script applies the device templates selected by the user to the
specified devices.

delete_customer.php. Takes a customer name as input; deletes all devices, credentials, and discovery
sessions associated with that customer's organization record; and then deletes the organization record for
that customer.

System Design 184

The following diagram shows the control flow between the files when all procedures are successful:

Front End Back End
- Customer Name
H - IP Addresses e
index.php SNMP v2 Community Strings provision_customer.php
- Whether Non-SNMP devices should be discovered
[
-
- Customer Name
- Type of Devices to Return
—. List of devices to configure :>
- List of device templates to apply
. A " -
devices.php configure_devices.php
- List of Devices
<I: - List of Device Templates —
- List of Device Classes

h. A

:@
remove.php delete_customer.php

<)

When a back-end procedure is unsuccessful, an error message is returned to the appropriate front-end page.
The six main PHP files use the following additional files:
o header.php. Includes the common elements used by all three user interface pages.

* provisioning.css. Includes style information for the user interface pages. In this example, minimal style is
applied to the user interface pages. You can customize the user interface pages by adding style information
to this file.

o utils.php. Includes a set of PHP functions that are used by the three back-end files.

Prerequisites

To use the example code described in this chapter to interact with your instance of SL1, you must:

» Upgrade your system to version 7.5.5 or later. Some API requests used in the provisioning code are not
compatible with older versions of SL1.

e Manually create a device template in your instance of SL1 that will be applied to all devices discovered
using the provisioning system.

« Edit utils.php to include:

o

The IP address of an Administration Portal, Database Server, or All-In-One Appliance in your system.

185 Prerequisites

o

An administrator username and password.

o

The URI of the device template that will be applied to all devices discovered using the provisioning
system.

See the System-Specific Functions section for a description of the required changes to utils.php.

» Copy the example files to a web server. All the example files must be in the same directory on the web
server. The web server must:

o

Be able to make HTTP requests to your Administration Portal, Database Server, or All-In-One
Appliance.

Use a PHP processor module that includes cURL support. The code in this example uses cURL to
communicate with an Administration Portal, Database Server, or All-In-One Appliance. For more
information about cURL support in PHP, see http://www.php.net/manual/en/book.curl.php.

Use PHP version 5.2.0 or later. The code in this example uses JSSON format for all requests and uses
the json_encode and json_decode functions. For more information about JSSON support in PHP, see
http://php.net/manual/en/book.json.php.

e Manually add a custom attribute to the /device resource. The example code uses this custom attribute to
track the last device template that was applied to each device. To add the custom attribute, "c-last_dev_tpl",
POST the following JSON content to the /custom_attribute/device resource index:

{
"name":"last dev tpl",
"label":"last dev tpl",
"type":"string",
"index":"none",
"extended":"0"

}

For more information about custom attributes, see the Custom Attributes section.

System-Specific Functions

This example includes two functions in utils.php that return information about the instance of SL1 with which the
provisioning code interacts:

System-Specific Functions 186

http://www.php.net/manual/en/book.curl.php
http://php.net/manual/en/book.json.php

o get_admin_uri. Returns the URL of an Administration Portal, Database Server, or All-In-One Appliance with
the username and password of an administrator user embedded in the URL. This value is a required

parameter for most functions in utils.php.

get_base_template. Returns the relative URI of a device template. This device template specifies the basic
monitoring parameters for customer devices and is applied to every device discovered using the

provisioning system.

To use the example code with your instance of SL1, you must edit the get_admin_uri function to include the
IP address of your Administration Portal, Database Server, or All-In-One Appliance, the username for an
administrator user, and the password for that administrator user:

function get admin uri () {

$is ip = "10.100.100.15";

$is_user "em7admin";

$is pass = "<password>";

S$base uri = "https://" . $is user . ":" . Sis pass

return $base uri;

"@" . $is ip;

To use the example code with your instance of SL1, you must edit the get_base_template function to include the
relative URI of a device template in your system:

187

function get base template() {

return "/api/device template/3";

System-Specific Functions

Utility Functions (utils.php)

Most tasks performed by the back-end code for this example are performed using a set of generic functions that
can be re-used multiple times. If you are developing code that interacts with the Sciencelogic APl and are using a
different programming language, you might want to start by developing similar generic functions. In this
example, the functions are included in the file utils.php, which is used by every back-end PHP file. The utils.php
file includes functions that perform the following procedures:

e Perform a request to the API using a specified URI, request type, and optional POST content.

¢ Request a list of all entities returned by a specified resource index URI.

¢ Request the URI for an organization record associated with a specified customer name.

« Create an entity using a specified set of values.

o Delete a list of entities.

o Configure a set of SNMP credentials using a specified set of community strings.

e Request a list of all devices discovered by a specified discovery session.

¢ Request the URI of a Data Collection Unit in the Collector Group with the most available capacity.
¢ Request a list of entities that are referenced by another list of entities. For example, request a list of

device classes associated with a list of devices.

In addition, utils.php includes two functions that return information about the instance of SL1 with which the
provisioning code interacts. For this example, the information returned by these system-specific functions is

hard-coded.

The following sections describe each function in utils.php.
Performing Requests

To perform a request to the Sciencelogic APl in PHP, you must:

» Create and configure a cURL session.
* For requests that use the POST method, encode a PHP array as JSON content.
* Execute the cURL request.

 Parse the response and decode the JSON content in to a PHP array.

The perform_request function is designed to perform these steps and return the response in a PHP array that has
the following structure:

(

['http code'] => HTTP status code in the response

Utility Functions (utils.php) 188

['headers'] => Array of headers that were included in the response. Each

key in this array is the name of the header, which points to the value

for that header.

['content'] => Array that contains the decoded JSON body of the

response.

['error'] => If the HTTP code in the response is not healthy (i.e. not
200, 201, or 202), a human-readable error message that includes all

error information that was included in the response.

The perform_request function requires the following parameters:
o $base. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

 $resource. The relative URI of the resource to request.

The perform_request function has the following optional parameters:
o+ S$type. The type of request to perform. By default, the perform_request function performs a GET request
($type = "GET"). The function accepts the following string values in the $type parameter:

° POST. The function will POST JSON content to the specified $resource. This method can be used to

create or update resources.

APPLY. The function will POST a resource URI to the specified $resource. This method is used to
perform asynchronous operations such as starting discovery sessions and applying device templates
to devices. For information about applying a Sciencelogic resource URI to another resource, see the

Asynchronous Operations section.

° DELETE. The function will perform an HTTP DELETE request on the specified $resource.

« $content. For $type values that require a POST operation ("POST" or "APPLY"), the content to POST must
be passed in this parameter. For a $type value of "POST", $content must be an array, which will be
encoded in JSON format. For a $type value of "APPLY", $content must be the relative URI to POST.

The perform_request function uses the $base and $resource values to construct the full URI of the resource,

then creates a cURL session:
function perform request ($base, Sresource, $type = "GET", Scontent =

FALSE) {
Suri = S$base . S$Sresource;

$ch = curl init(Suri);

189 Utility Functions (utils.php)

For every request, the following cURL options are configured in the cURL session:

o CURLOPT_RETURNTRANSFER. Set to TRUE. By default, the PHP function that executes a request outputs
the response to standard out. By specifying this option, the function will return the response as a string.

o CURLOPT_HEADER. Set to TRUE. By specifying this option, the response headers will be included in the
output.

o CURLOPT_SSL_VERIFYPEER and CURLOPT_SSL_VERIFYHOST. Set to FALSE. To enable the use of the

example code in a test environment, the verification of the SSL certificate on the APl appliance is disabled.

Curl_setopt (Sch, CURLOPT_RETURNTRANSFER, TRUE) ;
curl setopt($ch, CURLOPT HEADER, TRUE);
Curl_setopt (Sch, CURLOPT_SSL_VERIFYPEER, FALSE) ;

curl setopt ($ch, CURLOPT SSI, VERIFYHOST, FALSE);

If the $type parameter is set to "POST" and content is supplied, the following additional cURL options are set to
perform a create/update POST request:

o CURLOPT_POST. Set to TRUE to perform an HTTP POST request.

o CURLOPT_POSTFIELDS. Set to the value of $content (in this case, a PHP array) encoded as JSSON
content.

o CURLOPT_HTTPHEADER. Specifies the appropriate content-type header to include in the request.

if($type == "POST" AND S$Scontent) {
$json_content = json encode ($content) ;
curl_setopt($ch, CURLOPT POST, TRUE) ;
curl setopt (Sch, CURLOPT POSTFIELDS, $json content);

curl setopt ($ch, CURLOPT HTTPHEADER, array('content-type:

application/Jjson')) ;

Utility Functions (utils.php) 190

If the $type parameter is set to "APPLY" and content is supplied, the following additional cURL options are set to
perform POST request that applies a resource URI:

o CURLOPT_POST. Set to TRUE to perform an HTTP POST request.
o CURLOPT_POSTFIELDS. Set to the value of $content (in this case, a the URI of a resource).
o CURLOPT_HTTPHEADER. Specifies the appropriate content-type header to include in the request.

if ($type == "APPLY" AND S$Scontent) {
curl_setopt($ch, CURLOPT POST, TRUE) ;
curl setopt ($ch, CURLOPT POSTFIELDS, S$content);

curl setopt ($ch, CURLOPT HTTPHEADER, array('content-type:

application/em7-resource-uri'));

If the $type parameter is set to "DELETE", the CURLOPT_CUSTOMREQUEST option is set to perform an HTTP
DELETE in the cURL session:

if ($type == "DELETE") {

curl setopt ($ch, CURLOPT CUSTOMREQUEST, "DELETE");

If the $type parameter is set to "POST" or "APPLY" and the $content parameter is not supplied, the perform_
request function returns FALSE without performing a request:

elseif ((S$Stype == "POST" OR S$type == "APPLY") AND !S$Scontent) {

return FALSE;

191 Utility Functions (utils.php)

The perform_request function executes the cURL request and stores the HTTP status code from the response in
the output array ($response):

$output = curl exec(Sch);

Sresponse['http code'] = curl getinfo($ch, CURLINFO HTTP CODE) ;

The response from the APl includes the following information that must be included in the output of the function:
 Each response header on a separate line.

* The JSON content in the body of the response on a single line.

To parse this information, an array called $output_array is created with each line of the response as an array
element. Because the HTTP status code has already been stored, the first line of the response, which contains the
HTTP version and status code, is removed from the array:

Soutput array = explode("\n", Soutput);

array shift (Soutput array);

The function iterates through each line of the response. If a line begins with an opening brace, it is assumed to be
the JSON content and is added to the output array ($response):

foreach (Soutput array as Sline) {
if (strpos($line, "{") < 2 AND strpos($line, "{") !== FALSE) {

Sresponse['content'] = json decode($line, TRUE);

If a line is not content and includes a colon, it is assumed to be a header and is added to the output array
($response):

elseif (strpos($line, ":") !== FALSE) {
$header array = explode(":", $line);
Sresponse['headers'] [Sheader array[0]] = trim(Sheader array[l]);

Utility Functions (utils.php) 192

To allow other functions to assume that the "content" key always exists in the output array, the "content" key in the
output array ($response) is initialized as an empty array if it is not already initialized:

if (!array key exists('content', Sresponse)) {

Sresponse['content'] = array();

In addition to HTTP status codes, every response from the APl includes headers that provide additional details
about the result of a request:

X-EM7-Implemented-methods. A comma-delimited list of methods that are supported by the requested
resource. This header is intended to provide information on the actions that can be performed on a given
resource. For example, if you perform a GET request on the /device resource index, X-EM7-Implemented-
methods will contain "GET,POST", the two methods supported by /device. If you perform a GET request on
a specific device (e.g. /device/1), the X-EM7-Implemented-methods header will contain
"GET,POST,PUT,DELETE", because a specific device resource supports all available methods.

X-EM7-Applicable-resources. A comma-delimited list of base URIs for resources that can be applied to the
requested resource. For example, to start a discovery session through the API, you would POST a specific
/discovery_session resource to the /discovery session active resource index; therefore, if you perform a
GET request on the /discovery session_active resource index, the response will include a X-EM7-
Applicable-resources header of "/discovery_session". For more information on applying resource URIs to
other resources, see the Asynchronous Operations section.

X-EM7-authenticated-user. The URI of the user account that authenticated the request. If the request
included the X-EM7-run-as header, the X-EM7-authenticated-user will return the run-as user.

X-EM7-status-code. Typically a human-readable version of the HTTP Status Code. For certain errors, X-
EM7-status-code might include additional information about why a request was unsuccessful. For
example, if a response has the HTTP Status code "400 Bad Request", the X-EM7-status-code might be
"FAILED_INPUT VALIDATION".

X-EM7-status-message. A human-readable description of the result of a request. The X-EM7-status-
message can contain multiple messages delimited by a newline character (\n). For example, if a response
has the HTTP Status code "302 Found", the X-EM7-status-message might be "ticket index requires a limit",
indicating the request was missing the required limit option.

X-EM7-Last-updated. This header is returned only when requesting device configuration data from the
API. Returns the date and time that at least one value in the returned data changed.

If the HTTP status code from the response is not 200, 201, or 202 (i.e. 301 or above), the "error" key in the output
array ($response) is set to an appropriate message, which includes the values from the X-EM7 -status-message

and X-EM7-info-message headers:

193

if (Sresponse['http code'] > 300) {

Sresponse['error'] = "HTTP status " . Sresponse['http code'] . "

returned. ";

Utility Functions (utils.php)

if (array key exists ("X-EM7-status-message", Sresponsel'headers'])) ({

Sresponse['error'] .= Sresponse['headers']['X-EM7-status-message']

if (array key exists("X-EM7-info-message", Sresponse['headers'])) {

Sresponse['error'] .= Sresponse['headers']['X-EM7-info-message']

Finally, the cURL session is closed and the output array ($response) is returned:

curl close ($ch);

return Sresponse;

Requesting a List of Entities

All resource indexes in the APl require the inclusion of the "limit" option in all GET requests; therefore, to obtain a
full list of entities from a resource index, you might need to perform multiple requests. For example, if 300 devices
are discovered in the system and you use the default limit of "100" when performing a request on the "/device"
resource index, you must perform three requests to obtain a list of all devices: one request with an offset of 0, one
request with an offset of 100, and one request with an offset of 200.

The get_all function is designed to return a list of all available entities for a given resource index URI. The get_all
function includes a do-while loop that handles cases where multiple requests are required. For example, if the
URl'is "/device", the get_all function returns a list of all devices in the system.

The get_all function requires the following parameters:
o $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

o $uri. The relative URI of a resource index. The limit and offset parameters are added to the URI by the get_
all function; the URI must not include limit or offset parameters. The logic in the get_all function requires
that responses from the APl include the total_matched value; therefore, the passed URI must not include
the hide_filterinfo parameter.

The get_all function returns:

Utility Functions (utils.php) 194

» On success, an array of entities. The structure of the array of entities is identical to the structure returned in
the result_set section of the response from the specific resource URI. The array of entities can be empty if
the request to the resource URI was successful, but no results were returned.

* Onfailure, an error message.

Any function that calls the get_all function can check success/failure by determining if the returned value is an
array or a string.

Before executing the do-while loop in which requests to the resource URI are performed, the array of entities is
initialized, initial offset value is set to 0, and the limit and offset values are added to the URI:

function get all(Sbase uri, Suri) {

Soffset = 0;
$Srequest uri = $uri . "&limit=100s&offset=";

Sentities = array();

The the $request_uri variable does not include a value for the offset option. For each iteration of the do-while
loop, the current offset is appended to the end of $request_uri.

The do-while loop performs a GET request for the URI with the current offset. If the request was successful (the
HTTP status code is 200), the result_set from the request is added to the list of entities:

do {
Sresponse = perform request ($base uri, $request uri . Soffset, "GET");
if (Sresponse['http code'] == 200 AND array key exists("result set",

Sresponse(['content']) AND count ($Sresponse['content']['result set']) >
0) {

Sentities = array merge ($entities, Sresponse['content']['result
set']);

If the request is unsuccessful, the $message variable is initialized with an error message:

elseif (Sresponse['http code'] != 200) {

195 Utility Functions (utils.php)

"o,

Smessage = "An error occured while requesting entities. ";

if (array key exists("error", Sresponse)) {

Smessage .= S$Sresponse['error'];

Because the limit parameter is set to 100 in the URI, the offset value is incremented by 100 on each iteration. The
do-while loop iterates if the previous request was successful and more entities are available. The "fotal _matched"
value from the previous response indicates the total number of entities that can be returned by this specific URI;

more entities are available if the current offset value is lower than "total _matched™":

Soffset = Soffset + 100;

} while(!isset ($message) AND (Soffset < Sresponse['content']['total

matched'])) ;

If an error message was generated by any request performed by the get_all function, the returned value is the
error message generated by the failed request. If no error messages were generated, the array of entities is

returned:

if (isset (Smessage)) {

return S$message;

else {

return Sentities;

Utility Functions (utils.php)

196

Organization Lookup
The input forms used in this example include a field for customer name. The lookup_organization function is
designed to return the URI for a customer's organization record using the name of a customer.
The lookup_organization function requires the following parameters:
o $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

e $customer. The customer name.

The lookup_organization function returns:

e On success, the URI of the organization record for the specified customer.

e On failure, boolean FALSE.

The lookup_organization function constructs a request fo the /organization resource index using the customer
name as a search parameter. The customer name is URL encoded to handle names that include spaces:

function lookup organization (Sbase uri, Scustomer) {

Sresource = "/api/organization?limit=1&hide

filterinfo=1l&filter.company=" . rawurlencode (Scustomer) ;

Sresponse = perform request ($base uri, Sresource, "GET");

If the request was successful (the HTTP status code is 200) and at least one organization is returned, the URI of the
first organization in the response is returned. Because the request specified that the customer name must be
matched exactly and because all organization names in an instance of SL1 must be unique, the assumption is
made that the response will not include more than one organization:

if (Sresponse['http code'] == 200 AND count ($Sresponse['content']) > 0 AND

array key exists ("URI", Sresponse['content'][0])) {

return Sresponse['content'][0]['URI'];

else {

return FALSE;

197 Utility Functions (utils.php)

Creating Entities
The create_entity function is designed to create an entity using the resource index URI for that entity and an array
of field/value pairs for the entity.
The create_entity function requires the following parameters:
o $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

o S$entity_uri. The resource index URI for the entity to be created. For example, to create an organization,
supply "/api/organization" in the $entity_uri parameter.

« $entity_array. A PHP array that contains field/value pairs of the attributes for the entity. This PHP array will
be converted to JSON format and POSTed to the specified URI.

The create_entity function returns an array:

» The first array value (array index Q) is a boolean that indicates whether the entity was created successfully.

» The second array value (array index 1) is a string. On success, the string is the URI of the created entity. On
failure, the string is an error message.

The create_entity function uses the perform_request function to create the entity. The perform_request
function handles the conversion of the PHP array to JSON format and the options required to perform a
POST request:

function create entity($base uri, Sentity uri, Sentity array) {

Sresponse = perform request ($base uri, $entity uri, "POST", S$entity

array) ;

If the request was successful (the HTTP status code is 201), the function returns TRUE at array index O and the
contents of the "Location" header at array index 1, which contains the relative URI of the created element:

if (Sresponse['http code'] == 201) {

return array (TRUE, Sresponse['headers']|['Location']);

If the request was unsuccessful, the function returns FALSE at array index O and the error message at array index
1:

else {
Serror message = "Could not create " . substr(Sentity uri, 1) . > Wg

if (array key exists("error", Sresponse)) {

Utility Functions (utils.php) 198

Serror message .= $response['error'];

return array(FALSE, Serror message);

Deleting Entities

The multi_delete function is designed to delete multiple entities.
The multi_delete function requires the following parameters:
o $base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

« $entities. An array that contains the entities to be deleted. The $entities array must be multi-dimensional;
each element in the $entities array must be an array that includes "URI" as a key. The function uses the
value of "URI" as the relative URI in a delete request. The structure of the $entities array is the same as an
array returned by the get_all function.

The multi_delete function returns NULL on success or an error message on failure.

The multi_delete function initializes $bad_entities as an array. The $bad_entities array is used to track entities
that could not be deleted:

function multi delete (Sbase uri, Sentities) {

$bad entities = array();

If the input is valid ($entities is an array), the multi_delete function iterates through each element in the array.
For each element, if the element is an array that contains the key "URI", the function performs a delete request
using the value that corresponds to the key "URI". If the element was not an array, did not contain the key "URI", or
the delete request fails, the element is added to the $bad_entities array:

if (is_array(Sentities)) {
foreach ($Sentities as S$Sentity) {
if (is_array(Sentity) AND array key exists('URI', Sentity)) {
Sresponse = perform request ($base uri, S$entity['URI'], "DELETE");

if (Sresponse['http code'] >= 400) {

199 Utility Functions (utils.php)

$bad entities[] = Sentity;

else {

$bad entities[] = Sentity;

If all elements in the $entities array were deleted, the multi_delete function returns NULL, indicating success:

if (count (Sbad entities) == 0) {

return NULL;

If one or more elements in the $entities array could not be deleted, an error message is constructed by

concatenating the contents of each element in $entities that could not be deleted. Instead of determining the

data type of each element, the print_r function is used to output the human-readable string for the element:

else {
Serror message = "Could not delete: ";

foreach (Sbad entities as Sentity) {

Serror message .= print r($entity, TRUE) . ".

return $error message;

else {

return "Must pass an array of entities";

Utility Functions (utils.php)

200

Configuring SNMP Credentials

The configure_credentials function is designed to return an array of SNMP v2 credentials for a specific
organization using a list of community strings. The configure_credentials function creates new credentials if o
credential with the same community string does not already exist for the organization.

The configure_credentials function requires the following parameters:
o $base uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.
» $customer. The name of the customer organization for which the credentials will be used.

o $community_strings. A comma-delimited list of community strings. The configure_credentials function
ensures that a credential associated with the $customer organization exists for each community string in the
list.

The configure_credentials function returns an array of credential URIs on success or an error message on
failure.

The configure_credentials function uses the array_walk PHP function when the list of community strings is
parsed. The array_walk function takes the name of a function as a parameter and applies that function to each
value in the array. In our example code, the array walk applies the trim_value function to each value in the
array. The trim_value function is included in the utils.php file and removes leading and trailing whitespace from
each value passed in the parameter:

function trim value (&Svalue) {

Svalue = trim($Svalue) ;

The $community_strings parameter is split into an array of community strings. If a user enters spaces in the
comma-delimited list, the trim_value function removes leading and trailing whitespace from each element in the
array:

function configure credentials($base uri, $Scustomer, S$community strings) {
Scommunity array = explode(",", Scommunity strings);

array walk(S$community array, 'trim value');

201 Utility Functions (utils.php)

All credentials created by the configure_credentials function are named "customer: community string". The
configure_credentials function performs a request for all credentials associated with the specified customer by
searching for credential names that include the string $customer:

Sresource = "/api/credential/snmp?limit=1000&snmp version=2&hide

filterinfo=1l&filter.cred name.contains=" . rawurlencode (Scustomer) ;

$existing credentials = perform request (S$Sbase uri, S$resource, "GET");

If the request for existing credentials is successful, the response is processed using the following arrays:

» $existing_credentials. The response to the request for all credentials currently associated with the
organization specified in $customer.

o $community_array. The array of community strings passed in the $community_strings parameter.

o $existing_communities. Initialized to an empty array. As the function iterates through $existing
credentials, the community string for each existing credential that matches a community string that was
passed in the $community_strings parameter is added to this array.

o+ $credentials. Initialized to an empty array. If a community string for an existing credential matches a
community string that was passed in the $community_strings parameter, the URI for that credential is
added to this array.

if (Sexisting credentials['http code'] == 200) {
Scredentials = array();

Sexisting communities = array();

The configure_credenetials function iterates through the existing credentials for the organization in the
$existing_credentials array. The community string is parsed from the name of the existing credential based on
the standard naming scheme. If the community string matches a value in $community_array, the community
string is added to the $existing_communities array and the URI is added to the $credentials array:

foreach (Sexisting credentials['content'] as $key => Scredential) {

$existing community = substr($credential['description'], strlen

(Scustomer) + 2);

$matched community = array search($existing community, Scommunity

array) ;

if (Smatched community !== FALSE) {

Utility Functions (utils.php) 202

Scredentials[] = $credential['URI'];

Sexisting communities[] = S$community array[Smatched community];

The configure_credentials function must now create a credential for any community string that appears in
$community_array that does not appear in $existing_communities. The variable $error_message is
initialized as an empty string; all error messages generated while credentials are added are appended to this
string. The variable $diff is initialized as an array of community strings that appear in $community_array that do
not appear in $existing_communities:

Serror message = "";

$diff = array diff (Scommunity array, S$existing communities);

If $diff is empty, i.e. no additional credentials need to be created, processing is complete. If new credentials need
to be created, the variable $organization is initialized to the URI of the organization record associated with
$customer:

if (count (S$Sdiff) > 0) {

$organization = lookup organization ($base uri, S$customer);

If the organization UR is returned by the lookup_organization function, the configure_credentials function
iterates through the community strings in $diff. For each community string, the credential name is constructed
using the customer name and the community string:

if (Sorganization !== FALSE) {
foreach ($diff as S$community) {

$cred name = S$customer . ": " . trim(Scommunity);

The variable $cred_post_array is initialized to an array that represents the content that will be used to create the
credential. When the credential is created, the create_entity function encodes this array in JSON format. The
array includes the following field/value pairs that are applicable to /credential/snmp resources:

(

203 Utility Functions (utils.php)

['cred name'] => The name of the credential.

['cred host'] => The hostname associated with the credential. Always set

to an empty string.

['cred port'] => The port associated with the credential. Always set to

the standard SNMP port, 161.

['cred timeout'] => The timeout for the credential. Always set to a

default timeout of 1500ms.

['all orgs'] => This setting specifies whether the credential is visible
to all organizations (1) or is restricted to specific organizations (0).
All credentials created by the provisioning system are aligned only with
the specific organization for which they are created, so this value is

always set to O.

['snmp version'] => The SNMP version. For simplicity, this example

creates only SNMP v2 credentials.
['snmp ro community'] =>The SNMP community string.

['aligned organizations'] => A list of organizations to which the
credential is visible. A list element in JSON is represented as an array

in the equivalent PHP structure.

The $cred_post_array variable is passed to the create_entity function with the URI of an Administration Portal,
Database Server, or All-In-One Appliance and the relative URI that is used to create SNMP credentials
(/api/credential/snmp):

$cred post array = array('cred name' => $cred name, 'cred host'

=> "", 'cred port' => 161, 'cred timeout' => 1500, 'all orgs' =>

0, 'snmp version' => 2, 'snmp ro community' => trim($community),
'aligned organizations' => array(Sorganization));
$cred response = create entity($Sbase uri,

"/api/credential/snmp", Scred post array);

The create_entity function returns an array of two values. Index O in the returned array is a boolean that
indicates whether the entity was created successfully. Index 1 in the returned array is the URI of the created entity

Utility Functions (utils.php) 204

on success or an error message on failure. If the credential was created successfully, the URI of the new credential
is added to the $credentials array. If the credential was not created, the error message from the create_entity
function is appended to $error_message:

if (Scred response[0]) {

Scredentials[] = Scred response[l];
}
else {

$error message .= $cred response[l];

If no organization URI was returned by the lookup_organization function, an error message is appended to
$error_message:

else {
Serror message .= "Could not find organization record for
customer: " . Scustomer . ". ";

If the request for existing credentials is not successful, an the $error_message variable is set to an error message
that includes the error message constructed by the perform_request function, if available:

else {
Serror message = "Could not get list of existing credentials. ";
if (array key exists("error", Sexisting credentials)) {

Serror message .= $existing credentials['error'] . ". ";

205 Utility Functions (utils.php)

If an error message has been generated by the create_credentials function, that error message is returned.
Otherwise, the array of credential URIs is returned:

if (strlen(Serror message) == 0) {

return S$credentials;

else {

return Serror message;

Requesting Discovery Session Logs

The get_discovery_result function is designed to return an array that contains information about a specified
discovery session. The returned array has the following structure:

(

['status'] => An integer that specifies the result of the get discovery

result function:

0 = The specified discovery session has completed and get
discovery result was able to return a list of devices discovered by the

discovery session.

1 = The specified discovery session is currently running and
get discovery result was able to return a list of devices discovered by the

discovery session.
2 = The specified discovery session has never been run.

3 = An error occurred in a request made by the get

discovery result function.

Utility Functions (utils.php) 206

['devices'] => If the returned status is 0 or 1, is set to an array of

"2

device arrays. Each device array includes "ip", "name", "uri", and "new"
keys. The "new" key is a boolean that is set to TRUE if the device was
discovered as a new device or FALSE if the device was discovered as an

existing device.

['error'] => If the returned status is 3, is set to an error message.

The get_discovery_result function requires the following parameters:
o $base uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

o $session_uri. The URI for a discovery session resource.

The get_discovery_result has the following optional parameter:

« $new_only. If TRUE is passed in this parameter, the list of devices returned by the function will include only
newly discovered devices from the discovery session. By default, the function returns all discovered devices,
both new and existing, from the discovery session.

function get discovery result (Sbase uri, $session uri, $new only = FALSE)

{

The function includes a do-while loop in which all log messages for a discovery session are requested. Like the
get_all function, a limit of 100 is specified in the logs URI and the offset is increased on each iteration of the do-
while loop. The variable $discovery_logs is initialized as an array, to which the log messages in the responses
will be added. The variable $not_started is initialized as FALSE. If the logic within the do-while loop determines
that the discovery session is not running, this variable is set to TRUE:

$log uri = S$session uri . "/log?extended fetch=1l&limit=100&offset=";
Soffset=0;
$discovery logs = array();

$not started = FALSE;

do {

Sresponse = perform request ($base uri, $log uri . Soffset, "GET");

207 Utility Functions (utils.php)

If the request for logs in this iteration of the do-while loop successfully returns logs, the returned logs are added to
the $discovery_logs array:

if (Sresponse['http code'] == 200 AND array key exists("result set",
Sresponse['content']) AND count($response['content']['result_set']) >
0) {

$discovery logs = array merge (Sdiscovery logs, Sresponsel'content']

['result set']);

If the request for logs is successful but does not return any logs, the function must determine whether the discovery
session was never started or if the discovery session is running but has not yet generated any logs. To do this, the
URI of the discovery session is manipulated to determine the equivalent /api/discovery session_active URI:

elseif (Sresponse['http code'] == 200 AND array key exists("total
matched", S$response['content']) AND Sresponse['content']['total_

matched'] == 0) {
$uri array = explode("/", S$session uri);
suri array[2] = "discovery session active";

$active uri = implode("/", Suri array);

The function performs a GET request on the /discovery session_active URI for the specified discovery session. If
the response includes an HTTP status code of 200, the discovery session is currently running. The output array
($result) is initialized with a status of 1 (running) with an empty array of devices:

$active check = perform request (Sbase uri, Sactive uri, "GET");

if (Sactive check['http code'] == 200) {

Sresult = array("status" => 1, "devices" => array());

Utility Functions (utils.php) 208

If the response includes an HTTP status code of 303 (See Other), the discovery session exists but is not currently
running. The output array ($result) is initialized with a status of 2 (never run) and an appropriate error message:

elseif (Sactive check['http code'] == 303) {

Sresult = array("status" => 2, "error" => "Discovery Session has

never run.");

If the response includes an HTTP status code other than 200 or 303, an error occurred with the request. The
output array ($result) is initialized with a status of 3 (error) and an appropriate error message:

else {
Sresult = array("status" => 3, "error" => "Could not determine
status of discovery session. ");

if (array key exists("error", Sactive check)) {

Sresult['error'] .= Sactive check['error'];

If the request for discovery session logs fails (HTTP status code is not 200), the output array ($result) is initialized
with a status of 3 (error) and an appropriate error message:

else {

Sresult = array("status" => 3, "error" => "Could not get discovery

session logs ");
if (array key exists("error", Sresponse)) {

Sresult['error'] .= Sresponse['error'];

209 Utility Functions (utils.php)

The offset is increased for the next iteration for the do-while loop. The loop continues if the output array ($result)
has not been initialized, i.e. the request for logs was successful and returned one or more logs, and if more logs
are available. The "total _matched" value from the previous response indicates the total number of logs that can
be returned; more logs are available if the current offset value is lower than "total_matched™":

Soffset = $Soffset + 100;

} while(!isset ($result) AND array key exists("total matched", S$response

['content']) AND (Soffset < $response['content']['total_matched']));

If the output array ($result) has not been initialized, all requests performed in the do-while loop were successful
and one or more logs were returned. In this case, the status returned by the get_discovery result function will be
either O (logs were successfully returned and the discovery session is complete) or 1 (logs were successfully
returned and the discovery session is still running). The function iterates through the array of returned log
messages:

if(!isset (Sresult)) {
Sresult = array("devices" => array());

foreach ($discovery logs as $log) {

Each discovery session log includes a "msg_id" field, which specifies the type of message in the log entry. To
return a list of devices and to defermine the state of the discovery session, the get_discovery_results function
uses only log messages that have one of the following msg_id values:

o 125. Associated with the log message that indicates the discovery session is complete.

» 500. Associated with the log message that is generated when an existing device is found by the discovery
session.

o 501. Associated with the log message that is generated when a new device is found by the discovery
session.

The "msg_id" field is used in a switch statement, which includes cases for the three values:

switch($log['msg id']) {

If the log message indicates the discovery session is complete, the status key in the output array is set to O:

case 125:

Sresult['status'] = 0;

Utility Functions (utils.php) 210

break;

If the log message indicates an existing device is found and the $new_only parameter is set to FALSE, the device
is added to the device array:

case 500:
if (!$new only) {

Sresult['devices'][] = array("ip" => Slog['ip']l, "name" =>

S$log['name'], "uri" => $log['device'], "new" => FALSE) ;

break;

New devices are always added to the device array:

case 501:
Sresult['devices'][] = array("ip" => $log['ip'], "name" => $log
['name'], "uri" => $log['device'], "new" => TRUE) ;
break;

211 Utility Functions (utils.php)

If the status key in the output array has not been set after all log messages have been evaluated, the discovery
session is still running:

if (larray key exists("status", Sresult)) {

Sresult['status'] = 1;

return Sresult;

Requesting an Available Data Collection Unit

To create a discovery session using the API, you must specify the URI of an /appliance resource. The supplied
/appliance resource must be an All-In-One Appliance or a Data Collector. The get_collector_id function is
designed to return the URI of an appliance for discovery.

The get_collector_id function requires the following parameter:

o $base uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

The get_collector_id function returns an array:

» The first array value (array index Q) is a boolean that indicates whether an appropriate appliance resource
was found.

* The second array value (array index 1) is a string. On success, the string is the URI of an appropriate
appliance. On failure, the string is an error message.

For systems that include All-In-One Appliances, the function returns the URI of the currently active All-In-One
Appliance. For distributed systems, the function returns the URI of a Data Collector in a collector group.

An initial request is made on the /appliance resource index. The request includes filter criteria that specifies that
only All-In-One Appliances (type = "ao") that are currently active (ha_status = 1) should be returned:

function get collector id($base uri, Snum devices) {

Sresource = "/api/appliance?limit=100&filter.type=ao&filter.ha
status=1l&hide filterinfo=1";

Sresponse = perform request ($base uri, S$resource, "GET");

Utility Functions (utils.php) 212

If the response includes at least one appliance, the URI of that appliance is returned:
> 0) |

if (Sresponse['http code'] == 200 AND count (Sresponse['content'])

return array (TRUE, Sresponse['content'][0]['URI']);

If the initial request fails, the function returns an error message:

elseif (Sresponse['http code'] != 200) {
Serror message = "Request for list of appliances failed. ";
if (array key exists("error", Sresponse)) {
Serror message .= Sresponsel['error'];

return array(FALSE, Serror message);

If the initial request is successful, but does not return any appliances, a request is made for all collector groups in

the system using the extended fetch option:
else {

Sresource = "/api/collector group?limit=100&hide

filterinfo=1&extended fetch=1";

Sresponse = perform request ($base uri, S$resource, "GET");

If the request for collector groups is successful and at least one collector group is returned, the function iterates
through the array of returned collector groups. For each collector group, the function checks the data_collectors
field. If a collector group includes at least one Data Collector, the URI of the first Data Collector in that collector

group is returned:

if (Sresponse['http code'] == 200 AND count ($Sresponse['content']) > 0)

{

213 Utility Functions (utils.php)

foreach (Sresponse['content'] as Scug id => Scug) {

if (array key exists("data collectors", S$cug) AND count (Scug['data

collectors']) > 0) {

return array (TRUE, Scug['data_collectors'][O]);

If the request for collector groups is not successful (the HTTP Status Code in the response is not 200), an
appropriate error message is returned. If an error message was returned by the perform_request function, it is
included in the error message:

elseif (Sresponse['http code'] != 200) {
Serror message = "Request for list of collector groups failed. ";
if (array key exists("error", Sresponse)) {
Serror message .= $response['error'];

return array(FALSE, Serror message);

If the request for collector groups is successful but does not return any collector groups, an appropriate error
message is refurned:

else {

return array (FALSE, "No collector groups configured on system.");

Utility Functions (utils.php) 214

Requesting a List of Referenced Entities

APl resources that represent a specific entity can include references to other entities. These references are
displayed as the relative URI of that other entity. For example, if you perform a GET request on "/api/device/1",
the response will include a "class_type" field that contains the URI of the device class associated with the device.
The get_join_resources function is designed to return an array of entities referenced in a particular field in a
passed array of entities.

The get_join_resources function requires the following parameters:

$base_uri. The URL of an Administration Portal, Database Server, or All-In-One Appliance.

$entity_list. An array that contains the entities that include a field that references another entity. For
example, if you want to retrieve an array of device classes that are associated with a set of devices, you
would pass the array of devices in the $entity_list parameter.

$left_join_field. The name of the field associated with the entities in the $entity_list that reference the other
entity. For example, all devices include a "class_type" field that specifies the URI of the device class
associated with that device; therefore, if you want to retrieve an array of device classes that are associated
with a set of devices, you would pass "class_type" in the $left_join_field parameter.

$right_join_field. For efficiency, the get_join_resources function performs a single request for all
referenced entities instead of performing a request on each referenced URI. To request all referenced
entities, the get_join_resources function performs a request to the appropriate resource index with the
extended_fetch option enabled. To limit the request to only entities that are referenced by the entities in the
$entity_list, the get_join_resources function concatenates the ID values of each referenced entity and
passes them as a search value using the "in" function. To do this, the get_join_resources function must
specify the field in the referenced entity that contains the ID value. You must pass the name of that field in
the $right_join_field parameter. For example, if you want to retrieve an array of device classes that are
associated with devices and the get_join_resources function determines that the devices in $entity_list are
associated with device classes 2, 5, and 9, the get_join_resources function must pass the following URI to
the get_all function to get the list of device classes:

/api/device class?extended fetch=ls&filter.class_type.in=2,5,9

The field used in the filter clause must be passed in the $right_join_field parameter. In this case, $right_
join_field is "class_type".

The get_join_resources function returns an array of entities on success or an error message on failure. If no
referenced entities are found, the returned array is empty.

The get_join_resources function initializes $in as an array. The $in array is used to track the ID values of the

entities that must be requested:

215

function get join resources ($base uri, Sentity list, $left join field,

$right join field) {

$in = array();

Utility Functions (utils.php)

The get_join_resources function iterates through the array of entities passed in the $entity_list parameter. For
each entity in the array, the function looks up the URI for the referenced entity using the field name passed in the
$left_join_field parameter. Two variables are populated by the URI of the referenced entity:

o $join_uri. Initialized to an array that contains each section of the URI (delimited by the "/" character) as an
element. The specific resource ID is removed from the end of the array using the array_pop function;
therefore, when the foreach loop completes, $join_uri is an array that contains each section of the URI for
the resource index of the referenced entity.

For example, if the URI of the referenced entity is /credential/snmp/1, the$join_uri array looks like this
when the foreach loop completes:

(
[0] => "credential"

[1] => "snmp"

o $in. An element in this array is set to the ID value of the referenced entity.

foreach ($Sentity list as Sentity) {
if (array key exists($left join field, Sentity)) {
$join uri = explode ("/", Sentity[$left join field]);

$in[] = array pop($join uri);

If at least one entity ID exists in the $in array, the get_join_resources function constructs a URI for the resource
index of the referenced entities using:

o The $join_uri array, which contains the base resource index URI.

+ The value in $right_join_field, which is the field in the referenced entity that contains the ID values for that
entity.

o+ The $in array, which contains the ID values of each referenced entity from the list of entities that was passed
in the $entity_list array.

The URI is used to request a list of referenced entities:

if (count ($in) > 0) {

Utility Functions (utils.php) 216

$uri = implode ("/", $join uri) . "?extended fetch=l&filter." . Sright

join field . ".in=" . implode(",", $in);

$join list = get all(Sbase uri, Suri);

The get_all function returns an array or entities on success and an error message on failure. Because the get_all
function returns the same values as the get_join_resourcesfunction, the result of the get_all function can be
returned without additional processing:

return $join list;

If no entity IDs exist in the $in array, the function returns an empty array without performing a request:

else {

return array();

User Interface

The example provisioning system comprises the following front-end files to display the user interface:

« index.php. Provides a user interface for provisioning a new customer and discovering additional devices for
an existing customer.

« devices.php. Provides a user interface for configuring customer devices that have been discovered in SL1.

» remove.php. Provides a user interface for removing a customer from SL1.

The user interface files use the following additional files:
o header.php. Includes the common elements used by all three user interface pages.

o provisioning.css. Includes style information for the user interface pages. In this example, minimal style is
applied to the user interface pages. You can customize the user interface pages by adding style information
to this file.

The following sections describe each of these five files.

217 User Interface

header.php

The header.php file is required in all user interface PHP files. The header.php file outputs links to each user
interface page, includes utils.php, and outputs messages from the back-end PHP files:

<p>Run Discovery | Configure

Devices | Remove Customer</p>
<?php
require once 'utils.php';

session start();
if (isset ($ _SESSION['message'])) {
echo "<p>" . $_SESSION['message'] . "</ p>";

unset ($ SESSION['message']);

else {

echo "<p> </p>";

?>

User Interface 218

index.php

The index.php file provides a user interface for provisioning a new customer and discovering additional devices
for an existing customer:

Run Discovery | Configure Devices | Remove Customer

Customer Name:
Device IP List (Comma-separated):
SNMP v2 Community Strings:

[] Discover Non-SNMP Devices

<html>
<head>
<title>Provision Customer</title>
<link href="provisioning.css" rel="stylesheet" type="text/css">
</head>
<body>
<?php
require once 'header.php';
?>
<form action="provision customer.php" method="post">
Customer Name:

<input type="text" name="customer" />

219 User Interface

Device IP List (Comma-separated):

<input type="text" name="ip addresses" />

SNMP v2 Community Strings:

<input type="text" name="community strings" />

<input type="checkbox" name="non snmp" value="yes" /> Discover Non-

SNMP Devices

<input type="submit" value="Submit" />
</form>
</body>

</html>

When you enter customer information and select the [Submit] button, the provision_customer.php script
performs the required tasks for provisioning that customer.

devices.php

The devices.php file provides a user interface for configuring customer devices in SL1:

Run Discovery | Configure Devices | Remove Customer

Devices To Configure:

Customer Name:

) New Devices from last Discovery
) All Devices from last Discovery
0 All Devices in Organization

Show Devices

When you enter a customer name and select the [Show Devices] button, the configure_devices.php script
returns a list of devices that are then displayed in the devices.php page. For each device in the list of devices, the
devices.php page displays a drop-down list of all device templates in the Service Level column. The last device
template that was applied to the device is selected by default:

User Interface 220

Run Discovery | Configure Devices | Remove Customer

Devices To Configure:

Customer Name: CustomerA
7 New Devices from last Discovery
7 All Devices from last Discovery
@ All Devices in Organization

Show Devices

Device Name Device IP Device Type Service Level
traps sciencelogic local 1009115 NET-SNMP Linux Bronze Level -
WIN-TIHGYFO6RIR 10.0.9.241 Microsoft Windows 2008 Domain Controller Bronze Level -
Configure Devices

<html>
<head>
<title>Configure Devices</title>
<link href="provisioning.css" rel="stylesheet" type="text/css">
</head>
<body>
<?php

require once 'header.php';

The configure_devices.php back-end script returns session variables that contain the values that were supplied
in the Customer Name field and radio buttons. These session variables are stored in a local variable then unset.
The local variables are used to populate the form fields:

if (isset ($_SESSION['customer'])) {
Scustomer = $ SESSION['customer'];

unset ($ SESSION['customer']);

else {

Scustomer = "";

221 User Interface

if (isset ($ SESSION['dev type'l)) {
$dev_type = $ SESSION['dev type'l;

unset ($ SESSION['dev type'l):;

else {

$dev_type = "";

?>

<p>Devices To Configure:</p>
<form action="configure devices.php" method="post">
Customer Name:

<input type="text" name="customer" value="<?php echo $customer; ?>"

/>

<input type="radio" name="dev type" value="new disc" <?php if (Sdev
type == "new disc") echo checked; ?> /> New Devices from last

Discovery

<input type="radio" name="dev type" value="all disc" <?php if ($dev_
type == "all disc") echo checked; ?> /> All Devices from last

Discovery

<input type="radio" name="dev type" value="all org" <?php if ($dev_ type

== "all org") echo checked; ?> /> All Devices in Organization

<input type="submit" value="Show Devices" />

If the configure_devices.php script sets session variables for an array of one or more devices, an array of device
classes, and an array of device templates, the devices.php page displays a table of devices:

<?php

User Interface 222

if (isset ($ SESSION['dev list']) AND isset($ SESSION['class list'])
AND count ($ SESSION['dev list']) > O AND isset (S _SESSION
['templates'])) {

Stemplates = $ SESSION['templates'];

The variable $table is used to build the HTML that will display the table of devices. A foreach loop iterates
through each device in the array of devices:

Stable = "<table><tr><th>Device Name</th><th>Device
IP</th><th>Device Type</th><th>Service Level</th></tr>";

foreach($ SESSION['dev list'] as S$key => Sdevice) {

On each iteration of the foreach loop, the $device variable is set to an array of all fields for the current device.
The configure_devices.php script sets the value of the custom field "c-last_dev_tpl" only if a template other than
the base template is applied. Therefore, if "c-last dev_tpl"is NULL, it is assumed that the base template was the
last template to be applied to the device. The variable $service_level is initialized to the last device template
applied to the current device:

if(is _null (Sdevice['c-last dev tpl']) or $device['c-last dev

tpl'] = "") {
$service level = get base template();
}
else {
$service level = Sdevice['c-last dev tpl'];

The Device Name and Device IP columns are populated using the appropriate values from the $device array.
The Device Type column is populated using values from the array of device classes (§_SESSION['class_list]).
The keys in the array of device classes are the device class URIs; the field from the device resource that references
the associated device class (class type) is used to look up the device class for this device. The class and
description fields from the device class are combined to populate the Device Type column:

Stable .= "<tr>";

223 User Interface

Stable .= "<td>" . S$device['name'] . "</td>";

Stable .= "<td>" . S$device['ip'] . "</td>";

Stable .= "<td>" . $ SESSION['class list'][Sdevice['class
type'l]['class'] . " " . § SESSION['class list'][$device['class
type'l]l]['description'] . "</td>";

The drop-down list in the Service Level column is constructed using the array of device templates ($templates).
The name of the drop-down list (which will appear as a key in the $§_POST array) is set to the URI of the current
device (the current array key from $_SESSION['dev_list]):

Stable .= "<td><select name=\"" . Skey . "\">";

A drop-down list option is added for each device template. The last template that was applied to the device
($service_level) is selected as the default option. If the last template that was applied to the device is selected
when the form is submitted, the value of the drop-down list is set to NULL so that it can be skipped by the
configure_devices.php script:

foreach ($templates as Stemplate) {

if (Sservice level == Stemplate['URI']) {
Stable .= "<option value=NULL selected=\"selected\">"
Stemplate['description'] . "</option>";

For all other device templates, the value of the drop-down list is set to the URI of the device template:

else {
Stable .= "<option value=\"" . Stemplate['URI'] . "\">"
Stemplate['description'] . "</option>";
}
}
Stable .= "</select>";
Stable .= "</tr>";

User Interface 224

The HTML for the table is completed and outputted. To prevent an error in the next execution of configure _
devices.php from producing erroneous results in this page, the session variables that contain the array of
devices, the array of device classes, and the array of device templates are unset:

Stable .= "<tr><td colspan=\"3\"></td><td><input type=\"submit\"

name=\"config\" value=\"Configure Devices\" /></td></tr>";
Stable .= "</table>";

echo $table;

unset ($ SESSION['dev list']);

unset (S _SESSION['class list']);

unset ($ SESSION['templates']);

If an empty array of devices is returned by configure_devices.php, an informational message is displayed
instead of an empty table:

elseif (isset ($_SESSION['dev list'])) {
echo "<p>No Devices Discovered</p>";
unset ($ SESSION['dev list']);

unset (S SESSION['class list']);

?>
</form>
</body>

</html>

225 User Interface

remove.php

The remove.php file provides a user interface for removing a customer from the system:

Run Discovery | Configure Devices | Remove Customer

Customer Name:

<html>
<head>
<title>Remove Customer</title>
<link href="provisioning.css" rel="stylesheet" type="text/css">
</head>
<body>
<?php
require once 'header.php';
2>
<form action="delete customer.php" method="post">
Customer Name:

<input type="text" name="customer" />

<input type="submit" value="Submit" />
</form>
</body>

</html>

User Interface 226

When you enter a customer name and select the [Submit] button, the delefe customer.php script deletes all
devices, credentials, and discovery sessions associated with that customer's organization record; deletes the
organization record; and then returns a status message to remove.php.

provisioning.css
The provisioning.css file includes style information for the user interface pages. In this example, minimal style is

applied to the user interface pages. You can customize the user interface pages by adding style information to
this file:

table {width: 100%; border-collapse:collapse; text-align: center;}
th {border: solid 1lpx;}

td {border: solid lpx;}

Provisioning a Customer (provision_customer.php)

The provision_customer.php script processes the input values from index.php and performs the following
provisioning tasks:

* If an organization record does not currently exist for the customer, creates an organization record for the
customer.

* Ensures that SNMP credentials are configured for each supplied SNMP community string.

» Creates a discovery session for the customer using the configured SNMP credentials and the supplied list of
IP addresses.

* Runs the discovery session.

If all of these tasks are successful, the script redirects to configure_devices.php. configure_devices.phpwill
return a list of discovered devices to the devices.php page. If a provisioning task is unsuccessful, provision_
customer.php returns an error message to index.php.

All back-end files:

» Use PHP session variables to return values to the user interface files.
o Use the functions defined in the utils.php file.

 Use the URL of an Administration Portal, Database Server, or All-In-One Appliance.

The provision_customer.php script starts by initializing the session, requiring utils.php, and initializing $base_
uri to the URL of an Administration Portal, Database Server, or All-In-One Appliance:

<?php

session_ start();

227 Provisioning a Customer (provision_customer.php)

require once 'utils.php';

$base uri = get admin uri();

The provision_customer.php script validates the input to ensure that a customer name, IP address list, and either
a community string list or the discover Non-SNMP flag were supplied:

if (isset (S _POST['customer']) AND S POST['customer'] != "" AND isset ($
POST['ip addresses']) AND $ POST['ip addresses'] != "" AND

((isset ($ POST['community strings']) AND $ POST['community strings'] !=
"") OR (isset($_POST['non snmp']) AND $ POST['non snmp'] == "yes"))) {

The provision_customer.php script attempts to lookup the URI of the organization record associated with the
customer name supplied in the input form. If no organization record is found, the script creates a new
organization record using the create_entity function. The array of fields for the new organization record includes
only the name of the organization:

Sorganization = lookup organization($base uri, $ POST['customer']);
if ($organization === FALSE) {
Sorg post array = array('company' => $ POST['customer']);

$org response = create entity(Sbase uri, "/api/organization", S$Sorg

post array);

If the request to create an organization record is successful (the create_entity function returns TRUE at array
index 0), the $organization variable is set to the URI of the organization:

if (Sorg response([0]) {

Sorganization = Sorg response[l];

If the request to create an organization fails, the $message variable is set to an appropriate error message:

else {

$message = "Failed to create org: " . Sorg response[l];

Provisioning a Customer (provision_customer.php) 228

If an organization record already exists for the supplied customer name, the provision_customer.php script
deletes any existing discovery sessions associated with that organization record. By deleting existing discovery
sessions, the provision_customer.php script maintains a 1:1 mapping between organization records and
discovery sessions. Maintaining a 1:1 mapping reduces the amount of processing required to retrieve a list of
devices from the last discovery session that was run for a particular customer. The provision_customer.php
script constructs a URI for the /discovery session resource index that includes a filter for the organization record
ID. The organization record ID is appended to the URI by using the last element in an array that contains each

piece of the organization URI:

else {
Suri = "/api/discovery session?limit=10&hide
filterinfo=1l&filter.organization=" . array pop (explode("/",

Sorganization)) ;

Sresponse = perform request ($base uri, S$uri, "GET");

If the request for a list of discovery sessions is successful, the multi_delete function is called to delete the
discovery sessions in the response. The multi_delete function returns NULL if all the supplied entities are deleted
or an error message if one or more supplied entities are not deleted. If the request for the list of discovery sessions
fails or if multi_delete did not return null, the $message variable is set to an appropriate error message:

if (Sresponse['http code'] == 200) {
Serror = multi delete(Sbase uri, Sresponsel'content']);
}
else {
Serror = "Could not clean up existing discovery sessions for

organization.";

if (!is null (Serror)) {

Smessage = Serror;

229 Provisioning a Customer (provision_customer.php)

If no error message has been set in the $message variable, the provision_customer.php script continues with
the provisioning process:

if (!isset (Smessage)) {

If a list of community strings was supplied in the input form, the configure_credentials function is used to get an
array of credential URIs for those community strings:

if (isset ($_POST['community strings']) AND $ POST['community

strings'] != "") {

$credentials = configure credentials($base uri, $ POST

['customer'], $ POST['community strings']);

If a list of community strings was not supplied in the input form, i.e. the discovery session will be configured to
discover only non-SNMP devices, the $credentials variable is initialized as an empty array:

else {

Scredentials = array();

If the $credentials variable is an array, i.e. no error message was returned by the configure_credentials
function or the discovery session will be configured to discover only non-SNMP devices, the script explodes the
supplied list of IP addresses in to an array:

if (is_array(Scredentials)) {

$ip_array = explode(",", $_POST['ip_addresses']);

To create a discovery session using the API, the JSON content must include a list of IP address ranges. Each IP
address range must specify a start address and an end address. In PHP array format, the array that contains the
discovery session fields must include an "ip_lists" key that points to an array that has the following structure:

(

Provisioning a Customer (provision_customer.php) 230

[0] => array (
['start ip'] =>

['end ip'] =>

[N] => array (
['start ip'] =>

['end ip'] =>

The script initializes the variable $ip_lists, which will contain this structure. For each IP address in the array of
IP addresses supplied in the input form, an element is added to $ip_lists. Each IP address is used as both the start
and end address for each IP address "range":

$ip lists = array();
foreach ($ip array as Saddress) {

$ip lists[] = array('start ip' => Saddress, 'end ip' =>

Saddress) ;

The script then uses the get_collector_id function to get the URI of an appliance on which the discovery session
can run:

$collector = get collector id(Sbase uri);

231 Provisioning a Customer (provision_customer.php)

The get_collector_id returns an array. The boolean value at array index O indicates whether an appliance URI
was successfully returned. The value at array index 1 is either an appliance URI or an error message. If an
appliance URI was returned, a discovery session is created using the following field values:

« organization. The organization URI ($organization).
+ aligned_collector. The appliance URI returned by the get_collector_id function.
 aligned_device_template. The standard device template returned by the get base template function.

« initial_scan_level. To limit what is monitored on each discovered device to only what is defined in the
applied device templates, the initial scan level is set to O (Model Device Only).

o ip_lists. The array of start and end IP addresses ($ip_lists).
« credentials. The array of credentials returned by the configure_credentials function.

o discover_non_snmp. If Discover Non-SNMP Devices was selected in the input form, this value is set to 1
(discover non-SNMP devices).

if ($collector[0]) {
$disc post array = array('organization' => Sorganization,
'aligned collector' => Scollector[l],
'aligned device template' => get base template(),
'initial scan level' => 0,

'ip lists' => $ip lists,

'credentials' => Scredentials);

if (isset (S_POST['non snmp']) AND $ POST['non snmp'] == "yes") {
$disc post array['discover non snmp'] = 1;

}

Sdisc_response = create entity($base uri, "/api/discovery

session", S$disc post array);

The create_entity function returns an array. The boolean value at array index O indicates whether the entity was
successfully created. The value at array index 1 is either the entity URI or an error message. If the discovery

Provisioning a Customer (provision_customer.php) 232

session was created successfully, the discovery session is started by applying the URI of the discovery session to
the /discovery_session_active resource index:

if ($disc_response[0]) {

$run _discovery = perform request ($base uri, "/api/discovery

session active", "APPLY", $disc response[l]);

If the response from the request to start the discovery session includes HTTP status code 202, the discovery
session started correctly. If the discovery session starts correctly, the script redirects to the configure_devices.php
script. The configure_devices.php script requires the customer name as input, eitherinthe $ POST or §
SESSION array. In this case, the customer name is set as a session variable:

if (Srun discovery['http code'] == 202) ({
$ SESSION['customer'] = $ POST['customer'];

header ("Location: configure devices.php");

If the request to start the discovery session failed, i.e. the HTTP status code in the response is not 202, the
$message variable is set to an appropriate error message:

else {

$message = "Failed to run discovery session: " . Srun_

discovery['http code'];

If an error was returned by the create_entity function, the $message variable is set to an appropriate error

message:

else {

Smessage = "Failed to create discovery session: " . Sdisc_

response([l];

233 Provisioning a Customer (provision_customer.php)

If an error was returned by the get_collector_id function, the $message variable is set to an appropriate error
message:

else {

Smessage = S$collector[l];

If $credentials is not an array, i.e. the configure_credentials function returned an error message, the
$message variable is set to an appropriate error message:

else {

Smessage = "Failed to configure credentials: " . S$Scredentials;

If the values supplied in the input form fail validation, the $message variable is set to an appropriate error
message:

else {

Smessage = "Form Incomplete";

If the $message variable is set, a failure occurred in the provision_customer.php script. The erroris set in a
session variable and the script redirects back to index.php:

if (isset ($message)) {

$ SESSION['message'] = Smessage;

Provisioning a Customer (provision_customer.php) 234

header ("Location: index.php");

?>

Retrieving and Configuring Devices (configure _devices.php)

The configure_devices.php script returns a list of devices and associated device classes for a specified
customer. The list of devices can be all devices associated with the customer's organization record, all devices
from the last discovery session for that customer, or new devices from the last discovery session for that customer.

Additionally, if a user selects the [Configure Devices] button in the devices.php page, the configure _
devices.php script applies the device templates selected by the user to the specified devices.

All back-end files:
 Use PHP session variables to return values to the user interface files.
o Use the functions defined in the utils.php file.
¢ Use the URL of an Administration Portal, Database Server, or All-In-One Appliance.

The script starts by initializing the session, requiring utils.php, and initializing $base_uri to the URL of an
Administration Portal, Database Server, or All-In-One Appliance:

<?php
session_ start();
require once 'utils.php';

Sbase uri = get admin uri();

For each displayed device, the devices.php page displays a drop-down list that contains all device templates in
the system. To populate the drop-down list, the devices.php page must be supplied a list of device templates. An
array of all device templates is set as a session variable. Because the list of device templates is assumed to be
static, the array of device templates is set only once per session and is never explicitly unset by the provisioning
code. The code that creates the array of device templates is located in configure_devices.php because the script
is always run before devices are displayed in devices.php.

If the templates variable is not currently set in the session variables, the script gets a list of all device templates
using the get_all function. The get_all function returns an array of entities on success, or an error message on
failure. If the return value is an array, that array is set as a session variable. If the return value is not an array, the
$message variable is assigned the returned error message:

if (!isset ($_SESSION['templates'])) {

235 Retrieving and Configuring Devices (configure devices.php)

Stemplates = get all($base uri, "/api/device template?link disp

field=template name");
if (is_array(Stemplates)) {

$ SESSION['templates'] = Stemplates;

else {

Smessage = Stemplates;

The configure_devices.php script takes a customer name as input. The customer name is passed either as post
data from devices.php or in a session variable from provision_customer.php. The script uses the customer

name to lookup the organization URI:

if (isset ($_POST['customer']) AND $ POST['customer'] != "") {

Scustomer = § POST['customer'];

$ SESSION['customer'] = $ POST['customer'];

Sorganization = lookup organization ($base uri, S$customer);

elseif (isset ($_SESSION['customer'])) {

$customer = $ SESSION['customer'];

Sorganization = lookup organization ($base uri, S$customer);

If an organization URI is found for the supplied customer name, an error message has not been set, and the user
selected the [Configure Devices] button ('config" is a key in the post data), the block of code that applies device

templates to devices is executed:

236

Retrieving and Configuring Devices (configure devices.php)

if (array key exists("config", $ POST) AND Sorganization != FALSE AND

lisset (Smessage)) {

The variable $dev_type is initialized with the value from the radio buttons on the devices.php page. Later in the
execution of the configure_devices.php script, $dev_type is used to set a session variable that the devices.php
page uses as the default value of the radio buttons:

if (isset (S_POST['dev_type']l)) {

$dev_type = $ POST['dev type'l;

The script iterates through all values supplied by the input form. The variable $devices_updated is initialized to
track the number of devices to which device templates are applied. The variable $in is initialized as an array,
which will be used to track the device ID values for all devices that were previously displayed on devices.php. The
$in array will be used to return the same list of devices to devices.php:

$in = array();
$devices updated = 0;

foreach ($ POST as S$device => Stemplate) {

The $_POST array includes all values supplied by the input form. This block of code must operate only on the
values from the drop-down list for each device. Each drop-down list is named using the URI of the associated
device; therefore, it is assumed that if a key in the $_POST array begins with a slash character ('/"), the array
element represents a drop-down list:

if (strpos (Sdevice, "/") === 0) {

The device ID of all devices that were displayed on devices.php is added to the $in array:

$in[] = array pop(explode("/", Sdevice));

If the user did not select a new device template from the drop-down list for a device, the value for that drop-down
listis "NULL". The block of code that applies a device template to a device is executed only if the value for the
drop-down listis not "NULL". Note that the input form passes "NULL" as a string, not the NULL data-type:

if (Stemplate != "NULL") {

237 Retrieving and Configuring Devices (configure devices.php)

To apply a device template to a device, the script uses the perform_request function with a $type parameter of
"APPLY":

Sapply template = perform request ($base uri, $device, "APPLY",
Stemplate) ;

If the request to apply a device template to a device is successful (the response includes a HTTP status code of
200), the script must update the device resource with the new value for the c-last_dev_tpl field. To do this, the
device resource is requested:

if (Sapply template['http code'] == 200) {

$dev = perform request ($base uri, $device, "GET");

If the request for the device resource is successful, the new value of "c-last_dev_tpl" field is set in the array of
attributes for that device and the array of attributes is POSTed back to the same device resource:

if (Sdev['http code'] == 200) {

$dev['content'] ['c-last dev tpl'] = Stemplate;

Supdate device = perform request (Sbase uri, Sdevice, "POST",

Sdev|['content']) ;

If the request to update a device resource fails, the variable $message is initialized with an error message:

if (Supdate device['http code'] != 200) {
Smessage = "Could not update template status of "
Sdevice . ". ";

if (array key exists("error", Supdate device)) {

Smessage .= Supdate device['error'];

Retrieving and Configuring Devices (configure devices.php) 238

If the request to update a device resource is successful, the number of devices that have been updated is
incremented:

else {

Sdevices updated++;

If the request for a device resource fails, the variable $message is initialized with an error message:

else {

Smessage = "Could not get information to update template
status of " . $device . ". ";

if (array key exists("error", Sudev)) {

Smessage .= $dev['error'];

If the request to apply a device template to a device fails, the variable $message is initialized with an error
message:

else {

Smessage = "Could not apply " . Stemplate . " to " . Sdevice

if (array key exists("error", Sapply template)) {

Smessage .= Sapply template['error'];

239

Retrieving and Configuring Devices (configure devices.php)

The $in array, which includes the device IDs of all devices that were previously displayed in devices.php, is used

to re-request the list of devices:
Suri = "/api/device?extended fetch=l&filter.id.in=" . implode(",",
$in) ;

$device list = get all(Sbase uri, S$Suri);

If the request for the list of devices is successful, the script requests a list of device classes for those devices:

{

if (is_array($device list))
"class__

$class list =
type", "class type");

get join resources($base uri, Sdevice list,

If the request for a list of device classes is successful, the array of devices and the array of device classes are

passed back to devices.php in session variables:

{

if (is_array($class list))

$ SESSION['class list'] = Sclass list;

$ SESSION['dev list'] = S$device list;

If the request for the list of device classes fails, the variable $message is initialized with the error message
returned by the get_join_resources function:
else {

Smessage = S$class list;

Retrieving and Configuring Devices (configure devices.php)

240

If the request for the list of all devices fails, the variable $message is initialized with the error message returned by
the get_all function:

else {

$message = Sdevice list;

If the $message variable has not yet been initialized, all requests were successful and the $message variable is
initialized with a success message:

if (!isset (Smessage)) {

$message = S$devices updated . " Device(s) Updated.";

If the block of code that configures devices is not executed, but an organization URI has been found for the
customer and an error message has not been set, the block of code that returns a list of devices is executed:

elseif (Sorganization != FALSE AND !isset ($message)) {

The variable $org_id is initialized with the ID of the organization for which a list of devices has been requested:

$org id = array pop (explode ("/", Sorganization));

If a value has been supplied from the radio buttons on the devcies.php page, the variable $dev_type is
initialized with that value. If no value has been supplied, e.g. the script was called by provision_customer.php,
the script defaults to returning a list of new devices from the last discovery session:

if (isset ($ POST['dev type'l)) {

$dev_type = S POST['dev type'l;

else {

241 Retrieving and Configuring Devices (configure devices.php)

$dev_type = "new disc";

The following block of code returns a list of all devices associated with the specified organization:

if (Sdev_type == "all org") {

The organization ID is used as the filter criteria to request a list of devices. The get_all function will return an array
of all devices that match the filter criteria:

$uri = "/api/device?extended fetch=l&filter.organization=" . Sorg
id;
$device list = get all ($base uri, $uri);

If the request for a list of devices is successful, the get_all function returns an array and the script requests a list of
device classes for those devices:

if (is_array(Sdevice 1list)) {

$class list = get join resources (S$base uri, $device list, "class_

type", "class type");

If the request for a list of device classes is successful, the array of devices and the array of device classes are
passed back to devices.php in session variables:

if (is_array($class list)) {
$ SESSION['class list'] = Sclass list;

$ SESSION['dev list'] = $device list;

If the request for the list of device classes fails, the variable $message is initialized with the error message
returned by the get_join_resources function:

else {

Retrieving and Configuring Devices (configure devices.php) 242

Smessage = Sclass list;

If the request for the list of devices fails, the variable $message is initialized with the error message returned by
the get_all function:

else {

$message = Sdevice list;

If the block of code that returns a list of all devices associated with the specified organization is not executed, the
script executes a block of code that returns a list of devices from the last discovery session:

else {

The organization ID is used as the filter criteria to request the discovery session for the customer:

$discovery search = perform request (Sbase uri, "/api/discovery
session?limit=100&hide filterinfo=l&filter.organization=" . Sorg id,

"GET") ;

If the request for a discovery session is successful (the response includes HTTP status code 200) and at least one
discovery session is returned, the script calls the get_discovery_result function using the first discovery session in
the response. It is assumed that there is a 1:1 mapping between organizations and customers; a 1:1 mapping is
maintained by the provision_customer.php script. The third parameter passed to get_discovery_result is a
boolean that determines whether the function will return all devices discovered by the discovery session or only
new devices discovered by the discovery session:

if (Sdiscovery search['http code'] == 200 AND count ($discovery search

['content']) > 0) {

243 Retrieving and Configuring Devices (configure devices.php)

$device list = get discovery result ($base uri, $discovery search

['content'] [0]['URI'], (Sdev_type == "new disc"));

r

The status code of the get_discovery_result is used in a switch statement that performs the required actions of
each possible result:

switch ($device list['status']) {

A status code of 1 indicates that a list of devices has been returned, but the discovery session is still running. If the
discovery session is still running, the $message variable is initialized to an appropriate status message. The

required actions for a status code of O must also be performed if the status code is 1, so no break statement is
included for case 1:

case 1:

Smessage = "Note: Discovery Session 1s not complete,

additional devices might be discovered.";

A status code of O indicates that a list of devices has been returned and the discovery session is complete. If the
array of devices is not empty, the $in variable is initialized as an array that will be used to track the device IDs of
all devices in the array of devices:

case O:
if (count ($device list['devices']) > 0) {

$in = array();

The script iterates through the array of devices. For each device, the device ID is derived from the device URI and
is added to the $in array:

foreach (Sdevice list['devices'] as S$device) {

$in[] = array pop (explode("/", $device['uri'l]));

A URI to request all devices is constructed using the device IDs in the $in array. The get_all function is used to
request all the devices:

Retrieving and Configuring Devices (configure devices.php) 244

Suri = "/api/device?extended fetch=1l&filter. id.in="

implode (",", $in);

$device list = get all(Sbase uri, Suri);

If the request for the list of devices is successful, the script requests a list of device classes for those devices:

if (is_array(Sdevice 1list)) {

$class _list = get join resources (Sbase uri, S$device list,

"class type", "class type");

If the request for a list of device classes is successful, the array of devices and the array of device classes are

passed back to devices.php in session variables:

if (is_array($class list)) {
$ SESSION['class list'] = Sclass list;

$ SESSION['dev list'] = S$device list;

If the request for the list of device classes fails, the variable $message is initialized with the error message

returned by the get_join_resources function:

else {

Smessage = S$class list;

If the request for the list of devices fails, the variable $message is initialized with the error message returned by

the get_all function:

else {

$message = Sdevice list;

245 Retrieving and Configuring Devices (configure devices.php)

If the get_discovery_result function returned an empty array of devices, an empty array of devices is passed to
devices.php in a session variable:

else {

$ SESSION['dev list'] = array():;

break;

If the get_discovery_result returns status 2 (discovery session has never been run), status 3 (error), or a status
otherthan 0, 1, 2, or 3, script sets the $message variable to an appropriate error message:

case 2:
$message = S$device list['error'];
break;

case 3:

Smessage Sdevice list['error'];
break;

default:

Smessage = "Error occurred retrieving discovery logs.";

If the request for a discovery session returned an HTTP status code of 200 but did not return any discovery
sessions, the script sets the $message variable to an appropriate error message:

elseif (Sdiscovery search['http code'] == 200) {

Smessage = "No discovery session exists for customer.";

Retrieving and Configuring Devices (configure devices.php) 246

If the request for a discovery session returned an HTTP status code other than 200, the script sets the $message
variable to an appropriate error message:

else {
Smessage = "Error finding discovery session for customer. ";
if (array key exists("error", $Sdiscovery search)) {

$message .= S$discovery search['error'];

If no organization URI was found for the supplied customer name, the script sets the $message variable to an
appropriate error message:

elseif (!isset (Smessage)) {

Smessage = "Could not find customer record."

If the $message and/or $dev_type variables have been set during the execution of the script, they are passed to
devices.php using session variables. The script always redirects back to devices.php:

if (isset ($message)) {

$ SESSION['message'] = Smessage;

if (isset ($dev_type)) {

247 Retrieving and Configuring Devices (configure devices.php)

$ SESSION['dev type'] = $dev type;

header ("Location: devices.php");

?>

Removing a Customer (delete_customer.php)

The delete_customer.php script takes a customer name as input; deletes all devices, credentials, and discovery
sessions associated with that customer's organization record; and then deletes the organization record for that
customer.

All back-end files:

» Use PHP session variables to return values to the user interface files.
o Use the functions defined in the utils.php file.

 Use the URL of an Administration Portal, Database Server, or All-In-One Appliance.

The script starts by initializing the session, requiring utils.php, and initializing $base_uri to the URL of an
Administration Portal, Database Server, or All-In-One Appliance:

<?php
session_ start();
require once 'utils.php';

$base uri = get admin uri();

If a customer name was supplied in the input form, the script looks up the URI for the organization record
associated with that customer name. If no organization record is found, the $message variable is set to an error
message:

if (isset (S_POST['customer']) AND S POST['customer'] != "") {
$organization = lookup organization ($base uri, $ POST['customer']);
if ($Sorganization === FALSE) {
Smessage = "Organization does not exist";

Removing a Customer (delete _customer.php) 248

If an organization record exists for the customer, the ID for that organization record is parsed from the URI:

else {

Sorg id = array pop (explode ("/", Sorganization));

An array of resource index URIs is constructed. The script will iterate through this array and delete all entities
returned by each URI. The organization ID is used as filter criteria in each URI. If a request fails, the array keys are
used to indicate the entity type where the problem occurred. To delete additional entities associated with the
customer organization, for example, asset records, you can add additional URIs to this array:

Sentity types = array("devices" => "/api/device?limit=100&hide

filterinfo=l&filter.organization=" . $Sorg id,

"credentials" => "/api/credential/snmp?limit=100&hide

filterinfo=l&filter.cred name.contains=" . § POST['customer'],

"discoveries" => "/api/discovery session?limit=100&hide

filterinfo=l&filter.organization=" . Sorg id,

) ;

The script iterates through the array of URIs. For each URI:
» A GET request is performed.

o Ifthe GET request is successful, the content in the response is passed to the multi_delete function, which
will delete all the returned entities.

o Ifthe GET request is unsuccessful, an error message is set in the $error variable.

e The steps are repeated until either an error occurs or the GET request returns no entities.

If an error occurs for a URI, the iteration through the array of URIs stops:

foreach (Sentity types as Skey => Sentity) {

do {

Sresponse = perform request ($base uri, S$entity, "GET");
if (Sresponse['http code'] == 200) {

Serror = multi_delete($base_uri, Sresponse['content']) ;

else {

249 Removing a Customer (delete _customer.php)

Serror = "Could not get list of " . S$key . " to delete";

} while (count ($response['content']) > 0 AND S$Serror == NULL);

if (!is null ($error)) {

break;

To delete an organization record from SL1, the organization must be "empty", that is, have no entities associated
with it. If no error was generated when the other entities were deleted, the organization is deleted:

if (is_null (Serror)) {
Sresponse = perform request (Sbase uri, Sorganization, "DELETE");
if (Sresponse['http code'] == 200) {

Smessage = "Customer removed";

If the request to delete the organization failed with a 400 HTTP status code, the organization is not empty and an
error message is set in the $message variable:

elseif (Sresponse['http code'] == 400) {

Smessage = "Could not delete organization because organization

is not empty.";

If the request to delete the organization failed with a different HTTP status code, a generic error message is set in
the $message variable:

else {

Removing a Customer (delete _customer.php) 250

Smessage = "Could not delete organization. ";
if (array key exists("error", Sresponse)) {

Smessage .= S$Sresponse['error'];

If the $error variable has already been set because deleting an entity other than the organization failed,
$message is set to the value of $error:

else {

Smessage = Serror;

If no customer name is specified in the input form, an appropriate error message is set in the $message variable:

else {

Smessage = "Form Incomplete";

If the $message variable has been set, its value is returned to remove.php using a session variable:

if (isset (Smessage)) {

$ SESSION['message'] = Smessage;

header ("Location: remove.php");

251 Removing a Customer (delete _customer.php)

?>

Removing a Customer (delete _customer.php) 252

Example

Create Device Maintenance Schedules via the
API

Overview

This chapter describes how to create device maintenance schedules using the API.
Use the following menu options to navigate the SL1 user interface:
« To view a pop-out list of menu options, click the menu icon [E&).

« To view a page containing all of the menu options, click the Advanced menu icon (==+).

This chapter covers the following topics:

ReqUIremMents 254
Prerequisite EXamples 254
Getting Started ... 256
Creating the Task (Step 1) 256
Creating the Schedule Entry (Step 2) ... 258
Aligning the Task to the Schedule Entry (Step 3) 259

253

Requirements

To successfully create a device maintenance schedule via the Sciencelogic API, you need three APl calls that do
the following:

e Create the task.
e Create the schedule.

o Align the task to the schedule.

Caveats to Consider

 Data will not populate into the SL1 user interface until the third alignment call is complete.
e The schedule will appear in three places in SL1:

The Schedule Manager page (Registry > Schedules > Schedule Manager)
The [Schedules] tab of the Device Investigator (Devices > select a device > [Schedules])

The [Schedule] tab of the Device Properties page (Devices > Classic Devices > wrench icon (:#)
> Schedule)

* Thereturn of the task idand schedule id valuesfrom each creation call will vary. Values used here
are examples only.

Prerequisite Examples

To create a device maintenance schedule, you must first collect the variable values you will use. The following
table describes those variables required for the APl calls and provides example variables.

Variable Name Values Used as Examples Description

USERNAME em7admin The username used to authenticate the APl request

PASSWORD password The password associated with the username used to

authenticate the APl request

IP-ADDRESS-OF-DB- 10.64.70.29 The IP address of your Database Server

APPLIANCE

NAME SCHEDULETEST-API Sets the name of the task

DESCRIPTION Create Device Sets a brief overview of the task purpose
Maintenance Schedule via
API

ENABLED VALUE 1 States whether the task is enabled (1) or disabled (2).

254 Requirements

ACTIVE WINDOW 12 Sets whether collection will continue during the window
(4) or it it will be disabled (12)

PATCH WINDOW VALUE |0 Sets whether this maintenance window coincides with a
patch window or not. If yes, set this value to the number
of minutes in the patch window (5 to 60, in increments
of 5 minutes); otherwise, set to 0.

OWNER ACCOUNT 1 The user ID of the user responsible for this task. Can be

VALUE retrieved from the User Accounts page (Registry >
Accounts > User Accounts).

DEVICE ORG VALUE 1 The organization ID to which the device belongs. Can

be retrieved from the Organizational Account
Administration page (Registry > Accounts >
Organizations).

VISIBILITY VALUE

Organization

Sets the visibility level of this maintenance schedule.
Can be set to:

« Private. Visible only to the owner.

« Organization. Visible to anyone in the
organization.

e World. Visible to everyone.

ALIGNED RESOURCE 2 The ID of the device that will be placed in maintenance
mode at the designated time

DATE START 1725983558 Sets the date/time in Epoch format for when the
maintenance window begins

TIMEZONE VALUE 157 Sets the timezone to which the user interface will
convert the time from UTC when displaying. The ID
number can be retrieved from the master.definitions
timezones table in the SL1 database.

DURATION 60 Sets the length of the maintenance window, in minutes

RECUR _EXPR_VALUE and | O and null Sets the schedule recurrence interval. The "Expr" value

RECUR UNIT VALUE is a number, and the Unit is a unit of time: "MINUTE",
"HOUR", "DAY", "WEEK" or "MONTH?". For a one-time
schedule, set the RECUR_UNIT_VALUE to null and the
RECUR EXPR VALUE to 0",

RECUR UNTIL VALUE 0 Sets the end date of a recurring schedule. Must be set
in Epoch time, if used. For a one-time schedule, set the
RECUR_UNTIL VALUE to "0"

TASK VALUE 40 The ID of the task created in Step 1

SCHEDULE VALUE 38 The ID of the schedule created in Step 2

Prerequisite Examples

255

Getting Started

In this example, your device ID 1 will be placed into a 30-minute maintenance window. Replace the following:

e Username: "USERNAME" - your APl user

* Password: "PASSWORD" - your APl user password
e IP Address: "IP-ADDRESS-OF-DB-APPLIANCE" - your platform IP address or URI for APl connection

You can access the database to review the information after each API call to verify successful creation.

NOTE: The Database Tool page (System > Tools > DB Tool) is available only in versions of SL1 prior to
12.2.1 and displays only for users that have sufficient permissions to access the page. For more

information, see this Knowledge Base article.

e scheduler.tasks

SELECT * FROM scheduler.tasks WHERE task id = {task id created in API

call}

» scheduler.schedules

SELECT * FROM scheduler.schedules WHERE schedule id = {schedule id

created in API call}

¢ scheduler.schedules to tasks

This aligns the tasks to the schedules, without which the return of information will not populate into the user
interface:

SELECT * FROM scheduler.schedules to tasks WHERE schedule id = {schedule

id created in API call} AND task id = {task id created in API call}

Creating the Task (Step 1)

The following is an example of how to create the task in an APl call using the data in the table above. The
command in this example requires you to replace the placeholders in square brackets with your data.
' [USERNAME] : [PASSWORD] ' -H 'content-type:application/json;

curl -sku
-X POST https://[IP-ADDRESS-OF-DB-APPLIANCE]/api/task -d '

charset:UTF-8"'
{"name" :" [NAME]", "description":" [DESCRIPTION]", "enabled" :" [ENABLED

VALUE]","details":"{\"active\": [ACTIVE VALUE], \"patch window\":[PATCH
WINDOW VALUE]}","last run":null,"owner":"\/api\/account\/[OWNER

256 Getting Started

https://support.sciencelogic.com/s/article/14923

VALUE]","organization":"\/api\/organization\/[DEVICE ORG
VALUE]","visibility":" [VISIBILITY VALUE]", "aligned_
resource":"\/api\/device\/[ALIGNED RESOURCE]"}'

For example, if you enter the data from the Values Uses as Examples column in the table located in the
Prerequisite Examples section, you will receive the following example response:

curl -sku 'em7admin:password' -H 'content-type:application/json;
charset:UTF-8' -X POST 'https://10.64.70.29/api/task'; -d '

{"name" : "SCHEDULETEST-API", "description":"Create Device Maintenance
Schedule via API","enabled":"1","details":"{\"active\":12,\"patch
window\":0}", "last

run":null, "owner":"\/api\/account\/1","organization":"\/api\/organization

\/1","visibility":"Organization","aligned resource":"\/api\/device\/2"}"'

{"name" :"SCHEDULETEST-API", "description":"Create Device Maintenance
Schedule via API","enabled":"1","details":"{\"active\":12,\"patch
window\":0}", "last

run":null, "owner":"\/api\/account\/1","organization":"\/api\/organization
\/1","visibility":"Organization"”, "task
guid":"E41CC650F3488BE76D1245C7F355583D", "schedules":
{"URI":"\/api\/task\/40\/schedule?1imit=100", "description":"Index of
schedules associated with this task"},"aligned

resource":"\/api\/device\/2"}

Make sure to take note of the task number returned in the URI field. In this example, the value is 40.

To verify that you successfully created the task, you can query the database.

NOTE: The Database Tool (System > Tools > DB Tool) is available only in versions of SL1 prior to 12.2.1
and displays only for users that have sufficient permissions to access the page. For more information,
see this Knowledge Base article .

silo mysgl -e "SELECT * FROM scheduler.tasks WHERE task id = 40 \G"
khkAkhkkhkkhkhkkhkk kA kkhkrkkhk Ak khkrkhk xkxk*x 1_ row khkkhkhkkhkk kA hkkhkhkrkkhkkhkrhkhkhkhrkkhkkhkkxkkkkxk*k
task id: 40
context: 2
name: SCHEDULETEST-API
description: Create Device Maintenance Schedule via API
Xid: 2
enabled: 1

details: {"active":12,"patch window":0}

Creating the Task (Step 1) 257

https://support.sciencelogic.com/s/article/14923

last run: NULL
owner: 1
roa id: 1
visibility: Organization
task guid: E41CC650F3488BE76D1245C7F355583D

IMPORTANT: Sciencelogic recommends that Saa$ customers on SL1 version 12.2.1 or later review this
Knowledge Base article for the current process to troubleshoot results of database queries
and to submit a case to the proper team with the queries for which you want to see results.

Creating the Schedule Entry (Step 2)

The following command will create the device maintenance schedule entry and will post the information in the
APlin JSON format. As in Step 1, the command in this example requires you to replace the placeholders in
square brackets with your data.
curl -sku ' [USERNAME]: [PASSWORD]' -H 'content-type:application/json;
charset:UTF-8' -X POST https://[IP-ADDRESS-OF-DB-APPLIANCE]/api/schedule -
d '{"dtstart":" [DATE START]","timezone":" [TIMEZONE VALUE]","duration":"
[DURATION] ", "description":" [DESCRIPTION]", "recur expr":" [RECUR EXPR
VALUE]","recur unit":[RECUR UNIT VALUE],"recur until":" [RECUR UNTIL
VALUE]", "owner":"\/api\/account\/ [OWNER ACCOUNT
VALUE]", "organization":"\/api\/organization\/[DEVICE ORG
VALUE]","visibility":" [VISIBILITY VALUE]","tasks":[[TASK VALUE]]}"

For example, if you enter the data from the Values Uses as Examples column in the table located in the
Prerequisite Examples section, you will receive the following example response:

curl -sku 'em7admin:password' -H 'content-type:application/json;
charset:UTF-8' -X POST https://10.64.70.29/api/schedule -d '
{"dtstart":"1725983558","timezone":"157", "duration":"60", "description":"C
reate Device Maintenance Schedule via API","recur expr":"0","recur
unit":null, "recur

until":"0", "owner":"\/api\/account\/1","organization":"\/api\/organizatio

n\/1","visibility":"Organization","tasks":[40]}"

{"dtstart":"1725983558","timezone":"157", "duration":"60", "description":"C
reate Device Maintenance Schedule via API","recur expr":"0","recur
unit":null, "recur

until":"0", "owner":"\/api\/account\/1","organization":"\/api\/organizatio

n\/1","visibility":"Organization","in window":"0","preserve in

258 Creating the Schedule Entry (Step 2)

https://support.sciencelogic.com/s/article/14923

db":"0", "ppguid":null, "schedule
guid":"411854E24203FA8C29A8217B02881C86", "tasks":
{"URI":"\/api\/schedule\/38\/task?1imit=100", "description":"Index of tasks

associated with this schedule"}}

Make sure to take note of the schedule number returned in the URI field. In this example, the value is 38.

To verify that you successfully created the schedule entry, you can query the database.

NOTE: The Database Tool (System > Tools > DB Tool) is available only in versions of SL1 priorto 12.2.1
and displays only for users that have sufficient permissions to access the page. For more information,
see this Knowledge Base article .

silo mysql -e "select * from scheduler.schedules where schedule id =

38\G"

KAk KAkAk Ak hkhAkkhk Ak hkhAkkhkhkhAkkhkhkhAkkhkhkhkkkx%k 1 TOow LR A b I I b I S b I I b I S b I Sb b I S 2 I b 2b 3

schedule id:
dtstart:
timezone:
duration:
description:
recur expr:
recur unit:
recur until:
owner:

roa id:
visibility:

in window:
preserve in db:
ppguid:
schedule guid:

38

2024-09-10 15:52:38

157

60

Create Device Maintenance Schedule via API
0

NULL

0000-00-00 00:00:00

1

1

Organization

0

0

NULL
411854E24203FA8C29A8217B02881C86

IMPORTANT: Sciencelogic recommends that Saa$ customers on SL1 version 12.2.1 or later review this
Knowledge Base article for the current process to troubleshoot results of database queries

and to submit a case to the proper team with the queries for which you want to see results.

Aligning the Task to the Schedule Entry (Step 3)

To align the task to the schedule entry, enter the following command. As in previous steps, the command in this
example requires you to replace the placeholders in square brackets with your data.

Aligning the Task to the Schedule Entry (Step 3) 259

https://support.sciencelogic.com/s/article/14923
https://support.sciencelogic.com/s/article/14923

curl -sku '[USERNAME]: [PASSWORD]' -H 'content-type:application/json;
charset:UTF-8' -X POST https://[IP-ADDRESS-OF-DB-APPLIANCE]/api/schedule/
[SCHEDULE VALUE] -d '{"tasks":[[TASK VALUE]]}"'

Running this command applies the task ID (40) created in Step 1 to the schedule entry (38) created in Step 2.

For example, if you enter the data from the Values Uses as Examples column in the table located in the
Prerequisite Examples section, you will receive the following example response:

curl -sku 'em7admin:password' -H 'content-type:application/json;
charset:UTF-8' -X POST https://10.64.70.29/api/schedule/38 -d '{"tasks":
(401}

{"dtstart":"1725983558","timezone" :"157", "duration":"60", "description":"C
reate Device Maintenance Schedule via API","recur expr":"0","recur
unit":null, "recur

until":"0", "owner":"\/api\/account\/1","organization":"\/api\/organizatio
n\/1","visibility":"Organization","in window":"O0", "preserve in

db":"0", "ppguid":null, "schedule
guid":"411854E24203FA8C29A8217B02881C86", "tasks":
{"URI":"\/api\/schedule\/38\/task?1imit=100", "description":"Index of tasks

associated with this schedule"}}

To verify that you successfully aligned the task to the schedule entry, you can query the database.

NOTE: The Database Tool (System > Tools > DB Tool) is available only in versions of SL1 prior to 12.2.1
and displays only for users that have sufficient permissions to access the page. For more information,
see this Knowledge Base article .

silo mysgl -e "select * from scheduler.schedules to tasks where sched-
ule id = 38\G"
:******************** 1. row kkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkkkkkkkxkx*%
schedule id: 38

task id: 40

IMPORTANT: Sciencelogic recommends that Saa$S customers on SL1 version 12.2.1 or later review this
Knowledge Base article for the current process to troubleshoot results of database queries
and fo submit a case to the proper team with the queries for which you want to see results.

You are also able to verify that you successfully completed the steps in the SL1 user interface by reviewing the
schedule in the following locations:

260 Aligning the Task to the Schedule Entry (Step 3)

https://support.sciencelogic.com/s/article/14923
https://support.sciencelogic.com/s/article/14923

* The [Schedules] tab of the Device Investigator (Devices > select a device > [Schedules] tab)

o The [Schedule] tab of the Device Properties page (Devices > Classic Devices > wrench icon (#) >
Schedule)

* The Schedule Manager page (Registry > Schedules > Schedule Manager)

Aligning the Task to the Schedule Entry (Step 3) 261

Appendix

Available Actions

Overview

This appendix lists all actions that can be performed through the API, organized by Sciencelogic entity. Each
table includes the HTTP method and URI you should use to perform the action. The URIs in this list include "X,
which signifies where the ID number of a specific entity must be inserted.

This chapter covers the following topics:

ACCOUNTS .o 265
Account Lockouts ... 265
AlBrES 265
APP I ONCES . 266
ASS TS 266
CBQOS MEIICS .. 268
CBQOS OB e CtS .. 268
CBQOS Object TYPES ... 269
Cleared EVeNnts ... 269
Collection Labels ... 269
Collection Label Groupscooo 269
Collector GrOUPS ... 270
Credentials ... 270
Custom Attributes ... 272
Dashboards ... 274
DeViCes ... 275

262

Device Categorieso 278

DeViCe ClASSES 278
Device GroUPS .. . 278
Device Relationships 279
Device Relationship Types 279
Device Templates 280
Discovery SessiONSs . . . 282
Dynamic Applications 283
Events 297
Event CategQories ... 297
External Contacts 297
File Uploads .. 298
INterfaces .. 298
Interface Metrics ... 299
Interface Tags o 299
MONITOIS ... o 299
OrganizatioNS . 301
Performance Data ... 303
POWIPOCKS 304
Product SKUS 305
SCAIE VAIUES 305
Schedules ... 305
Streamer Push ProxXy ... 306
System Patches ... 306
Sy SIEM SO NG S 307
System Thresholds 307
TaSKS 307
TREMES . oo 308
THhreshold OVErrides 308
TiCkets 309
Ticket Categories 310
Ticket Chargeback 311
TiCket LOgS . o 311
Ticket NOtes ... 311

263

Ticket QUEUES ... 312
Ticket SHateS 312
UnitValues ... 312
User PoliCies ... 313
VeNdors . 313

264

Accounts

Action Method
View/search/filter the list of user accounts. | /account GET
Create a new user account. /account POST
View the properties of a user account. /account/X GET
Update the properties of a user account. /account/X POST
Replace a user account. /account/X PUT
Delete a user account. /account/X DELETE
View the list of access hooks that have been | /account/X/access_hooks GET
granted fo a user account.

For records that require an account value, | /account/_self GET, POST
use the user ID for the logged-in user.

Account Lockouts

Action URI Method
View a list of locked-out user accounts. /access_lock GET
View details about a locked-out user /access_lock/X GET
account.

Clear a lock on a user account. /access_lock/X DELETE

Alerts

Create a new APl alert. /alert POST

View/search/filter the list of pending AP /alert GET
alerts.

View details about a pending APl alert. /alert/X GET
Update a pending APl alert. /alert/X POST

265 Accounts

Appliances

Action Method
View/search/filter the list of SL1 appliances. | /appliance GET
View the properties of a SL1 appliance. /appliance/X GET
Update the description or IP address of a /appliance/X POST
SL1 appliance.

Assets

Action Method
View/search/filter the list of asset records. | /asset GET
Create a new asset record. /asset POST
View the general properties of an asset /asset/X GET
record.

Replace an asset record. /asset/X PUT
Update the general properties of an asset | /asset/X POST
record.

Delete an asset record. /asset/X DELETE
View/search/filter the list of components /asset/X/component/ GET
associated with an asset record.

Add a new component to an asset record. | /asset/X/component/ POST
View the properties of a component /asset/X/component/X GET

associated with an asset record.

Update the properties of a component /asset/X/component/X POST
associated with an asset record.

Replace a component associated with an /asset/X/component/X PUT
asset record.

Delete a component from an asset record. | /asset/X/component/X DELETE

View the configuration properties of an /asset/X/configuration/ GET
asset record.

Appliances 266

Action

Method

Update the configuration properties of an | /asset/X/configuration/ POST
asset record.

Replace the configuration properties of an | /asset/X/configuration/ PUT
asset record.

View/search/filter the list of software /asset/X/license/ GET
licenses associated with an asset record.

Add a new software license to an asset /asset/X/license/ POST
record.

View the properties of a software license /asset/X/license/X GET
associated with an asset record.

Update the properties of a software license | /asset/X/license/X POST
associated with an asset record.

Replace a software license associated with | /asset/X/license/X PUT
an asset record.

Delete a software license from an asset /asset/X/license/X DELETE
record.

View the maintenance and service /asset/X/maintenance/ GET
properties of an asset record.

Update the maintenance and service /asset/X/maintenance/ POST
properties of an asset record.

Replace the maintenance and service /asset/X/maintenance/ PUT
properties of an asset record.

View/search/filter the list of IP networks /asset/X/network/ GET
associated with an asset record.

Add a new IP network to an asset record. /asset/X/network/ POST
View the properties of an IP network /asset/X/network/X GET
associated with an asset record.

Update the properties of an IP network /asset/X/network/X POST
associated with an asset record.

Replace an IP network associated with an | /asset/X/network/X PUT
asset record.

Delete an IP network from an asset record. | /asset/X/network/X DELETE
View/search/filter the list of notes /asset/X/note/ GET
associated with an asset record.

Add a note to an asset record. /asset/X/note/ POST

267

Assets

Action

Method

View a note associated with an asset /asset/X/note/X GET
record.

Update a note associated with an asset /asset/X/note/X POST
record.

Replace a note associated with an asset /asset/X/note/X PUT
record.

View/search/filter the list of files associated | /asset/X/note/X/media GET
with an asset record note.

Get a media file associated with an asset /asset/X/note/X/media/X GET
record note.

Add a media file to an asset record note. /asset/X/note/X/media/X PUT
View meta-data about a media file /asset/X/note/X/media/X/info GET
associated with an asset record note.

CBQoS Metrics

Action

Method

View/search/filter the list of CBQoS /cbgos_metric GET
metrics.
View details about a CBQoS metric. /cbgos_metric/X GET

CBQoS Objects

Action

Method

View/search/filter the list of CBQoS /cbgos_object GET
objects.
View details about a CBQoS obiject. /cbqos_object/X GET

CBQoS Metrics

268

CBQoS Obiject Types

Action

Method

View/search/filter the list of CBQoS object | /cbqos type GET
types.
View details about a CBQoS object type. /cbqos_type/X GET

Cleared Events

Action

View/search/filter the list of cleared events.

/cleared_event

Method

GET

View the properties of a cleared event.

/cleared_event/X

GET

Collection Labels

Action

Method

View/search/filter the list of collection /collection_label GET
labels.
View the properties of a collection label. /collection_label/X GET

Collection Label Groups

Action

Method

group.

View/search/filter the list of collection label | /collection_label group GET
groups.
View the properties of a collection label /collection_label group/X GET

269

CBQoS Obiject Types

Collector Groups

Action Method
View/search/filter the list of collector /collector_group GET
groups.

Create a new collector group. /collector_group POST
View the properties of a collector group. /collector_group/X GET
Update the properties of a collector group. | /collector _group/X POST
Replace a collector group. /collector_group/X PUT
Delete a collector group. /collector_group/X DELETE

organizations.

properly configure these actions.

To enable multi-tenancy for collector groups, the database setting "master.system_settings core.enable _cug
orgs" must be setto 1. When multi-tenancy is enabled, an administrative user can update all collector groups
using the new fields. Non-administrative users can update all collector groups for which the "all_orgs" field is
setto 1. Otherwise, these users can only update credentials and collector groups within their aligned

Be aware that you might encounter a situation where a device is not aligned to a collector group if you do not

groups within your aligned organizations

View the properties of all collector groups. | /collector_group/all_orgs GET
Update the properties of all collector /collector_group/all_orgs POST
groups.

View the propertied of only the collector /collector_group/aligned _organizations GET
groups within your aligned organizations.

Update the properties of only the collector | /collector _group/aligned organizations POST

Credentials

Action

View the index of available credential
resources.

/credential

Method

GET

Collector Groups

270

Action Method

View/search/filter the list of basic/snippet | /credential/basic GET
credentials.

Create a new basic/snippet credential. /credential/basic POST
View a basic/snippet credential. /credential/basic/X GET
Update a basic/snippet credential. /credential/basic/X POST
Replace a basic/snippet credential. /credential/basic/X PUT
Delete a basic/snippet credential. /credential/basic/X DELETE
View/search/filter the list of database /credential/db GET
credentials.

Create a new database credential. /credential/db POST
View a database credential. /credential/db/X GET
Update a database credential. /credential/db/X POST
Replace a database credential. /credential/db/X PUT
Delete a database credential. /credential/db/X DELETE
View/search/filter the list of LDAP/AD /credential/ldap GET
credentials.

Create a new LDAP/AD credential. /credential/ldap POST
View a LDAP/AD credential. /credential/ldap/X GET
Update a LDAP/AD credential. /credential/ldap/X POST
Replace a LDAP/AD credential. /credential/ldap/X PUT
Delete a LDAP/AD credential. /credential/ldap/X DELETE
View/search/filter the list of PowerShell /credential/powershell GET
credentials.

Create a new PowerShell credential. /credential/powershell POST
View a PowerShell credential. /credential/powershell/X GET
Update a PowerShell credential. /credential/powershell/X POST
Replace a PowerShell credential. /credential/powershell/X PUT
Delete a PowerShell credential. /credential/powershell/X DELETE
View/search/filter the list of SNMP /credential/snmp GET
credentials.

271 Credentials

Action

Method

Create a new SNMP credential. /credential/snmp POST
View an SNMP credential. /credential/snmp/X GET
Update an SNMP credential. /credential/snmp/X POST
Replace an SNMP credential. /credential/snmp/X PUT
Delete an SNMP credential. /credential/snmp/X DELETE
View/search/filter the list of SOAP/XML /credential/soap GET
credentials.

Create a new SOAP/XML credential. /credential/soap POST
View a SOAP/XML credential. /credential/soap/X GET
Update a SOAP/XML credential. /credential/soap/X POST
Replace a SOAP/XML credential. /credential/soap/X PUT
Delete a SOAP/XML credential. /credential/soap/X DELETE
View/search/filter the list of SSH /credential/ssh GET
credentials.

Create a new SSH credential. /credential/ssh POST
View an SSH credential. /credential/ssh/X GET
Update an SSH credential. /credential/ssh/X POST
Replace an SSH credential. /credential/ssh/X PUT
Delete an SSH credential. /credential/ssh/X DELETE

Custom Attributes

for assets.

View the index of available custom attribute | /custom_attribute GET
resources.

View the custom attributes defined for /custom_attribute/asset GET
assets.

Add a custom attribute for assets. /custom_attribute/asset POST
View details of a custom attribute defined /custom_attribute/asset/X GET

Custom Attributes

Action

Method

Update a custom attribute defined for /custom_attribute/asset/X POST
assets.

Delete a custom attribute defined for assets. | /custom_attribute/asset/X DELETE
View example JSSON or XML content for /custom_attribute/asset/ _example GET
creating custom attributes for assets.

View the custom attributes defined for /custom_attribute/device GET
devices.

Add a custom attribute for devices. /custom_attribute/device POST
View details of a custom attribute defined /custom_attribute/device/X GET
for devices.

Update a custom attribute defined for /custom_attribute/device/X POST
devices.

Delete a custom attribute defined for /custom_attribute/device/X DELETE
devices.

View example JSSON or XML content for /custom_attribute/device/ _example GET
creating custom attributes for devices.

View the custom attributes defined for /custom_attribute/interface GET
interfaces.

Add a custom attribute for interfaces. /custom_attribute/interface POST
View details of a custom attribute defined | /custom_attribute/interface/X GET
for interfaces.

Update a custom attribute defined for /custom_attribute/interface/X POST
interfaces.

Delete a custom attribute defined for /custom_attribute/interface/X DELETE
interfaces.

View example JSSON or XML content for /custom_attribute/interface/ _example GET
creating custom attributes for interfaces.

View the custom attributes defined for /custom_attribute/theme GET
themes.

Add a custom attribute for themes. /custom_attribute/theme POST
View details of a custom attribute defined | /custom_attribute/theme/X GET
for themes.

Update a custom attribute defined for /custom_attribute/theme/X POST
themes.

273

Custom Attributes

Action

Method

Delete a custom attribute defined for /custom_attribute/theme/X DELETE
themes.

View example JSSON or XML content for /custom_attribute/theme/ _example GET
creating custom attributes for themes.

View the custom attributes defined for /custom_attribute/vendor GET
vendors.

Add a custom attribute for vendors. /custom_attribute/vendor POST
View details of a custom attribute defined | /custom_attribute/vendor/X GET
for vendors.

Update a custom attribute defined for /custom_attribute/vendor/X POST
vendors.

Delete a custom attribute defined for /custom_attribute/vendor/X DELETE
vendors.

View example JSON or XML content for /custom_attribute/vendor/ _example GET
creating custom attributes for vendors.

View the custom attributes defined for all /custom_attribute/ lookup GET

entity types.

Dashboards

Action

Method

View/search/filter the list of dashboards. /dashboard GET
Create a new dashboard. /dashboard POST
View the properties of a dashboard. /dashboard/X GET
Update the properties of a dashboard. /dashboard/X POST
Replace a dashboard. /dashboard/X PUT
Delete a dashboard. /dashboard/X DELETE
View/search/filter the list of widgets on a /dashboard/X/widget GET
dashboard.

View the properties of a widget on a /dashboard/X/widget/X GET

dashboard.

Dashboards

274

Action

Method

Update the properties of a widget on a /dashboard/X/widget/X POST

dashboard.

Replace a widget on a dashboard. /dashboard/X/widget/X PUT

Remove a widget from a dashboard. /dashboard/X/widget/X DELETE

Create a new dashboard by duplicating an | /dashboard POST a /dashboard
existing dashboard. resource.

Devices

Action Method
View/search/filter the list of devices. /device GET
Create a new virtual device. /device POST
View the properties of a device. /device/X GET
Update the properties of a device. /device/X POST
Replace the properties of a device. /device/X PUT
Delete a device. /device/X DELETE
View/search/filter the list of Dynamic /device/X/aligned _app GET
Applications aligned with a device.

Align a Dynamic Application with a device. | /device/X/aligned app POST
View the collection status and associated /device/X/aligned _app/X GET
credential for a Dynamic Application

aligned with a device.

Update the collection status and associated | /device/X/aligned app/X POST
credential for a Dynamic Application

aligned with a device.

Unalign a Dynamic Application from a /device/X/aligned _app/X DELETE
device.

View/search/filter the list of available /device/X/config_data GET
configuration data for a device.

View meta-data about data collected from | /device/X/config_data/X GET

a device by a configuration Dynamic

Application.

275

Devices

Action

Method

View data collected from a device by a /device/X/config_data/X/data GET

configuroﬂon Dynamic Applicoﬁon,

View historical snapshots of data collected | /device/X/config_data/X/snapshots GET

from a device by a configuration Dynamic

Application.

View general information collected from a | /device/X/detail GET

device.

View/search/filter the list of credentials /device/X/device _app_credentials GET

aligned with a device.

View the threshold settings for a device. /device/X/device_thresholds GET

Update the threshold settings for a device. | /device/X/device thresholds POST

Replace the threshold settings for a device. | /device/X/device thresholds PUT

Revert all device thresholds to the global /device/X/device thresholds DELETE

default values.

Add an interface record to a device. /device/X/interface POST

View/search/filter the list of interfaces fora | /device/X/interface GET

device.

View the properties of an interface for a /device/X/interface/X GET

device, including all interface tags.

Update the properties of an interface fora | /device/X/interface/X POST

device. This can create a new interface

without an interface tag or create a new

interface by referencing an existing

interface tag.

Replace an interface record associated with | /device/X/interface/X PUT

a device. This can update an interface

without affecting the interface tag

association.

Delete an interface record associated with | /device/X/interface/X DELETE

a device. Deleting an interface also deletes

the interface tag.

View data for an interface. /device/X/interface/X/interface_data/data | GET

View daily normalized data for an interface. | /device/X/interface/X/interface GET
data/normalized_daily

View hourly normalized data for an /device/X/interface/X/interface GET

interface.

data/normalized _hourly

Devices

276

Action

Method

View/search/filter the list of logs associated | /device/X/log/ GET
with a device.

View a log associated with a device. /device/X/log/X GET
Add a note to a device. /device/X/note/ POST
View/search/filter the list of notes /device/X/note/ GET
associated with a device.

View a note associated with a device. /device/X/note/X GET
Update a note associated with a device. /device/X/note/X POST
Replace a note associated with a device. /device/X/note/X PUT
View/search/filter the list of files associated | /device/X/note/X/media GET
with a device note.

Get a media file associated with a device /device/X/note/X/media/X GET
note.

Add a media file to a device note. /device/X/note/X/media/X PUT
View meta-data about a media file /device/X/note/X/media/X/info GET
associated with a device note.

View/search/filter the list of available /device/X/performance data GET
Dynamic Application data for a device.

View data for a Dynamic Application /device/X/performance_data/X/data GET
aligned to a device.

View daily normalized data for a Dynamic | /device/X/performance GET
Application aligned to a device. data/X/normalized_daily

View hourly normalized data for a Dynamic | /device/X/performance GET
Application aligned to a device. data/X/normalized hourly

View/search/filter the list of available vitals | /device/X/vitals GET
data for a device.

View availability data for a device. /device/X/vitals/availability/data GET
View daily normalized availability data for a | /device/X/vitals/availability/normalized GET
device. daily

View hourly normalized availability data for | /device/X/vitals/availability/normalized GET
a device. hourly

View data for a file system on a device. /device/X/vitals/fsX/data GET

277

Devices

Action

Method

device.

View daily normalized data for a file system | /device/X/vitals/fsX/normalized daily GET
on a device.

View latency data for a device. /device/X/vitals/latency/data GET
View daily normalized latency data for a /device/X/vitals/latency/normalized daily | GET
device.

View hourly normalized latency data fora | /device/X/vitals/latency/normalized_hourly | GET

Apply a device template to a device.

/device/X

Post a /device

template resource.

Device Categories

View/search/filter the list of device /device category GET
categories.
View the properties of a device category. /device_category/X GET

Device Classes

View/search/filter the list of device classes.

/device class

GET

View the properties of a device class.

/device_class/X

GET

Device Groups

Action

View/search/filter the list of device groups.

/device group

GET

Create a new device group.

/device group

POST

Device Categories

278

Action

Method

group, including devices that match
dynamic rules.

View the properties of a device group. /device _group/X GET
Update the properties of a device group. /device group/X POST
Replace a device group. /device group/X PUT
Delete a device group. /device group/X DELETE
View a list of all devices in the device /device group/X/expanded_devices GET

Apply a device template to a device group.

/device group/X

Post a /device
template resource.

Device Relationships

Action Method
View/search/filter the list of device /relationship GET
relationships.

View the properties of a device relationship. | /relationship/X GET
View/search/filter the list of ancestor and /relationship_hierarchy/X GET
decendant devices of a device.

Device Relationship Types

View/search/filter the list of device /relationship_type GET
relationship types.

View the properties of a device relationship | /relationship_type/X GET
type.

279

Device Relationships

Device Templates

Action

Method

View/search/filter the list of device /device template GET
templates.

Create a new device template. /device_template POST
View the properties of a device template. /device template/X GET
Update the properties of a device template. | /device template/X POST
Replace a device template. /device template/X PUT
Delete a device template. /device template/X DELETE
View/search/filter the list of web content /device_template/X/subtpl_cv GET
monitoring policy sub-templates associated

with a device template.

Create a new web content monitoring /device template/X/subtpl_cv POST
policy sub-template for a device template.

View the properties of a web content /device_template/X/subtpl_cv/X GET
monitoring policy sub-template associated

with a device template.

Update a web content monitoring policy /device template/X/subtpl_cv/X POST
sub-template associated with a device

template.

Replace a web content monitoring policy /device template/X/subtpl_cv/X PUT
sub-template associated with a device

template.

Delete a web content monitoring policy /device_template/X/subtpl_cv/X DELETE
sub-template associated with a device

template.

View/search/filter the list of Dynamic /device template/X/subtpl_dynapp GET
Application sub-templates associated with

a device template.

Create a new Dynamic Application sub- /device_template/X/subtpl_dynapp POST
template for a device template.

View the properties of a Dynamic /device _template/X/subtpl_dynapp/X GET

Application sub-template associated with a
device template.

Device Templates

280

Action

Method

Update a Dynamic Application sub- /device_template/X/subtpl_dynapp/X POST
template associated with a device template.

Replace a Dynamic Application sub- /device template/X/subtpl_dynapp/X PUT
template associated with a device template.

Delete a Dynamic Application sub-template | /device template/X/subtpl_dynapp/X DELETE
associated with a device template.

View/search/filter the list of port monitoring | /device template/X/subtpl_port GET
policy sub-templates associated with a

device template.

Create a new port monitoring policy sub- | /device template/X/subtpl_port POST
template for a device template.

View the properties of a port monitoring /device _template/X/subtpl_port/X GET
policy sub-template associated with a

device template.

Update a port monitoring policy sub- /device template/X/subtpl port/X POST
template associated with a device template.

Replace a port monitoring policy sub- /device template/X/subtpl_port/X PUT
template associated with a device template.

Delete a port monitoring policy sub- /device template/X/subtpl_port/X DELETE
template associated with a device template.

View/search/filter the list of process /device _template/X/subtpl_process GET
monitoring policy sub-templates associated

with a device template.

Create a new process monitoring policy /device template/X/subtpl_process POST
sub-template for a device template.

View the properties of a process monitoring | /device_template/X/subtpl_process/X GET
policy sub-template associated with a

device template.

Update a process monitoring policy sub- /device template/X/subtpl_process/X POST
template associated with a device template.

Replace a process monitoring policy sub- | /device template/X/subtpl_process/X PUT
template associated with a device template.

Delete a process monitoring policy sub- /device template/X/subtpl_process/X DELETE

template associated with a device template.

281

Device Templates

Action Method

View/search/filter the list of Windows /device_template/X/subtpl_service GET
service monitoring policy sub-templates
associated with a device template.

Create a new Windows service monitoring | /device template/X/subtpl_service POST
policy sub-template for a device template.

View the properties of a Windows service /device_template/X/subtpl_service/X GET
monitoring policy sub-template associated
with a device template.

Update a Windows service monitoring /device _template/X/subtpl_service/X POST
policy sub-template associated with a
device template.

Replace a Windows service monitoring /device _template/X/subtpl_service/X PUT
policy sub-template associated with a
device template.

Delete a Windows service monitoring policy | /device template/X/subtpl_service/X DELETE
sub-template associated with a device
template.

Discovery Sessions

View/search/filter the list of discovery /discovery_session GET
sessions.

Create a new discovery session. /discovery session POST
View the properties of a discovery session. | /discovery session/X GET
Update a discovery session. /discovery session/X POST
Replace a discovery session. /discovery_session/X PUT
Delete a discovery session. /discovery_session/X DELETE
View/search/filter the list of logs associated | /discovery session/X/log GET
with a discovery session.

View a log message associated with a /discovery_session/X/log/X GET
discovery session.

Discovery Sessions 282

Action Method

View/search/filter the list of currently /discovery_session_active GET

running discovery sessions.

Create and immediately run a new /discovery_session_active POST

discovery session.

View the properties of a currently running /discovery session_active/X GET

discovery session.

Stop a currently running discovery session. | /discovery session_active/X DELETE

View/search/filter the list of logs associated | /discovery session_active/X/log GET

with a currently running discovery session.

View a log message associated with a /discovery_session_active/X/log/X GET

currently running discovery session.

Start a discovery session. /discovery_session_active POST a /discovery
session resource.

Dynamic Applications

Action Method
View the index of available Dynamic /dynamic_app GET
Application resources.

View/search/filter the list of Database /dynamic_app/db_config GET
Configuration Dynamic Applications.

View the properties of a Database /dynamic_app/db_config/X GET
Configuration Dynamic Application.

View/search/filter the list of collection /dynamic_app/db_config/X/collection GET
objects associated with a Database object

Configuration Dynamic Application.

Add a collection object to a Database /dynamic_app/db_config/X/collection POST
Configuration Dynamic Application. object

View the properties of a collection object /dynamic_app/db_config/X/collection GET
associated with a Database Configuration | object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/db_config/X/collection POST
associated with a Database Configuration | object/X

Dynamic Application.

283

Dynamic Applications

Action

Method

Replace a collection object associated with | /dynamic_app/db_config/X/collection PUT
a Database Configuration Dynamic object/X

Application.

Remove a collection object from a /dynamic_app/db_config/X/collection DELETE
Database Configuration Dynamic object/X

Application.

View/search/filter the list of Database /dynamic_app/db_performance GET
Performance Dynamic Applications.

View the properties of a Database /dynamic_app/db_performance/X GET
Performance Dynamic Application.

View/search/filter the list of collection /dynamic_app/db GET
objects associated with a Database performance/X/collection_object

Performance Dynamic Application.

Add a collection object to a Database /dynamic_app/db_ POST
Performance Dynamic Application. performance/X/collection_object

View the properties of a collection object /dynamic_app/db_ GET
associated with a Database Performance performance/X/collection_object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/db POST
associated with a Database Performance performance/X/collection_object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/db PUT
a Database Performance Dynamic performance/X/collection_object/X

Application.

Remove a collection object from a /dynamic_app/db DELETE
Database Performance Dynamic performance/X/collection_object/X

Application.

View/search/filter the list of presentation /dynamic_app/db GET
objects associated with a Database performance/X/presentation_object

Performance Dynamic Application.

Add a presentation object to a Database /dynamic_app/db_ POST
Performance Dynamic Application. performance/X/presentation_object

View the properties of a presentation object | /dynamic_app/db GET

associated with a Database Performance
Dynamic Application.

performance/X/presentation_object/X

Dynamic Applications

284

Action

Method

Update the properties of a presentation /dynamic_app/db POST
object associated with a Database performance/X/presentation_object/X
Performance Dynamic Application.

Replace a presentation object associated /dynamic_app/db_ PUT
with a Database Performance Dynamic performance/X/presentation_object/X

Application.

Remove a presentation object from a /dynamic_app/db DELETE
Database Performance Dynamic performance/X/presentation_object/X

Application.

View/search/filter the list of PowerShell /dynamic_app/powershell config GET
Configuration Dynamic Applications.

View the properties of a PowerShell /dynamic_app/powershell _config/X GET
Configuration Dynamic Application.

View/search/filter the list of collection /dynamic_app/powershell GET
objects associated with a PowerShell config/X/collection_object

Configuration Dynamic Application.

Add a collection object to a PowerShell /dynamic_app/powershell POST
Configuration Dynamic Application. config/X/collection_object

View the properties of a collection object /dynamic_app/powershell GET
associated with a PowerShell Configuration | config/X/collection_object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/powershell POST
associated with a PowerShell Configuration | config/X/collection_object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/powershell PUT
a PowerShell Configuration Dynamic config/X/collection_object/X

Application.

Remove a collection object from a /dynamic_app/powershell DELETE
PowerShell Configuration Dynamic config/X/collection_object/X

Application.

View/search/filter the list of PowerShell /dynamic_app/powershell performance GET
Performance Dynamic Applications.

View the properties of a PowerShell /dynamic_app/powershell performance/X | GET
Performance Dynamic Application.

View/search/filter the list of collection /dynamic_app/powershell GET

objects associated with a PowerShell
Performance Dynamic Application.

performance/X/collection_object

285

Dynamic Applications

Action

Method

Add a collection object to a PowerShell /dynamic_app/powershell POST
Performance Dynamic Application. performance/X/collection_object

View the properties of a collection object /dynamic_app/powershell GET
associated with a PowerShell Performance | performance/X/collection_object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/powershell POST
associated with a PowerShell Performance | performance/X/collection object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/powershell PUT
a PowerShell Performance Dynamic performance/X/collection_object/X

Application.

Remove a collection object from a /dynamic_app/powershell DELETE
PowerShell Performance Dynamic performance/X/collection_object/X

Application.

View/search/filter the list of presentation /dynamic_app/powershell GET
objects associated with a PowerShell performance/X/presentation_object

Performance Dynamic Application.

Add a presentation object to a PowerShell | /dynamic_app/powershell POST
Performance Dynamic Application. performance/X/presentation_object

View the properties of a presentation object | /dynamic_app/powershell GET
associated with a PowerShell Performance | performance/X/presentation_object/X

Dynamic Application.

Update the properties of a presentation /dynamic_app/powershell POST
object associated with a PowerShell performance/X/presentation_object/X
Performance Dynamic Application.

Replace a presentation object associated /dynamic_app/powershell PUT
with a PowerShell Performance Dynamic performance/X/presentation_object/X

Application.

Remove a presentation object from a /dynamic_app/powershell DELETE
PowerShell Performance Dynamic performance/X/presentation_object/X

Application.

View/search/filter the list of Snippet /dynamic_app/snippet_config GET
Configuration Dynamic Applications.

View the properties of a Snippet /dynamic_app/snippet_config/X GET

Configuration Dynamic Application.

Dynamic Applications

286

Action

Method

View/search/filter the list of collection /dynamic_app/snippet GET
objects associated with a Snippet config/X/collection_object

Configuration Dynamic Application.

Add a collection object to a Snippet /dynamic_app/snippet POST
Configuration Dynamic Application. config/X/collection_object

View the properties of a collection object /dynamic_app/snippet GET
associated with a Snippet Configuration config/X/collection_object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/snippet POST
associated with a Snippet Configuration config/X/collection_object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/snippet PUT
a Snippet Configuration Dynamic config/X/collection_object/X

Application.

Remove a collection object from a Snippet | /dynamic_app/snippet DELETE
Configuration Dynamic Application. config/X/collection_object/X

View/search/filter the list of Snippet Journal | /dynamic_app/snippet_journal GET
Dynamic Applications.

View the properties of a Snippet Journal /dynamic_app/snippet_journal/X GET
Dynamic Application.

View/search/filter the list of collection /dynamic_app/snippet GET
objects associated with a Snippet Journal journal/X/collection_obiject

Dynamic Application.

Add a collection object to a Snippet Journal | /dynamic_app/snippet POST
Dynamic Application. journal/X/collection_obiject

View the properties of a collection object /dynamic_app/snippet GET
associated with a Snippet Journal Dynamic | journal/X/collection_object/X

Application.

Update the properties of a collection object | /dynamic_app/snippet POST
associated with a Snippet Journal Dynamic | journal/X/collection_object/X

Application.

Replace a collection object associated with | /dynamic_app/snippet PUT
a Snippet Journal Dynamic Application. journal/X/collection_object/X

Remove a collection object from a Snippet | /dynamic_app/snippet DELETE
Journal Dynamic Application. journal/X/collection_object/X

Add a presentation object to a Snippet /dynamic_app/snippet POST

Journal Dynamic Application.

journal/X/presentation_object

287

Dynamic Applications

Action Method
View/search/filter the list of presentation /dynamic_app/snippet GET
objects associated with a Snippet Journal journal/X/presentation_object

Dynamic Application.

View the properties of a presentation object | /dynamic_app/snippet GET
associated with a Snippet Journal Dynamic | journal/X/presentation_object/X

Application.

Update the properties of a presentation /dynamic_app/snippet POST
object associated with a Snippet Journal journal/X/presentation_object/X

Dynamic Application.

Replace a presentation object associated /dynamic_app/snippet PUT
with a Snippet Journal Dynamic journal/X/presentation_object/X

Application.

Remove a presentation object from a /dynamic_app/snippet DELETE
Snippet Journal Dynamic Application. journal/X/presentation_object/X

View/search/filter the list of Snippet /dynamic_app/snippet_performance GET
Performance Dynamic Applications.

View the properties of a Snippet /dynamic_app/snippet_performance/X GET
Performance Dynamic Application.

View/search/filter the list of collection /dynamic_app/snippet GET
objects associated with a Snippet performance/X/collection_object

Performance Dynamic Application.

Add a collection object to a Snippet /dynamic_app/snippet POST
Performance Dynamic Application. performance/X/collection_object

View the properties of a collection object /dynamic_app/snippet GET
associated with a Snippet Performance performance/X/collection_object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/snippet POST
associated with a Snippet Performance performance/X/collection_object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/snippet PUT
a Snippet Performance Dynamic performance/X/collection_object/X

Application.

Remove a collection object from a Snippet | /dynamic_app/snippet DELETE
Performance Dynamic Application. performance/X/collection_object/X
View/search/filter the list of presentation /dynamic_app/snippet GET

objects associated with a Snippet
Performance Dynamic Application.

performance/X/presentation_object

Dynamic Applications

288

Action

Method

Performance Dynamic Application.

Add a presentation object to a Snippet /dynamic_app/snippet POST
Performance Dynamic Application. performance/X/presentation_object

View the properties of a presentation object | /dynamic_app/snippet GET
associated with a Snippet Performance performance/X/presentation_object/X

Dynamic Application.

Update the properties of a presentation /dynamic_app/snippet POST
object associated with a Snippet performance/X/presentation_object/X
Performance Dynamic Application.

Replace a presentation object associated /dynamic_app/snippet PUT
with a Snippet Performance Dynamic performance/X/presentation_object/X

Application.

Remove a presentation object from a /dynamic_app/snippet DELETE
Snippet Performance Dynamic Application. | performance/X/presentation_object/X
View/search/filter the list of SNMP /dynamic_app/snmp_config GET
Configuration Dynamic Applications.

View the properties of an SNMP /dynamic_app/snmp_config/X GET
Configuration Dynamic Application.

View/search/filter the list of collection /dynamic_app/snmp_config/X/collection | GET
objects associated with an SNMP object

Configuration Dynamic Application.

Add a collection object to an SNMP /dynamic_app/snmp_config/X/collection | POST
Configuration Dynamic Application. object

View the properties of a collection object /dynamic_app/snmp_config/X/collection | GET
associated with an SNMP Configuration object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/snmp_config/X/collection | POST
associated with an SNMP Configuration object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/snmp_config/X/collection | PUT
an SNMP Configuration Dynamic object/X

Application.

Remove a collection object from an SNMP | /dynamic_app/snmp_config/X/collection | DELETE
Configuration Dynamic Application. object/X

View/search/filter the list of SNMP /dynamic_app/snmp_performance GET
Performance Dynamic Applications.

View the properties of an SNMP /dynamic_app/snmp_performance/X GET

289

Dynamic Applications

Action

Method

View/search/filter the list of collection /dynamic_app/snmp_ GET
objects associated with an SNMP performance/X/collection_object

Performance Dynamic Application.

Add a collection object to an SNMP /dynamic_app/snmp_ POST
Performance Dynamic Application. performance/X/collection_object

View the properties of a collection object /dynamic_app/snmp_ GET
associated with an SNMP Performance performance/X/collection_object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/snmp POST
associated with an SNMP Performance performance/X/collection_object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/snmp_ PUT
an SNMP Performance Dynamic performance/X/collection_object/X

Application.

Remove a collection object from an SNMP | /dynamic_app/snmp DELETE
Performance Dynamic Application. performance/X/collection_object/X
View/search/filter the list of presentation /dynamic_app/snmp_ GET
objects associated with an SNMP performance/X/presentation_object

Performance Dynamic Application.

Add a presentation object to an SNMP /dynamic_app/snmp_ POST
Performance Dynamic Application. performance/X/presentation_object

View the properties of a presentation object | /dynamic_app/snmp_ GET
associated with an SNMP Performance performance/X/presentation_object/X

Dynamic Application.

Update the properties of a presentation /dynamic_app/snmp_ POST
object associated with an SNMP performance/X/presentation_object/X
Performance Dynamic Application.

Replace a presentation object associated /dynamic_app/snmp_ PUT
with an SNMP Performance Dynamic performance/X/presentation_object/X

Application.

Remove a presentation object from an /dynamic_app/snmp_ DELETE
SNMP Performance Dynamic Application. | performance/X/presentation_object/X
View/search/filter the list of SOAP /dynamic_app/soap_config GET
Configuration Dynamic Applications.

View the properties of a SOAP /dynamic_app/soap_config/X GET

Configuration Dynamic Application.

Dynamic Applications

290

Action

Method

Add a collection object to a SOAP /dynamic_app/soap_config/X/collection | POST
Configuration Dynamic Application. object

View/search/filter the list of collection /dynamic_app/soap_config/X/collection | GET
objects associated with a SOAP object

Configuration Dynamic Application.

View the properties of a collection object /dynamic_app/soap_config/X/collection | GET
associated with a SOAP Configuration object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/soap_config/X/collection | POST
associated with a SOAP Configuration object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/soap_config/X/collection | PUT
a SOAP Configuration Dynamic object/X

Application.

Remove a collection object from a SOAP /dynamic_app/soap_config/X/collection | DELETE
Configuration Dynamic Application. object/X

View/search/filter the list of SOAP /dynamic_app/soap_performance GET
Performance Dynamic Applications.

View the properties of a SOAP Performance | /dynamic_app/soap_performance/X GET
Dynamic Application.

View/search/filter the list of collection /dynamic_app/soap GET
objects associated with a SOAP performance/X/collection_object

Performance Dynamic Application.

Add a collection object to a SOAP /dynamic_app/soap POST
Performance Dynamic Application. performance/X/collection_object

View the properties of a collection object /dynamic_app/soap GET
associated with a SOAP Performance performance/X/collection_object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/soap POST
associated with a SOAP Performance performance/X/collection_object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/soap_ PUT
a SOAP Performance Dynamic Application. | performance/X/collection_object/X

Remove a collection object from a SOAP /dynamic_app/soap DELETE

Performance Dynamic Application.

performance/X/collection_object/X

291

Dynamic Applications

Action

Method

View/search/filter the list of presentation /dynamic_app/soap_ GET
objects associated with a SOAP performance/X/presentation_object

Performance Dynamic Application.

Add a presentation object to a SOAP /dynamic_app/soap POST
Performance Dynamic Application. performance/X/presentation_object

View the properties of a presentation object | /dynamic_app/soap GET
associated with a SOAP Performance performance/X/presentation_object/X

Dynamic Application.

Update the properties of a presentation /dynamic_app/soap POST
object associated with a SOAP performance/X/presentation_object/X
Performance Dynamic Application.

Replace a presentation object associated /dynamic_app/soap PUT
with a SOAP Performance Dynamic performance/X/presentation_object/X

Application.

Remove a presentation object from a SOAP | /dynamic_app/soap DELETE
Performance Dynamic Application. performance/X/presentation_object/X
View/search/filter the list of WMI /dynamic_app/wmi_config GET
Configuration Dynamic Applications.

View the properties of a WMI Configuration | /dynamic_app/wmi_config/X GET
Dynamic Application.

View/search/filter the list of collection /dynamic_app/wmi_config/X/collection | GET
objects associated with a WM object

Configuration Dynamic Application.

Add a collection object to a WMI /dynamic_app/wmi_config/X/collection_ | POST
Configuration Dynamic Application. object

View the properties of a collection object /dynamic_app/wmi_config/X/collection | GET
associated with a WMI Configuration object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/wmi_config/X/collection | POST
associated with a WMI Configuration object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/wmi_config/X/collection | PUT
a WMI Configuration Dynamic Application. | object/X

Remove a collection object from a WMI /dynamic_app/wmi_config/X/collection | DELETE
Configuration Dynamic Application. object/X

View/search/filter the list of WMI /dynamic_app/wmi_performance GET

Performance Dynamic Applications.

Dynamic Applications

292

Action

Method

View the properties of a WMI Performance | /dynamic_app/wmi_performance/X GET
Dynamic Application.

View/search/filter the list of collection /dynamic_app/wmi_ GET
objects associated with a WMI Performance | performance/X/collection_object

Dynamic Application.

Add a collection object to a WMI /dynamic_app/wmi_ POST
Performance Dynamic Application. performance/X/collection_object

View the properties of a collection object /dynamic_app/wmi_ GET
associated with a WMI Performance performance/X/collection_object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/wmi_ POST
associated with a WMI Performance performance/X/collection_object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/wmi_ PUT
a WMI Performance Dynamic Application. | performance/X/collection_object/X

Remove a collection object from a WMI /dynamic_app/wmi_ DELETE
Performance Dynamic Application. performance/X/collection_object/X
View/search/filter the list of presentation /dynamic_app/wmi_ GET
objects associated with a WMI Performance | performance/X/presentation_object

Dynamic Application.

Add a presentation object to a WMI /dynamic_app/wmi_ POST
Performance Dynamic Application. performance/X/presentation_object

View the properties of a presentation object | /dynamic_app/wmi_ GET
associated with a WMI Performance performance/X/presentation_object/X

Dynamic Application.

Update the properties of a presentation /dynamic_app/wmi_ POST
object associated with a WMI Performance | performance/X/presentation_object/X

Dynamic Application.

Replace a presentation object associated /dynamic_app/wmi_ PUT
with a WMI Performance Dynamic performance/X/presentation_object/X

Application.

Remove a presentation object from a WMI | /dynamic_app/wmi_ DELETE
Performance Dynamic Application. performance/X/presentation_object/X
View/search/filter the list of XML /dynamic_app/xml_config GET
Configuration Dynamic Applications.

View the properties of an XML /dynamic_app/xml_config/X GET

Configuration Dynamic Application.

293

Dynamic Applications

Action Method

Add a collection object to an XML /dynamic_app/xml_config/X/collection POST
Configuration Dynamic Application. object

View/search/filter the list of collection /dynamic_app/xml_config/X/collection GET
objects associated with an XML object

Configuration Dynamic Application.

View the properties of a collection object /dynamic_app/xml_config/X/collection_ GET
associated with an XML Configuration object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/xml_config/X/collection POST
associated with an XML Configuration object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/xml_config/X/collection PUT
an XML Configuration Dynamic object/X

Application.

Remove a collection object from an XML /dynamic_app/xml_config/X/collection DELETE
Configuration Dynamic Application. object/X

View/search/filter the list of XML /dynamic_app/xml_performance GET
Performance Dynamic Applications.

View the properties of an XML Performance | /dynamic_app/xml_performance/X GET
Dynamic Application.

View/search/filter the list of collection /dynamic_app/xml_ GET
objects associated with an XML performance/X/collection_object

Performance Dynamic Application.

Add a collection object to an XML /dynamic_app/xml_ POST
Performance Dynamic Application. performance/X/collection_object

View the properties of a collection object /dynamic_app/xml_ GET
associated with an XML Performance performance/X/collection_object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/xml POST
associated with an XML Performance performance/X/collection_object/X
Dynamic Application.

Replace a collection object associated with | /dynamic_app/xml_ PUT
an XML Performance Dynamic Application. | performance/X/collection_object/X

Remove a collection object from an XML /dynamic_app/xml_ DELETE
Performance Dynamic Application. performance/X/collection_object/X

Dynamic Applications 294

Action

Method

View/search/filter the list of presentation /dynamic_app/xml_ GET
objects associated with an XML performance/X/presentation_object

Performance Dynamic Application.

Add a presentation object to an XML /dynamic_app/xml_ POST
Performance Dynamic Application. performance/X/presentation_object

View the properties of a presentation object | /dynamic_app/xml_ GET
associated with an XML Performance performance/X/presentation_object/X

Dynamic Application.

Update the properties of a presentation /dynamic_app/xml_ POST
object associated with an XML Performance | performance/X/presentation_object/X

Dynamic Application.

Replace a presentation object associated /dynamic_app/xml_ PUT
with an XML Performance Dynamic performance/X/presentation_object/X

Application.

Remove a presentation object from an XML | /dynamic_app/xml_ DELETE
Performance Dynamic Application. performance/X/presentation_object/X
View/search/filter the list of XSLT /dynamic_app/xslt_config GET
Configuration Dynamic Applications.

View the properties of an XSLT /dynamic_app/xslt_config/X GET
Configuration Dynamic Application.

View/search/filter the list of collection /dynamic_app/xslt_config/X/collection GET
objects associated with an XSLT object

Configuration Dynamic Application.

Add a collection object to an XSLT /dynamic_app/xslt_config/X/collection POST
Configuration Dynamic Application. object

View the properties of a collection object /dynamic_app/xslt_config/X/collection GET
associated with an XSLT Configuration object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/xslt config/X/collection POST
associated with an XSLT Configuration object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/xslt_config/X/collection PUT
a Dynamic Application. object/X

Remove a collection object from an XSLT /dynamic_app/xslt_config/X/collection DELETE
Configuration Dynamic Application. object/X

View/search/filter the list of XSLT /dynamic_app/xslt_performance GET

Performance Dynamic Applications.

295

Dynamic Applications

Action

Method

View the properties of an XSLT Performance | /dynamic_app/xslt_performance/X GET
Dynamic Application.

View/search/filter the list of collection /dynamic_app/xslt GET
objects associated with an XSLT performance/X/collection_object

Performance Dynamic Application.

Add a collection object to an XSLT /dynamic_app/xslt POST
Performance Dynamic Application. performance/X/collection_object

View the properties of a collection object /dynamic_app/xslt GET
associated with an XSLT Performance performance/X/collection_object/X

Dynamic Application.

Update the properties of a collection object | /dynamic_app/xslt POST
associated with an XSLT Performance performance/X/collection_object/X

Dynamic Application.

Replace a collection object associated with | /dynamic_app/xslt_ PUT
an XSLT Performance Dynamic Application. | performance/X/collection_object/X

Remove a collection object from an XSLT /dynamic_app/xslt DELETE
Performance Dynamic Application. performance/X/collection_object/X
View/search/filter the list of presentation /dynamic_app/xslt GET
objects associated with an XSLT performance/X/presentation_object

Performance Dynamic Application.

Add a presentation object to an XSLT /dynamic_app/xslt POST
Performance Dynamic Application. performance/X/presentation_object

View the properties of a presentation object | /dynamic_app/xslt GET
associated with an XSLT Performance performance/X/presentation_object/X

Dynamic Application.

Update the properties of a presentation /dynamic_app/xslt POST
object associated with an XSLT performance/X/presentation_object/X

Performance Dynamic Application.

Replace a presentation object associated /dynamic_app/xslt PUT
with an XSLT Performance Dynamic performance/X/presentation_object/X

Application.

Remove a presentation object from an XSLT | /dynamic_app/xslt DELETE
Performance Dynamic Application. performance/X/presentation_object/X
View/search/filter the list of all Dynamic /dynamic_app/_lookup GET

Applications.

Dynamic Applications

296

Events

Action Method
View/search/filter the list of active events. /event GET
View an active event. /event/X GET
Clear an active event. /event/X DELETE
Update the properties of an event. /event/X POST

Event Categories

Action Method
Add an event category to an active event. | /event category/X POST
View the event category for an active event. | /event category/X GET
Delete the event category for an active /event_category/X DELETE
event.

Update the properties of an event. /event_category/X POST

External Contacts

View/search/filter the list of external /contacts GET
confacts.

Create a new external contact. /contacts POST
View the properties of an external contact. | /contacts/X GET
Update the properties of an external /contacts/X POST
contact.

Replace an external contact. /contacts/X PUT
Delete an external contact. /contacts/X DELETE

297

Events

File Uploads

Action

Method

patch file.

View the index of available filestore /filestore GET
resources.

View the index of available PowerPack file | /filestore/powerpack GET
resources. This index does not include

PowerPacks that are automatically installed

by Sciencelogic patches.

Download a PowerPack file. /filestore/powerpack/X GET
View the information associated with a /filestore/powerpack/X/info GET
PowerPack file.

View the index of available patch file /filestore/system_patch GET
resources.

Download a patch file. /filestore/system_patch/X GET
View the information associated with a /filestore/system_patch/X/info GET

Interfaces

interface.

hourly

View/search/filter the list of interfaces. /interface GET
Add an interface record to a device. /interface POST
View the properties of an interface. /interface/X GET
Update the properties of an interface. /interface/X POST
Replace an interface record. /interface/X PUT
Delete an interface record. /interface/X DELETE
View data for an interface. /interface/X/interface data/data GET
View daily normalized data for an interface. | /interface/X/interface data/normalized GET
daily
View hourly normalized data for an /interface/X/interface_data/normalized | GET

File Uploads

298

Interface Metrics

Action Method
View/search/filter the list of interface /interface_metric GET
metrics.

View details about an interface metric. /interface_metric/X GET

Interface Tags

Action

Method

atag mapped to an interface.

View/search/filter the list of interface tags | /interface _tag GET
and their names.

Add a new interface tag. /interface tag POST
Update the name of an interface tag. /interface_tag PUT
Delete an interface tag. You cannot delete | /interface_tag DELETE

Monitors

Action

View the index of available monitoring /monitor GET
policy resources.

View/search/filter the list of web content /monitor/cv GET
monitoring policies.

Create a new web content monitoring /monitor/cv POST
policy.

View a web content monitoring policy. /monitor/cv/X GET
Update a web content monitoring policy. /monitor/cv/X POST
Replace a web content monitoring policy. | /monitor/cv/X PUT

299

Interface Metrics

Action

Method

Delete a web content monitoring policy. /monitor/cv/X DELETE
View/search/filter the list of domain name | /monitor/dns GET
monitoring policies.

Create a new domain name monitoring /monitor/dns POST
policy.

View a domain name monitoring policy. /monitor/dns/X GET
Update a domain name monitoring policy. | /monitor/dns/X POST
Replace a domain name monitoring policy. | /monitor/dns/X PUT
Delete a domain name monitoring policy. | /monitor/dns/X DELETE
View/search/filter the list of Email round- /monitor/email GET
trip monitoring policies.

Create a new Email round-trip monitoring | /monitor/email POST
policy.

View an Email round-trip monitoring policy. | /monitor/email/X GET
Update an Email round-trip monitoring /monitor/email/X POST
policy.

Replace an Email round-trip monitoring /monitor/email/X PUT
policy.

Delete an Email round-trip monitoring /monitor/email/X DELETE
policy.

View/search/filter the list of port monitoring | /monitor/port GET
policies.

Create a new port monitoring policy. /monitor/port POST
View a port monitoring policy. /monitor/port/X GET
Update a port monitoring policy. /monitor/port/X POST
Replace a port monitoring policy. /monitor/port/X PUT
Delete a port monitoring policy. /monitor/port/X DELETE
Create a new system process monitoring /monitor/process POST
policy.

View/search/filter the list of system process | /monitor/process GET
monitoring policies.

View a system process monitoring policy. /monitor/process/X GET

Monitors

300

Action Method

Update a system process monitoring policy. | /monitor/process/X POST
Replace a system process monitoring /monitor/process/X PUT
policy.

Delete a system process monitoring policy. | /monitor/process/X DELETE
View/search/filter the list of Windows /monitor/service GET
service monitoring policies.

Create a new Windows service monitoring | /monitor/service POST
policy.

View a Windows service monitoring policy. | /monitor/service/X GET
Update a Windows service monitoring /monitor/service/X POST
policy.

Replace a Windows service monitoring /monitor/service/X PUT
policy.

Delete a Windows service monitoring /monitor/service/X DELETE
policy.

View/search/filter the list of SOAP/XML /monitor/tv GET
transaction monitoring policies.

Create a new SOAP/XML transaction /monitor/tv POST
monitoring policy.

View a SOAP/XML transaction monitoring | /monitor/tv/X GET
policy.

Update a SOAP/XML transaction /monitor/tv/X POST
monitoring policy.

Replace a SOAP/XML transaction /monitor/tv/X PUT
monitoring policy.

Delete a SOAP/XML transaction monitoring | /monitor/tv/X DELETE
policy.
Organizations

Action Method

View/search/filter the list of organizations. | /organization GET

301 Organizations

Action

Method

Create an organization. /organization POST
View the properties of an organization. /organization/X GET
Update the properties of an organization. | /organization/X POST
Replace an organization. /organization/X PUT
Delete an organization. /organization/X DELETE
View/search/filter the list of logs associated | /organization/X/log/ GET
with an organization.

View a log message associated with an /organization/X/log/X GET
organization.

View/search/filter the list of notes /organization/X/note/ GET
associated with an organization.

Add a note to an organization. /organization/X/note/ POST
View a note associated with an /organization/X/note/X GET
organization.

Update a note associated with an /organization/X/note/X POST
organization.

Replace a note associated with an /organization/X/note/X PUT
organization.

Delete a note associated with an /organization/X/note/X DELETE
organization.

View/search/filter the list of files associated | /organization/X/note/X/media GET
with an organization note.

Get a media file associated with an /organization/X/note/X/media/X GET
organization note.

Add a media file to an organization note. | /organization/X/note/X/media/X PUT
View meta-data about a media file /organization/X/note/X/media/X/info GET

associated with an organization note.

Organizations

302

Performance Data

Action Method
View the index of available performance /data_performance GET
data resources.

View the index of available performance /data_performance/device GET
data resources for devices.

View normalized (rolled-up) data about /data_performance/device/avail GET
availability and latency.

View normalized (rolled-up) data from one | /data_performance/device/dynamic_app | GET
or more Dynamic Applications.

View normalized (rolled-up) data from file | /data_performance/device/filesystem GET
system usage policies.

View normalized (rolled-up) data from web | /data_performance/device/monitor_cv GET
content monitoring policies.

View normalized (rolled-up) data from DNS | /data_performance/device/monitor_dns GET
monitoring policies.

View normalized (rolled-up) data from /data_performance/device/monitor_email | GET
email round-trip monitoring policies.

View normalized (rolled-up) data from a /data_performance/device/monitor_port | GET
port monitoring policies.

View normalized (rolled-up) data from /data_performance/device/monitor GET
system process monitoring policies. process

View normalized (rolled-up) data from /data_performance/device/monitor GET
Windows service monitoring policies. service

View normalized (rolled-up) data from /data_performance/device/monitor_tv GET
SOAP/XML transaction monitoring policies.

View normalized (rolled-up) data about /data_performance/interface GET
interface utilization.

View normalized (rolled-up) data about /data_performance/interface GET
CBQOoS obijects.

View the index of available raw /data_performance raw GET
performance data resources.

View the index of available raw /data_performance raw/device GET
performance data resources for devices.

303

Performance Data

Action Method
View raw data about availability and /data_performance raw/device/avail GET
latency.

View raw data from one or more Dynamic | /data_performance raw/device/dynamic_ | GET
Applications. app

View raw data from file system usage /data_performance raw/device/filesystem | GET
policies.

View raw data from web content monitoring | /data_performance raw/device/monitor | GET
policies. cv

View raw data from DNS monitoring /data_performance raw/device/monitor | GET
policies. dns

View raw data from email round-trip /data_performance _raw/device/monitor | GET
monitoring policies. email

View raw data from a port monitoring /data_performance raw/device/monitor | GET
policies. port

View raw data from system process /data_performance _raw/device/monitor | GET
monitoring policies. process

View raw data from Windows service /data_performance raw/device/monitor | GET
monitoring policies. service

View raw data from SOAP/XML transaction | /data_performance raw/device/monitor | GET
monitoring policies. tv

View raw data about interface utilization. /data_performance raw/interface GET
View raw data about CBQoS objects. /data_performance _raw/cbqos GET

PowerPacks

View/search/filter the list of PowerPacks. /powerpack GET
View a PowerPack. /powerpack/X GET
Install a PowerPack. /powerpack Post a

/filestore/powerpack
resource.

PowerPacks

304

Product SKUs

Action

Method

View/search/filter the list of Product SKUs. | /product GET
Create a new Product SKU. /product POST
View a Product SKU. /product/X GET
Update a Product SKU. /product/X POST
Replace a Product SKU. /product/X PUT
Delete a Product SKU. /product/X DELETE

Scale Values

View/search/filter the list of scale values /scale GET
associated with metrics.

View detials about a scale value associated | /scale/X GET
with metrics.

Schedules

Action

Method

View a list of schedules. /schedule/ GET
Create a new schedule. /schedule/ POST
View a schedule. /schedule/X GET
Update a schedule. /schedule/X POST
Delete a schedule. /schedule/X DELETE
View a list of tasks aligned to the schedule. | /schedule/X/task/X GET

305

Product SKUs

Streamer Push Proxy

Action Method
Return the current proxy configuration /streamerpush/proxy GET
information.

Set the proxy information. /streamerpush/proxy POST
Toggle proxy on or off without deleting the | /streamerpush/proxy/toggle POST
configuration.

System Patches

View/search/filter the list of patches /system_patch GET
registered in the system.

View information about a registered patch. | /system patch/X GET
View/search/filter the list of log messages | /system_patch/X/log GET
from the last execution of a patch.

View a log message from the last execution | /system_patch/X/log/X GET
of a patch.

Register a patch file. /system_patch Posta

/filestore/system
patch resource.

View/search/filter the list of staged patches.

/system_patch_stage

GET

View information about a staged patch.

/system_patch_stage/X

GET

Stage a patch file that has been registered
in the system.

/system patch stage

Post a /system
patch resource.

currently being installed.

View/search/filter the list of patches /system_patch_deploy active GET
currently being installed.
View information about a patch that is /system patch deploy active/X GET

Install a staged patch.

/system_patch_deploy active

Post a /system
patch_stage
resource.

Streamer Push Proxy

306

System Settings

Action Method
View the index of available system setftings | /system_settings GET
resources.

View the global threshold settings. /system_settings/system_thresholds GET
Update the global threshold settings. /system_settings/system_thresholds POST

System Thresholds

Action

Method

interface metric threshold.

View/search/filter the list of system-level /system_threshold GET
thresholds for metrics associated with

interfaces.

View a system-level threshold for a metric | /system_threshold/X GET
associated with interfaces.

Update the settings for a system-level /system_threshold/X POST

Tasks

Action

Method

View a list of tasks. A task is any item that /task/ GET
can be scheduled, such as a discovery

session.

Create a new task. /task/ POST
View a task. /task/X GET
Update a task. /task/X POST
Delete a task. /task/X DELETE
View a list of schedules aligned to the task. | /task/X/schedule/X GET

307

System Settings

Themes

Action Method
View/search/filter the list of themes. /theme GET
Create a new theme. /theme POST
View a theme. /theme/X GET
Update a theme. /theme/X POST
Replace a theme. /theme/X PUT
Delete a theme. /theme/X DELETE

Threshold Overrides

View/search/filter the list of threshold
overrides that are in place for metrics
associated with interfaces.

/threshold value override

GET

Add a threshold override for a metric on an
interface.

/threshold value override

POST

View details about a threshold override for
a metric associated with a specific
interface.

/threshold value override/X

GET

Update a threshold override for a metric
associated with a specific interface.

/threshold value override/X

POST

Replace a threshold override for a metric
associated with a specific interface.

/threshold value override/X

PUT

Remove a threshold override for a metric
associated with a specific interface.

/threshold value override/X

DELETE

Themes

308

Tickets

Action Method
View/search/filter the list of tickets. /ticket GET
Create a new ticket. /ticket POST
View the properties of a ticket. /ticket/X GET
Replace a ticket. /ticket/X PUT
Update a ticket. /ticket/X POST
View/search/filter the list of logs associated | /ticket/X/log/ GET
with a ticket.

View a log message associated with a /ticket/X/log/X GET
ticket.

View/search/filter the list of notes /ticket/X/note/ GET
associated with a ticket.

Add a note to a ticket. /ticket/X/note/ POST
View a note associated with a ticket. /ticket/X/note/X GET
Update a note associated with a ticket. /ticket/X/note/X POST
Replace a note associated with a ticket. /ticket/X/note/X PUT
View/search/filter the list of files associated | /ticket/X/note/X/media GET
with a ticket note.

Get a media file associated with a ticket /ticket/X/note/X/media/X GET
note.

Add a media file to a ticket note. /ticket/X/note/X/media/X PUT
View meta-data about a media file /ticket/X/note/X/media/X/info GET
associated with a ficket note.

View/search/filter the list of external /ticket/X/watcher ext GET
watchers associated with a ticket.

Add an external watcher to a ticket. /ticket/X/watcher_ext POST
View an external watcher associated with a | /ticket/X/watcher ext/X GET
ticket.

Update an external watcher associated with | /ticket/X/watcher_ext/X POST
a ticket.

309 Tickets

Action

Method

ticket.

Replace an external watcher associated /ticket/X/watcher_ext/X PUT
with a ticket.

Remove an external watcher from a ticket. | /ticket/X/watcher_ext/X DELETE
View/search/filter the list of organization /ticket/X/watcher_org GET
watchers associated with a ticket.

Add an organization watcher to a ticket. /ticket/X/watcher org POST
View an organization watcher associated /ticket/X/watcher_org/X GET
with a ticket.

Update an organization watcher associated | /ticket/X/watcher org/X POST
with a ticket.

Replace an organization watcher /ticket/X/watcher org/X PUT
associated with a ticket.

Remove an organization watcher from a /ticket/X/watcher org/X DELETE
ticket.

View/search/filter the list of ticket queue /ticket/X/watcher queue GET
watchers associated with a ticket.

Add a ticket queue watcher to a ticket. /ticket/X/watcher queue POST
View a ticket queue watcher associated with | /ticket/X/watcher _queue/X GET

a ticket.

Update a ticket queue watcher associated | /ticket/X/watcher queue/X POST
with a ticket.

Replace a ticket queue watcher associated | /ticket/X/watcher queue/X PUT
with a ticket.

Remove a ticket queue watcher from a /ticket/X/watcher _queue/X DELETE

Ticket Categories

View/search/filter the list of ticket /ticket_category GET
categories.
View the properties of a ticket category. /ticket _category/X GET

Ticket Categories

Ticket Chargeback

Action

Method

View/search/filter the list of ticket /ticket_chargeback GET
chargeback entries.

View the properties of a ticket chargeback | /ticket chargeback/X GET
entry.

Ticket Logs

View/search/filter the list of all ticket logs.

/ticket_log

GET

View a log message associated with a
ticket.

/ticket log/X

GET

Ticket Notes

View/search/filter the list of all ticket notes. | /ticket note GET
View the properties of a ticket note. /ticket _note/X GET
Update a ticket note. /ticket_note/X POST
Replace a ticket note. /ticket note/X PUT
View/search/filter the list of files associated | /ticket note/X/media GET
with a ticket note.

Get a media file associated with a ticket /ticket_note/X/media/X GET
note.

Add a media file to a ticket note. /ticket note/X/media/X PUT
View meta-data about a media file /ticket_note/X/media/X/info GET
associated with a ticket note.

311

Ticket Chargeback

Ticket Queues

Action Method
View/search/filter the list of ticket queues. | /ticket queue GET
Create a new ticket queue. /ticket_queue POST
View the properties of a ticket queue. /ticket queue/X GET
Update a ticket queue. /ticket_queue/X POST
Replace a ticket queue. /ticket_queue/X PUT
Delete a ticket queue. /ticket_queue/X DELETE

Ticket States

View/search/filter the list of ticket states. /ticket_state GET
Create a new ticket state. /ticket state POST
View the properties of a ticket state. /ticket state/X GET
Update a ticket state. /ticket_state/X POST
Replace a ticket state. /ticket_state/X PUT
Delete a ficket state. /ticket_state/X DELETE

Unit Values
Action Method
View/search/filter the list of unit values /unit GET
associated with metrics.
View details about a unit value associated | /unit/X GET

with metrics.

Ticket Queues

User Policies

Action Method
View/search/filter the list of user policies. /account_policy GET
Create a new user policy. /account_policy POST
View the properties of a user policy. /account_policy/X GET
Update the properties of a user policy. /account _policy/X POST
Replace a user policy. /account_policy/X PUT
Delete a user policy. /account_policy/X DELETE

Vendors

with a vendor record note.

View/search/filter the list of vendor records. | /vendor GET
Create a new vendor record. /vendor POST
View a vendor record. /vendor/X GET
Update a vendor record. /vendor/X POST
Replace a vendor record. /vendor/X PUT
Delete a vendor record. /vendor/X DELETE
View/search/filter the list of notes /vendor/X/note GET
associated with a vendor record.

Add a note to a vendor record. /vendor/X/note POST
View a note associated with a vendor /vendor/X/note/X GET
record.

Update a note associated with a vendor /vendor/X/note/X POST
record.

Replace a note associated with a vendor /vendor/X/note/X PUT
record.

View/search/filter the list of files associated | /vendor/X/note/X/media GET

313

User Policies

Action

Method

Get a media file associated with a vendor | /vendor/X/note/X/media/X GET
record note.

Add a media file to a vendor record note. /vendor/X/note/X/media/X PUT
View meta-data about a media file /vendor/X/note/X/media/X/info GET
associated with a vendor record note.

Vendors

314

© 2003 - 2025, Sciencelogic, Inc.
All rights reserved.
LIMITATION OF LIABILITY AND GENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although Sciencelogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and Sciencelogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without noftice.
Sciencelogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

Sciencelogic, the Sciencelogic logo, and EM7 are trademarks of Sciencelogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to Sciencelogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

e Sciencelogic™

e EM7™ andem7™

o Simplify IT™

e Dynamic Application™

o Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
Sciencelogic’s frademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of Sciencelogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com. For more information, see

https://sciencelogic.com/company/legal.

mailto:legal@sciencelogic.com
https://sciencelogic.com/company/legal

Sciencelogic

	Introduction to the ScienceLogic API
	What is the ScienceLogic API?
	Accessing the API
	API Settings

	HTTP Methods, Headers and Response Formats
	HTTP Methods
	HTTP Status Codes
	SL1-Specific Headers
	Response Headers
	Request Headers

	Response Formats

	Resources & URIs
	Available Resources
	URI Formatting
	Resource Index Responses
	Constructing URIs Using a searchspec
	Filters
	Options
	Sorting
	Specifying a Query String in the Request Body

	Required Options for Indexes
	Resource Responses
	Creating and Updating Resources
	Asynchronous Operations
	Links Between Resources
	Size Limits

	Authentication and Access Permissions
	User Access to the API
	Account Lockouts
	The _self Resource
	Audit Logging

	Custom Attributes
	Custom Attributes for API Resources
	Viewing and Adding Custom Attributes
	Example of How to Add Custom Attributes
	Editing Custom Attributes
	Requests to Resources with Custom Attributes
	Removing Custom Attributes

	Generating Events Using the API
	Generating Alerts
	Defining API Event Policies
	Defining API Event Policies in the Classic SL1 User Interface

	Requesting Performance Data in Bulk
	Resource URIs
	Specifying the Time Range for a Data Request
	Specifying Data Fields
	Fields for Dynamic Application Resources
	Fields for Port Monitor Resources
	Fields for Web Content Monitor Resources
	Fields for SOAP/XML Transaction Monitor Resources
	Fields for Process Monitor Resources
	Fields for Windows Service Monitor Resources
	Fields for Email Round-Trip Monitor Resources
	Fields for DNS Monitor Resources
	Fields for File System Resources
	Fields for Availability Resources
	Fields for Interface Resources
	Fields for CBQoS Resources

	Requesting Data for Specific Devices or Interfaces
	Filtering Device Resources
	Filtering Interface Resources
	Filtering CBQoS Resources

	Additional Options
	Responses from Bulk Performance Data Resources

	Best Practices for Requesting Bulk Performance Data
	Best Practices

	Using the Ticket Resource
	Requirements
	Getting Started
	Connecting to the API
	Viewing a List of Tickets
	Viewing a List of Tickets and Ticket Details
	Filtering a List of Tickets
	Retrieving Information about a Specific Ticket
	Updating a Ticket
	Capture Ticket Information in a File
	Edit the Captured File
	Use HTTP POST to Update the Ticket with the Edited File
	Sending Only Changes in the ticket99.json File

	Creating a New Ticket
	Capturing an Existing Ticket and Storing the Information in a File
	Determining the URI for a User Account
	Editing the Captured File
	Using the Edited File to Create a New Ticket

	Viewing Notes for a Ticket
	Adding a Note to a Ticket
	Capturing an Existing Note and Storing the Information in a File
	Editing the Captured File
	Creating a New Note Using the Edited File

	Viewing the Attachments for a Ticket
	Adding an Attachment to a Ticket Note

	Using the Discovery Resource
	Requirements
	Getting Started
	Connecting to the API
	Viewing a List of Discovery Sessions
	Viewing Details about All Discovery Sessions
	Filtering the List of Discovery Sessions
	Retrieving Information about a Specific Discovery Session
	Starting a Discovery Session
	Viewing a List of All Active Discovery Sessions
	Retrieving Information about a Specific Active Discovery-Session
	Viewing Logs for a Discovery Session
	Stopping a Currently Running Discovery-Session
	Deleting a Discovery Session

	Searching Component Trees
	Searching for All the Components in a Tree
	Searching for the Direct Children of a Device
	Searching for the Components in a Sub-Tree
	Searching for a Component by Unique ID

	Simple Provisioning System
	System Design
	Prerequisites
	System-Specific Functions
	Utility Functions (utils.php)
	Performing Requests
	Requesting a List of Entities
	Organization Lookup
	Creating Entities
	Deleting Entities
	Configuring SNMP Credentials
	Requesting Discovery Session Logs
	Requesting an Available Data Collection Unit
	Requesting a List of Referenced Entities

	User Interface
	header.php
	index.php
	devices.php
	remove.php
	provisioning.css

	Provisioning a Customer (provision_customer.php)
	Retrieving and Configuring Devices (configure_devices.php)
	Removing a Customer (delete_customer.php)

	Create Device Maintenance Schedules via the API
	Requirements
	Caveats to Consider

	Prerequisite Examples
	Getting Started
	Creating the Task (Step 1)
	Creating the Schedule Entry (Step 2)
	Aligning the Task to the Schedule Entry (Step 3)

	Available Actions
	Accounts
	Account Lockouts
	Alerts
	Appliances
	Assets
	CBQoS Metrics
	CBQoS Objects
	CBQoS Object Types
	Cleared Events
	Collection Labels
	Collection Label Groups
	Collector Groups
	Credentials
	Custom Attributes
	Dashboards
	Devices
	Device Categories
	Device Classes
	Device Groups
	Device Relationships
	Device Relationship Types
	Device Templates
	Discovery Sessions
	Dynamic Applications
	Events
	Event Categories
	External Contacts
	File Uploads
	Interfaces
	Interface Metrics
	Interface Tags
	Monitors
	Organizations
	Performance Data
	PowerPacks
	Product SKUs
	Scale Values
	Schedules
	Streamer Push Proxy
	System Patches
	System Settings
	System Thresholds
	Tasks
	Themes
	Threshold Overrides
	Tickets
	Ticket Categories
	Ticket Chargeback
	Ticket Logs
	Ticket Notes
	Ticket Queues
	Ticket States
	Unit Values
	User Policies
	Vendors

