»

Sciencelogic

Using the SciencelLogic GraphQL API

SLT version 10.2.0

Table of Contents

IMtrOdUCHON . 4
What is GraphQLg .. 4
How Does SLT Use GraphQILe ... o 5
Authentication and User ACCESs ... 5
The GraphiQL User Interfaceo e 6

GraphQL Terminology and Punctuahion 7
Graph QL Terminologyo 8

SO Lo 8

T S e 8
PO ONS . 8
QUETIES .. 8
Ut ONS 8

O B Ty PO .o 8
Frelds o 9

A UMM BINES 9
RO U Ty DS . 9
CONNECHONS .. e 9
B gES 9

N O . 10
Variab s 10

P OGNS . 10

D OO VS 10
Case- NS VIt . 10
PUNCI UG ON 10

Using the GraphiQL User Interface ... 13
What is the GraphiQL User Inferface? 14
GraphiQL User Interface Elements 14

QUETY PaNe 15
Quuery Variables Pane 15
ResUts PaNe L. 15
Documentation Explorer Pane ... 16
Toolbar BURONS ..o 16
The GraphQIL Schema ... 16
Exploring the GraphQL Schema in the Documentation Explorer ... 17
Example 1: Using the Schema to Execute a Simple Query ... 18
Example 2: Using the Schema to Execute a Complex Query ... 21
Example 3: Using the Schema to Execute a Mutation 30

QU 34
What Are QUUENESS .. 35
Basic QuUery SYNMIax L. . 35

Example: Querying a Single Device 36
Example: A Simple Query without the Operation Type "query” 37
Connections, Edges, and Nodes 37
Example: A Query with Edges and Nodes ... 38
VOO S 39
Example: Querying Basic Device Information Using a Variable ... 40
OGNS 41
Example: Creating a Fragment for Account Fields ... 41
Inline Fragments o 42
Example: Using an Inline Fragment ... 42

DTtV . 43
Example: Using a Directive with a Variable ... 43
Search FIers . .o 44
Filter O peralOrs 44
Example: Querying Devices from the Same Device Class ... 45
Example: Querying a List of Specific Devices ... 45
QUUErY Pagination ... o 46
Example: Querying the First Five Devices Listed in SLT ... 47
Example: Determining the Total Number of Query Results 48
Example: Using Cursor-based Query Pagination ... 49
Querying the Sciencelogic GraphQL API from an External Application ... 50
MUTGHONS 52
What are MUIGHONSS L 53
MUTGHON TYPES e 53
Basic MUTGHON SYNTOX ... 53
Example: Updating a User's Name ... 54
VAEIODIES 54
Example: Using Variables in a Mutation ... 55

B OGNS 55
Example: Using a Fragmentin a Mutation ... 55
DIrECHIVES . 56

Chapter

Introduction

Overview

This manual describes the functionality of the SLT GraphQL APl and is intended for developers who are
responsible for integrating SL1 with external systems. To use this manual, you should have a general
understanding of the HTTP protocol.

For more information on accessing SL1 data with GraphQlL, watch the video at
https://sciencelogic.com/product/resources/access-sl 1 -data-with-the-graphgl-api.

This manual includes the following topics:

What is Graph Qg 4
How Does SLT Use GraphQL2 ... 5
Authentication and User ACCESS ... 5
The GraphiQL User Interface ... 6

What is GraphQL?

GraphQL is a data query and manipulation language for application programming interfaces (APls) and a
server-side runtime for executing queries and mutations with your data. It lets you define the exact data that you
want to fetch from the APl and, unlike REST, enables you to retrieve data from multiple sources in a single query.

GraphQL—sometimes abbreviated "GQL"—has two main operation types that are used in SL1:

o Queries, which read and return data

« Mutations, which write and modify data

What is GraphQL?2 4

https://sciencelogic.com/product/resources/access-sl1-data-with-the-graphql-api

Typically used over HTTP, GraphQlL lets you make a POST request using a JSON structure o an HTTP endpoint
on your server; the server then processes the request, calls the database or other source to fetch the requested
data, and then returns the data to you in the same JSON structure as your request.

GraphQl is data source-agnostic. This means it can query data from any source: Databases, REST APIs,
microservices, flat files, or even other GraphQL servers.

NOTE: For more information about GraphQL, see the GraphQL documentation.

How Does SL1 Use GraphQL?

The SL1 GraphQL API allows external systems to programmatically access data in SL1 using the GraphQL query
language. The API gives access to entities in the platform, such as devices and collected data, using standard
HTTP request/response protocols.

The current SL1 user interface, also referred to as "AP2", uses GraphQL exclusively to request and access SL1
data from multiple sources and consolidate it together into a unified JSON response. The current SL1 user
interface does not make any REST API calls.

Authentication and User Access

The SL1 GraphQL API uses the same authentication profiles and credentials as SL1. When you log in to SL1, you
are also authenticated in the SL1 GraphQL API. It does not require an additional login.

All users have access to the SLT GraphQL APl—not only administrators—but users' ability to perform actions in
GraphQlL is controlled in the same way as in other parts of SL1:

o Auser can interact only with entities associated with their organizations. Entities are either explicitly aligned
with organizations, aligned with organizations based on the user that created the entity, or are not aligned
with an organization.

o Administrator users can perform all actions on all resources, regardless of organization membership.

o A user must be granted the appropriate access keys to interact with specific parts of SL1 or perform specific
actions in SLT.

To access GraphQL:

1. Inyour web browser, type the URL or IP address for SL1.
2. Signinto SL1 using your regular user credentials.

3. Afteryou have signed into SL1, type /gql at the end of the URL or IP address that appears in the address
bar. The GraphiQL user interface appears.

NOTE: You might need to type your credentials again to access the GraphiQL user interface.

5 How Does SL1 Use GraphQL?2

https://graphql.org/learn/

The GraphiQL User Interface

GraphiQL is a browser-based user interface for interactively exploring the capabilities of, and executing queries
against, a GraphQL API. Unlike the SL1 REST API, all requests to the GraphQL APl on a given SL1 system use the
same URI.

To access the GraphiQL interface, type the URL or IP address for SL1 in a browser, add /gql to the end of the URL
or IP address, and press [Enter].

NOTE: GraphiQL is not maintained by Sciencelogic. You can access its documentation at
https://github.com/graphgl/graphigl.

For more information about using GraphiQL, see the chapter on Using the GraphiQL User Interface.

The GraphiQL User Interface 6

https://github.com/graphql/graphiql
../../../../../Content/Web_Content_Dev_and_Integration/GraphQL_API/graphiql_browser.htm

Chapter

GraphQL Terminology and Punctuation

Overview

This chapter defines some of the most commonly used GraphQL terminology and syntax punctuation.

This chapter includes the following topics:

GraphQL Terminology ... 8
SCREMIO 8

Ty S 8
ORIl ONS 8
QUUETIES . 8
MUTGHONS 8
OB Ty DS . 8
Fields 9
AT GUMBIES . 9
RetUrn Ty e 9
CONNECHONS ... 9
Bdges 9
NOAES 10
Variables ...l 10
Fragments . 10
Directives ... 10
CaSe-SeNSIHVItY 10
Punctualion 10

GraphQL Terminology

This section defines some of the common terminology you will encounter when using GraphQL in SL1.

NOTE: This is not an exhaustive list of GraphQL terminology. For other GraphQL terminology definitions,
see the GraphQL documentation.

Schema

A schema describes all of the system data that you can request or modify in GraphQL. It defines the full hierarchy
of types and fields, and all of the possible queries and mutations that are available in the GraphQL API.

For more information, see the section on The GraphQL Schema.

Types

Types are the fundamental units of any GraphQL schema. There are multiple kinds of types that are defined in
the schema; many of these types are defined below and described in further detail throughout this manual.

Operations

Operations are executable actions within a GraphQL document. There are three types of operations in
GraphQL: Queries, mutations, and subscriptions. The SL1 GraphQL APl supports queries and mutations, which
are described in greater detail in this manual; it does not support subscriptions. For more information about
subscriptions, see the GraphQL documentation.

Queries

Queries are GraphQL operations that search for and return data from fields in your schema. A single query can
search for and return data for a single field or multiple fields.

For more information, see the chapter on Queries.
Mutations

Mutations are GraphQL operations that modify data in the system and then return a value. Typically, mutations
create new data, update existing data, or delete existing data.

For more information, see the chapter on Mutations.

Object Types

Object types are the most basic components of a schema, representing objects that you can fetch from SL1. All
object types have a name and one or more fields.

For more information, see the section on Basic Query Syntax.

8 GraphQL Terminology

https://graphql.org/learn/
https://graphql.org/learn/
../../../../../Content/Web_Content_Dev_and_Integration/GraphQL_API/graphql_queries.htm
../../../../../Content/Web_Content_Dev_and_Integration/GraphQL_API/graphql_mutations.htm

Fields

Fields are units of data within object types. Each field has a name, potentially a list of arguments, and a return
type. Every GraphQL query requests one or more fields from an object, while mutations modify one or more

fields.

For more information, see the section on Basic Query Synfax.
Arguments

Arguments are parameters, written as field name: value type pairs, that are passed into a field in a query
or mutation. They help you define exactly what data you want GraphQlL to search for and return in your query or
provide specific parameters for your mutation.

Most argument fields in the schema include one of the following defined scalar types as a value type:

o Int: Asigned, 32-bit integer

o Float: A signed, double-precision, fractional value

o String: Textual data, represented as UTF-8 character sequences
e Boolean: true or false

« ID: A unique identifier, often used to fetch an object or as key for a cache.

Additionally, there are other value types in the SLT GraphQL schema beyond those scalar types listed above.
Examples of these other types include connection types and search types.

For more information, see the section on Basic Query Syntax.
Return Types

Return types specify the manner in which field data resolves in an operation. Typically, return types indicate the
specific fields that you want GraphQlL to return values for when you execute the operation.

For more information, see the section on Basic Query Syntax.

Connections

Connections are types within the GraphQL schema that are used to connect other defined elements in the
schema. A connection consists of a group of related edges.

For more information, see the section on Connections, Edges, and Nodes.
Edges

Edges are types that connect two nodes, representing some sort of relationship between them. Edge types must
have at least two fields: node and cursor.

For more information, see the section on Connections, Edges, and Nodes.

GraphQL Terminology 9

Nodes

Nodes are individual object types that are defined in the schema, consisting of one or more fields.

For more information, see the section on Connections, Edges, and Nodes.

Variables

Variables are dynamic values that can be used to replace arguments in your operation, enabling you to reuse
the operation for multiple objects by changing the variable value.

For more information, see the section on Variables.

Fragments

Fragments are reusable units that you can include in multiple queries or mutations. Each fragment consists of a
group of fields that are all associated with the same type.

For more information, see the section on Fragments.

Directives

Directives are keywords that you can use to make GraphQL perform custom logic in your operations. They can
be attached to a field or a fragment that you are including in your operation, and can affect the operation
execution and the results that GraphQL fetches.

For more information, see the section on Directives.

Case-Sensitivity

The GraphQL schema is full of named elements. Operations, objects, fields, arguments, types, variables,
fragments, and directives all have names.

Names in GraphQL are limited to ASCII characters and are case-sensitive. For example, in the SL1 GraphQL
schema, the object name account is different from the type name Account. Therefore, when forming queries
and mutations, it is important to double-check that all of the included elements are using the correct case.

Punctuation

GraphQL uses certain special characters as punctuation to help define the structure of data. This section defines
some of the common punctuation you will encounter when using GraphQL in SL1.

10 Case-Sensitivity

NOTE: This is not an exhaustive list of GraphQL punctuation. For other GraphQL punctuation and special
characters, see the GraphQL documentation.

When browsing the schema or writing your queries or mutations, you might encounter or use the following
punctuation:

Punctuation Function

{1} Pass input objects and fields to the query or mutation object. They also represent the
indentation levels within the hierarchy of the query or mutation.

) Pass parameters such as arguments to query or mutation objects.

Define a field or a type, such asina field: value pair used in an argument or when
defining a variable.

Indicates a non-nullable value type.

By default, all value types in GraphQL can result in a null value. If a value type includes an
exclamation point, it means that value cannot be null. The implications of a non-nullable
type vary slightly based on the context in which it is used:

o When used with an input field, such as an argument or variable, it means that field is
required; it must be included and have a value.

o When used with an output field, such as in a return type field, it means that GraphQL
cannot return a null value for that field. If it does return a null value, the response will
fail validation and trigger a GraphQL execution error, indicating that something has
gone wrong.

Can also be used as a filter operator.

L] Indicates a list value type. The implications of a list type vary slightly based on the context in
which it is used:

o When used with an input field, such as an argument, GraphQL accepts the list values
only when each item in the list can be accepted by the list's item type. For example, if
the list's expected item type is an integer (Int), GraphQL would accept the list values
[1, 2, 3] butitwould not acceptthe listvalues [1, 2, c].

o When used with an output field, such as in a return type field, GraphQL must return an
ordered list as a result of the list type. If it does not return an ordered list, the response
will fail validation and trigger a GraphQlL execution error, indicating that something
has gone wrong.

$ Indicates a variable name. For more information about variables, see the section on
Variables.

Punctuation 11

https://graphql.org/learn/

Punctuation Function

= Indicates the default value of a variable. For more information about variables, see the
section on Variables.

Can also be used as a filter operator.

<> Can be used together or separately as filter operators.

Indicates a fragment name. For more information about fragments, see the section on
Fragments.

¢ Indicates a directive, such as the default directives @include and @skip. For more
information about directives, see the section on Directives.

Used at the beginning of a line within an operation to indicate a line that GraphQL can
ignore when executing that operation.

For example, you could include comments in your query by preceding them with the #
symbol at the beginning of the line and GraphQL will ignore them when executing the query.

12 Punctuation

Chapter

Using the GraphiQL User Interface

Overview

This chapter describes how to use the GraphiQL user interface to explore and perform operations in the SL1
GraphQL API.

This chapter includes the following topics:

What is the GraphiQL User Interface? 14
GraphiQL User Interface Elements 14
QuUETY Pane o 15
Query Variables Pane ... 15
RESUIS PONE 15
Documentation Explorer Pane ... 16
Toolbar BUHONS ... 16
The GraphQL Schema ... 16
Exploring the GraphQL Schema in the Documentation Explorer ... 17
Example 1: Using the Schema to Execute a Simple Query 18
Example 2: Using the Schema to Execute a Complex Query 21
Example 3: Using the Schema to Execute a Mutation ... 30

NOTE: Sciencelogic provides this documentation for the convenience of Sciencelogic customers. Some of
the configuration information contained herein pertains to third-party vendor software that is subject
to change without notice to Sciencelogic. Sciencelogic makes every attempt to maintain accurate
technical information and cannot be held responsible for defects or changes in third-party vendor
software. There is no written or implied guarantee that information contained herein will work for all
third-party variants. See the End User License Agreement (EULA) for more information.

What is the GraphiQL User Interface?

GraphiQL is a browser-based user interface for interactively exploring the capabilities of, and executing queries
against, a GraphQL API. Unlike the SLT REST API, all requests to the GraphQL APl on a given SL1 system use the
same URI.

To access the GraphiQL interface, type the URL or IP address for SL1 in a browser, add /gql to the end of the URL
or IP address, and press [Enter].

NOTE: GraphiQL is not maintained by Sciencelogic. You can access its documentation at
https://github.com/graphgl/graphigl.

GraphiQL User Interface Elements

The GraphiQL user interface enables you fo write and execute operations, define variables, view operation
results, and explore your schema, among other things.

GraphiQL (B | Prettify | | Merge | | Copy | History < Docs

QUERY VARIABLES

The following sections describe all of the elements you can interact with in the GraphiQL user interface.

14 What is the GraphiQL User Interface?

https://github.com/graphql/graphiql

Query Pane

The left-hand pane in GraphiQL is the query pane. This is where you write GraphQL queries and mutations.
The query pane includes several features to help you properly formulate your queries and mutations:
« Asyou type, GraphiQL intuitively suggests potential fields, arguments, and syntax based on what you've

already written and your defined schema.

« Additionally, GraphiQL automatically validates your query or mutation as you type, highlighting any errors
in syntax or other elements that would cause your query or mutation to fail.

o GraphiQL highlights fields, arguments, syntax, and other important elements in the query pane to make the
query or mutation easier to read.

o Ifyou need to insert notes or comments in a query or mutation, add them on a line that starts with the #
symbol above or below the query or mutation. GraphiQL ignores any lines that start with # when executing
an operation.

« Asyou edit a query or mutation, GraphiQL automatically updates the URL that appears in the address bar
to reflect what you have entered. It preserves every part of your entry in the URL, including whitespace,
comments, and invalid syntax or elements. This feature enables you to share your query or mutation publicly
or with colleagues for distribution or debugging purposes.

o You can use the following keyboard shortcuts in the query pane:

o Shift + Ctrl 4+ P: Prettify the query or mutation
o Shift + Ctrl + M: Merge the query or mutation
o Shift + Ctrl + C: Copy the query or mutation

o Cirl + Enter: Execute the query or mutation

Query Variables Pane

The lower-left pane in GraphiQL is the query variables pane. This is where you can define variables that you are
using in your query or mutation. You should write variables in JSON format.

When you first access GraphiQL, the Query Variables pane might be collapsed at the bottom of the page. Click
the Query Variables header to expand it.

For more information about using variables, see the section on Variables.

Results Pane

The right-hand pane in GraphiQL is the results pane. This is where GraphiQL displays the results of the most
recently executed query or mutation, in JSON format.

Alternatively, if your query or mutation is not properly formed, the results pane displays the errors that are causing
the query or mutation to fail.

GraphiQL highlights fields, arguments, syntax, and other important elements in the results pane to make the
results easier o read.

GraphiQL User Interface Elements 15

The results that display in this pane are read-only, so you cannot accidentally edit or delete them.

Documentation Explorer Pane

The [Docs] button expands the Documentation Explorer pane on the right-hand side of the page. The
Documentation Explorer pane enables you to search or browse through the GraphQL schema. This allows you
to explore all of the possible queries, mutations, fields, types, arguments, and other schema elements that you
can use.

For more information about using the Documentation Explorer to browse the GraphQL schema, see the
section on The GraphQL Schema.

Toolbar Buttons

The following buttons display in the toolbar at the top of the GraphiQL browser:

The [Execute Query] (Play) button executes the query or mutation in the main query pane.

The [Prettify] button re-formats the text in the main query pane to make it easier to read. If your query or
mutation is not properly formed, the [Prettify] button turns red when you click it and does not format the
text. If there is only one unnamed query in the query pane, then clicking [Prettify] also removes the query
operation type from the query.

The [Merge] button is similar to the [Prettify] button, except it also flattens a query that contains defined
fragments.

The [Copy] button copies all of the text in the main query pane to your clipboard, enabling you to paste
your query or mutation elsewhere.

The [History] button opens a new pane on the left side of the page that contains a list of the previous
queries you have run in the GraphiQL interface. You can click a query to add it to the main query pane.

The GraphQL Schema

A common refrain you might hear when people discuss GraphQlL is that it is "self-documenting". This is because
of two key features in GraphQL:

« GraphQL's intuitive suggestions and validation capabilities as you type your query or mutation in the query

pane

o The GraphQL schema, which explicitly defines all of the possible queries, mutations, fields, types,

arguments, and other schema elements that you can use

In all, the GraphQL schema provides the following information:

All of the possible queries you can make
All of the possible mutations you can perform
All of the types that you can query or mutate

All of the fields within a given type

The GraphQL Schema

o All of the potential arguments for a given field
o The accepted value types for each argument
o The relationships between types

You can access the full schema in GraphiQL's Documentation Explorer, which you can open by clicking the
[Docs] button on the right-hand side of the page.

The GraphiQL Documentation Explorer is always synced with GraphQL, automatically adding new fields,
types, and arguments as they are added to the schema. It also automatically removes deprecated fields from the
schema.

Within the Documentation Explorer, you can search for specific elements within the schema, or you can click

one of the two root types—query or mutation—and drill down from there by clicking the fields, arguments, and
types that display.

Exploring the GraphQL Schema in the Documentation Explorer

To get the most value out of the Documentation Explorer, you must understand how to explore the SL1
GraphQL schema that it documents.

TIP: When using the Documentation Explorer to explore the GraphQL schema, keep in mind this basic
rule: Everything you click in the schema will result in either a definition or an additional set of fields or
types that represent additional layers in the schema (and, by extension, your query or mutation).

When you first open the Documentation Explorer, you will see that the schema begins with the two root
operation types: query and mutation:

Documentation Explorer X
Q, Search Schema...

A GraphQL schema provides a root type for
each kind of operation.

ROOT TYPES

query:

mutation:

When you click one of the root operation types, a list of objects that are available for that operation type displays.
Each object lists the object name, the arguments that can be passed into that object, the object's return type, and
a definition of that object.

In the following example, let's say you clicked Query and then scrolled down to the following section:

The GraphQL Schema 17

< Schema Query X

event(
id: ID!
isGlobalManagerRequest:
globalManagerStackSearch:

Schema and the back arrow at the top-left of the pane indicate that you clicked here from the main schema
page.

Query at the top-center of the pane indicates that you clicked on the Query root operation type from the
main schema page, and that all of the objects listed in the pane below are objects that you can query.

event is a query object. It represents an object that can be queried from the SL1 API. As indicated by the
definition below it, you can use this particular object to get information about an individual event.

The next three lines, which are surrounded by parentheses, are all of the possible arguments that you can
pass info the event query object. Each argument is displayed in a field name: value type pair, where
the field name indicates an APl field associated with the object and the value type indicates how you must
define that field if you include that argument in your query. Arguments are used to define your query
parameters. This example includes the following arguments:

o id: 1ID!.When you use this argument, you must supply a unique identifier (as indicated by the
1D value type) for the event id API field. The exclamation point indicates that you must include this
argument in the query.

o isGlobalManagerRequest: Boolean. lf you use this argument in the query, you mustinclude
true or false (as indicated by the Boolean value type) as a value for the event
isGlobalManagerRequest APl field.

o globalManagerStackSearch: GlobalManagerStackSearch. This argument has a "search’
value type. If you include this argument, you must also include a nested set of search parameter fields
below it. If you click GlobalManagerStackSearch in the schema, it displays all of the nested fields
that you can include in the globalManagerStackSearch argument, along with their value types. If
you click on their value types, the schema might display even more fields and their value types.

Event is the return type for the event query object. The return type consists of one or more fields related to
the event that you specified in your argument; you are requesting that GraphQL return values for these fields
when you execute the query. The schema lists all of the fields that belong to the Event return type, along
with their value types.

Example 1: Using the Schema to Execute a Simple Query

This example describes how to use the Documentation Explorer to explore the SL1 GraphQL schema and
determine the specific objects, arguments, and return fields that we need to include in a query.

For this example, we are executing a simple query: We are asking GraphQlL to return some basic information
about a single user account in SL1.

The GraphQL Schema

To use the schema to execute this simple query:

1.

2. Because we are executing a query, click the guery type link. A list of all potential query objects displays in

In the GraphiQL user interface, click the [Docs] button to expand the Documentation Explorer. The main

schema page displays:

Q, Search Schema...

A GraphQL schema provides a root type for
each kind of operation.

ROOT TYFES

query:

mutation:

Documentation Explorer b4

the Documentation Explorer.

Because we want to query a specific user account, browse the list or use the search feature to locate the

entry for the account query object:

account(id: ID!):

& Schema Query X

Click the account object link that displays in blue text. The schema displays a more readable version of the

information that appeared for the account object in the list of query objects. The schema defines the
object, shows that it has a return type of Account, and indicates that it has just a single argument

(id: 1ID!):

Get an individual account

TYFE

ARGUMENTS

id: ID!

< Query account X

The GraphQL Schema

5. Click the ID! argument value type link. The schema displays a definition for the ID scalar type that specifies
the type of value you must enter in the argument for the id field:

< account D »

The 10 scalar type represents a unique
identifier, often used to refetch an object or as
key for a cache. The ID type appears in a
JSON response as a String; however, it is not
intended to be human-readable. When
expected as an lnput type, any string (such as
"4") or integer (such as 4) input value will be
accepted as an ID.

6. Click the back arrow in the top-left corner of the pane to return to the account object definition, then click
on the Account return type link. The schema displays a list of all the potential fields that you can ask
GraphQlL to return in your account query, along with their value types:

< account Account >
Q, Search Account...

A user account record for EM7

FIELDS
id: ID!

Unique identifier for an Account

accessHooks: [String!]

Granular permissions assigned to a user

location: Add

Physical location of an Account

contact: Contact
organization: Organization

Organization of this account

user: String
administrator: Boolean
acceptedEula: Boolean

theme: Theme

Theme associated with this account. If the
account doesn't have a theme, use the account
policy's theme. If the account policy doesn't -

The GraphQL Schema

7. Click through the return fields and value types as needed to view their definitions. For this example, let's
assume we clicked the definitions for id: ID!,user: String, and administrator: Boolean for
additional information about those fields, if needed.

8. Having reviewed the schema in the Documentation Explorer, type the query in the query pane. In this
query, we are asking GraphQL to return the user ID number and username for the user account with the 1D
'25", and indicate whether that user account is an administrator:

query basicAccountInfo {
account (id: 25) {
id
user
administrator

TIP: As you type your query, GraphiQL automatically suggests potential fields, arguments, and syntax based
on what you've already written and your defined schema; validates your query or mutation as you type;
and uses different colors to highlight fields, arguments, syntax, and other important elements to make the
query easier fo read.

9. Click the [Execute Query] (Play) button. The query results display in the results pane. Having reviewed the
schema, we can expect GraphQlL to return an ID number for the id field, a string for the user field, and a
boolean value for the administrator field:

"data": {
"account": {
"id": "25",
"user": "example",
"administrator": false

Example 2: Using the Schema to Execute a Complex Query

This example expands on the previous example to execute a more complex query about the same user account.

For this example, we are asking GraphQL to return additional information about the user account from Example
1, including information about the user's contact information, physical location, and organization membership.
This example will require us to dig deeper into the schema in the Documentation Explorer to successfully
execute a more advanced query.

To use the schema to execute this more advanced query:

1. Complete the steps in Example 1.

2. Inthe Documentation Explorer, click the back arrow in the top-left corner of the pane to return to the
Account return type definition and fields:

The GraphQL Schema 21

22

< account Account

Q, Search Account...

A user account record for EM7

FIELDS
id: D!

Unique identifier for an Account

accessHooks: [String!]

Granular permissions assigned to a user

location: Address

Physical location of an Account

contact: Contact
organization: Organization

Organization of this account

user: String
administrator: Boolean
acceptedEula: Boolean

theme: Theme

Theme associated with this account. If the
account doesn't have a theme, use the account
policy's theme. If the account policy doesn't

=

In this example, one of the things we want to add to the query is the user's contact information. From the list
of Account return fields and value types, locate the contact: Contact field: value type pair, and then
click the contact type link. The schema displays a list of all the potential contact information fields that you

can ask GraphQlL to return in your account query, along with their value types:

The GraphQL Schema

£ Account Contact x

Q, Search Contact...

Contact information

FIELDS
cell: String
P
e Phone numbe
department: String
Department

email: [String]

firstName: String

First name

lastName: String

Last Name

pager: String

Pager number hd

4. Click through the return fields and value types as needed to view their definitions. For this example, letf's
assume that we do not want GraphQlL to return values for every possible contact return field, but that
instead we want GraphQL to return values for just a few of them: The user's first name, last name, and email
address. Therefore, let's assume we clicked the definitions for firstName: String, lastName: String,
and email: [String] for additional information about those fields, if needed.

TIP: Because the value type for the contact return field is the custom Contact type, which itself consists of
these additional return fields, we will need to nest these additional return fields under the contact return
field when we form the query. If we include only the contact return field in our query without specifying
any nested return fields under it, GraphQL will return values for every possible contact field.

5. Click the back arrow in the top-left corner of the pane to return to the Account return type definition and

fields.

6. In this example, we also want to add information about the user's physical location to the query. From the list
of Account return fields and value types, locate 1ocation: Address and then click the Address type
link. This time, however, the schema does not display any fields for the address type; instead, it indicates
that the Address type itself has a possible type of Usaddress:

The GraphQL Schema 23

< Account Address X

Physical address

POSSIBLE TYPES

USAddress

7. Click the usaddress type link. The schema displays a list of all the potential U.S. Address fields that you can
ask GraphQlL to return in your account query, along with their value types:
< Address USAddress >
Q, Search USAddress...
United States Domestic physical address
FIELDS
address: String
city: String
state: State
zip: String
country: String

8. Click through the return fields and value types as needed to view their definitions. For this example, let's
assume that we clicked the definitions for address: String, city: String, state: String, and
zip: String for additional information about those fields, if needed.

TIP: Because the value type for the 1ocation return field is the custom Address type, which in turn has the
possible custom USAddress type that consists of these additional return fields, we will need to nest these
additional return fields under the 1ocation return field when we form the query. To do this, we will need
to include an inline fragment that allows us to specify that the location return fields that we are
including in the query belong to the Usaddress type within the schema. We can do this using the format
! on USAddress"in our query.

9. Click the back arrow in the top-left corner of the pane to return one final time to the Account return type
definition and fields.

10. Lastly, in this example, we want to add information about the user's organization to the query. From the list

24

of Account return fields and value types, locate organization: Organization and then click the
Organization type link. The schema displays a list of all the potential organization fields that you can ask
GraphQlL to return in your account query, along with their value types:

The GraphQL Schema

< Account Organization X
Q, Search Organization...

A customizable unit to group inventory.
telemetry, and reporting within EM7

FIELDS
id: ID!

Unique identifier for an Organization

company: String

Name of the company

contact: Contact
location: Address

Physical location of an Organization

events(
first: Int
after: String
last: Int
before: String
order: [ConnectionOrder] = [{field: "id",
direction: asc}]
search: EventSearch
applySuppression: Boo
): EventConnection

List of events for a device

11. Click through the return fields and value types as needed to view their definitions. For this example, let's
assume that we clicked the definitions for id: 1ID!, company: String, and events for additional
information about those fields, if needed. If you do so, you discover that those first two are field: value type
pairs like we have encountered throughout this example, but the events return field includes its own list of
arguments and a connection type, EventConnection:

The GraphQL Schema 25

¢ Organization events

List of events for a device

TYPE

EventConnection

ARGUMENTS

first: Int
after: String
last: Int
before: String

order: [ConnectionOrder] = [{field: "id",
direction: asc}]

search: EventSearch

applySuppression: Boolean

12. Forthis example, we want to query GraphQL to return some basic information about the first three events
aligned to the user's organization. To do this, we will use the first: Int argument, and then we will query
several fields under the EventConnection connection type. Click the EventConnection type link:

< Organization EventConnection

Q, Search EventConnection...

No Description

FIELDS

edges: [EventEdge]

pagelnfo: Pagelnfo

X

13. EventConnection is a connection type. Connection types consist of one or more edges that connect
two nodes. The schema reflects this, so from EventConnection, click [EventEdge]:

26

The GraphQL Schema

< EventConnection EventEdge x
Q, Search EventEdge...

No Description

FIELDS

cursor: String!

node: Event

14. From EventEdge, click Event. The schema displays a list of all the potential event fields that you can ask
GraphQlL to return from the Event node in your account query, along with their value types:

< EventEdge Event X
Q, Search Event...

No Description

FIELDS
id: ID!

Unique identifier

acknowledgedUser: Account

User account that acknowledged this event

alignedEntity: EventAlignedEntity

The entity aligned to this event

alignedSubEntity: EventAlignedSubEntity

The sub-entity aligned to this event

assoclatedTicket: Ticket

The ticket associated with this event

counter: String

Number of occurrences of this event

dateAcknowledged: Int

Date this event was acknowledged in UNIX hd

The GraphQL Schema 27

15. Click through the return fields and value types as needed to view their definitions. For this example, let's
assume that we clicked the definitions for id: 1ID!, severity: String, message: String, and
dateAcknowledged: Int foradditionalinformation aboutthose fields, if needed. Let's assume that we

also clicked the definition for source: EventSource, which we discovered had additional nested fields,

including id: 1ID!.

16. Having reviewed the schema in the Documentation Explorer, type the query in the query pane. In this
query, in addition to the information we queried in Example 1, we are asking GraphQL to return:

« The user's contact information, including first name, last name, and email address

« Information about the user's physical location, including address, city, state, and ZIP code

« Information about the user's organization, including its organization ID and company name, along
with the event ID, severity, source ID, event message, and acknowledged date of the first 3 events

aligned to that organization

query basicAccountInfo {
account (id: 25) {
id
user
administrator
contact {
firstName
lastName
email
}
location {
on USAddress {
address
city
state
zip

}
organization {
id
company
events (first: 3) {
edges {
node {
id
severity
source {
id
}
message
dateAcknowledged

28

The GraphQL Schema

TIP: As you type your query, GraphiQL automatically suggests potential fields, arguments, and syntax based
on what you've already written and your defined schema; validates your query or mutation as you type;
and uses different colors to highlight fields, arguments, syntax, and other important elements to make the

query easier to read.

17. Click the [Execute Query] (Play) button. The query results display in the results pane. Having reviewed the
schema, we can expect GraphQL to return data for all of the fields in the format of their respective defined

value types:

"data": {
"account": {

"id": "25",

"user": "example",

"administrator": false,

"contact": {
"firstName": "Example",
"lastName": "User",
"email": [

"example@sciencelogic.com"

1

}I

"location": {
"address": "10700 Parkridge Blvd",
"city": "Reston",
"state": "VA",

"zip": "20191"
}l
"organization": {
"id": "O",
"company": "System",
"events": {
"edges": [
{
"node": {
"id": "154134",
"severity": "0O",
"source": {
"id": 2"
I
"message": "Ticket Created: 95",
"dateAcknowledged": null

{... 2 more nodes

The GraphQL Schema

29

NOTE: The above result has been truncated to make it easier to read in this documentation. When you
actually complete this example, information about the second and third events will display in the
results in the place of {... 2 more nodes}.

Example 3: Using the Schema to Execute a Mutation

This example describes how to use the Documentation Explorer to explore the SL1 GraphQL schema and
determine the specific objects, arguments, and return fields we need to include in a mutation.

For this example, we are telling GraphQL to create a custom link to appear in the SL1 Action Runner.
To use the schema to execute this mutation:

1. Inthe GraphiQL user interface, click the [Docs] button to expand the Documentation Explorer. The main
schema page displays:

Documentation Explorer b4
Q, Search Schema...

A GraphQL schema provides a root type for
each kind of operation.

ROOT TYFES

query:

mutation:

2. Because we are executing a mutation, click the Mutations type link. A list of all potential mutation objects
displays in the Documentation Explorer.

3. Because we want to create a new custom link, browse the list or use the search feature to locate the entry for
the createCustomLink mutation object:

30 The GraphQL Schema

< Schema Mutations) e

Q, Search Mutations...

No Description

FIELDS

createCustomLink(
entity: !
url: !
name:

)

Create a new Custom Link.

4. Click the createCustomLink mutation object. The schema displays a more readable version of the
information that appeared for the createCustomLink object in the list of mutation objects. The schema
defines the object, indicates that it has just three potential arguments, and shows that it has a return type of
CustomLink:

£ Mutations createCustomLink X

Create a new Custom Link.

TYPE

ARGUMENTS

entity: !

The type of entity to align the custom link to.
url: !

Specifies the URL of the page the link goes to.

name:

Human readable name to display the link as.

5. Click the customLinkEntity! argument value type link. The schema displays a definition that specifies the
type of value you must enter in the argument for the entity field. According to the schema, the only
acceptable value is device.

The GraphQL Schema 31

¢ createCustomLink CustomLinkEntity X

The entity in which a Custom Link is aligned to.

VALUES

device

Device type.

6. Click the back arrow in the top-left corner of the pane to return to the createCustomLink object definition,
then click through the other argument value types as needed to view their definitions.

7. Click onthe customLink return type link. The schema displays a list of all the potential fields that you can
ask GraphQlL to return when it executes your createCustomLink mutation, along with their value types:

€ createCustomLink CustomLink X

Q, Search CustomLink...

A templatable external link that redirects a user
to another webpage.

FIELDS

id: TD!

entity: !

url:

name:

editedBy:

8. Click through the return fields and value types as needed to view their definitions.

9. Having reviewed the schema in the Documentation Explorer, type the mutation in the query pane. In this
mutation:

o The custom link would display for all devices that used the custom attribute "Restorepoint ID". It would
not display for devices that do not use that custom attribute.

32 The GraphQL Schema

o When creating the mutation, you would replace [Restorepoint Hostname or IP] intheurl
argument with the Restorepoint hostname or IP address that you want the link to open.

o When clicked, the link would open the URL https://[Restorepoint Hostname or IP]/#/device/
{attribute.label.Restorepoint ID}, where [Restorepoint Hostname or IP] would already be defined and
SL1 would automatically replace {attribute.label.Restorepoint ID} with the Restorepoint ID custom
attribute value of the device from which the link was clicked.

o The custom link would display in the Action Runner as "Restorepoint".

This is the mutation we would type in the query pane:

mutation createCustomLink {
createCustomLink (
entity: device,
url: "https://[Restorepoint Hostname or IP]/#/device/{attrib-
ute.label.Restorepoint ID}",
name: "Restorepoint"
) |
id
entity
url
name
editedBy {
user
}
dateEdited

TIP: As you type your mutation, GraphiQL automatically suggests potential fields, arguments, and syntax
based on what you've already written and your defined schema; validates your mutation as you type; and
uses different colors to highlight fields, arguments, syntax, and other important elements to make the
mutation easier to read.

10. Click the [Execute Query] (Play) button. The mutation executes, and GraphQL displays the data you
requested in the results pane.

The GraphQL Schema 33

Chapter

Queries

Overview

This chapter describes how to form a query in GraphQlL to search for and return data from fields in SL1. It
describes how to form basic query syntax and use connections, variables, fragments, directives, search filters, and
pagination options in your queries. Each section includes one or more examples to further illustrate each topic.

NOTE: GraphQL is a complex language, and the information in this chapter is not an exhaustive list of every
possible option at your disposal when writing and executing a query. For additional information
about any of the subjects in this chapter, or for information not covered in this chapter, see the
GraphQL documentation.

This chapter includes the following topics:

What Are QUETIES? .. 35
Basic QuUery SynbaX 35
Example: Querying a Single Device ... 36
Example: A Simple Query without the Operation Type "QUEry"o 37
Connections, Edges, and Nodes ... 37
Example: A Query with Edges and Nodes ... 38
Variables ... 39
Example: Querying Basic Device Information Using a Variable 40
Fragments .. 41
Example: Creating a Fragment for Account Fields 41
Inline Fragments ... 42

34

https://graphql.org/learn/

Example: Using an Inline Fragment . 42

Directives 43
Example: Using a Directive with a Variable ... 43
Search Filters ...l 44
Filter Operators 44
Example: Querying Devices from the Same Device Classco o 45
Example: Querying a List of Specific Devices ... 45
Query Paginalion ... 46
Example: Querying the First Five Devices Listed in SLT 47
Example: Determining the Total Number of Query Results ... 48
Example: Using Cursor-based Query Pagination ... 49
Querying the ScienceLogic GraphQL API from an External Application 50

What Are Queries?

Queries are GraphQL operations that search for and return data from fields in your schema. A single query can
search for and return data for a single field or multiple fields.

When building a query, it should match the shape of the object types in your schema. GraphQLL returns the results
in the same shape as your query.

To see a full list of queries that are available for SL1, see the schema in the GraphiQL browser.

Basic Query Syntax

The most basic syntax of a query involves the following elements:

« Operation type. For queries, this is query. If only one query is present in your GraphQlL browser,
specifying the query operation type at the beginning of your query is optional; if you do not specify an
operation type, GraphQL assumes that you are performing a query by default.

« Operation name. A name that you define for the operation. An operation name is required if you are
including variables in your query. While operation names are not always required in other circumstances,
they are still helpful to have for logging and debugging purposes.

o Obiject. The object you are querying, as defined in the schema. This is typically the object's name, written in
camel case.

35 What Are Queries?

o Argument(s). The data that you want to pass to the object in the query. These are defined in the following
structure: (fieldName: "value"). The schema lists the argument field name and return type pairs that
are available for each object. Some objects can have multiple arguments, in which case the argument
structure is (fieldName: "value", fieldName: "value"),with any additional arguments separated
by additional commas. When including multiple arguments, the arguments can be provided in any order
and GraphQL will consider them to be semantically identical.

o Return field(s). The fields that you want GraphQlL to return values for when you execute the query.

TIP: If you are unsure of which arguments or return fields are required for a query object, type query
{objectName} in the GraphiQL user interface, replacing objectName with the name of the query
object, and then click the [Execute Query] (Play) button. GraphQL will automatically add any required
return fields to the query, while the results pane will display an error that lists any required arguments.

NOTE: If you query multiple objects, GraphQL executes the queries on all of those objects at the same time,
in parallel.

Example: Querying a Single Device

Here is an example of a basic query. In this example, we are searching for information about a specific device in
our SLT system:

query getDevice ({
device (id: 3) {
ip
deviceClass {
class
description

}

}

In this example:

o query is the operation type.
e getDevice is the operation name that we defined for this specific operation.

o device is the object. We are asking GraphQlL to search for and return data about a device in our SL1
system.

e id:3isthe argumentfor device, with 1d being the field and 3 being the value in the field: value pair
that makes up an argument. We are asking GraphQL to search for and return data about the device with
device ID "3".

e ipanddeviceClass are the return fields. Additionally, deviceClass has two nested fields, c1ass and
description. We are asking GraphQL to return the device IP address as well as the class name and
description of the device's device class.

Basic Query Syntax 36

When we execute this query, GraphQL returns exactly the data we asked for, and in the exact structure we
specified:

{

"data": {
"device": {
"ip": "10.100.100.26",
"deviceClass": {
"class": "Sciencelogic, Inc.",
"description": "EM7 Data Collector"

}

}

Example: A Simple Query without the Operation Type "query"

If only one query is present in your GraphQlL browser, you do not need to specify the query operation type at the
beginning of your query. Because a query is GraphQL's default operation type, GraphQL assumes that you are
performing a query if you do not specify otherwise.

Here is the same query as the previous example, but without the query operation type specified:

{
device (id: 3) {
ip
deviceClass {
class
description

}

}

When we execute this query, GraphQL returns the exact same data as was returned in the previous example, and
in the same structure.

Connections, Edges, and Nodes

The SL1 GraphQL schema uses connections, edges, and nodes to connect defined elements and to handle
pagination.

« Aconnection is a type within the GraphQL schema that is used to connect other defined elements in the
schema. A connection consists of a group of related edges. Any type with a name that ends in "Connection"
is a connection type.

« Anedge is a type that connects two nodes, representing some sort of relationship between them. An edge
also has a cursor in addition to the underlying node.

o Anode is an individual object type that is defined in the schema, consisting of one or more fields.

For example, in the SL1 GraphQL schema:

37 Connections, Edges, and Nodes

o The query object devices includes a connection type, DeviceConnection.
o The DeviceConnection type includes edges.
m Those edges link the devices node to the Device node.
o The Device node includes multiple fields that are used to define an individual device in SL1.

When you execute a query, you define the shape in which you want GraphQL to return data, but that shape must
ultimately conform to the shape of data as it has been defined in the schema. That means you will often need to
include edges and nodes in your query, as they are part of the structure within the SL1 GraphQL schema. You do
not need to include the connection type, as it is part of the query object definition.

Example: A Query with Edges and Nodes

Here is an example of a query that includes edges and nodes, because those things are defined in the schema as
being part of the data shape:

query defineDevices{
devices (first: 5) {

edges {

node {

id

ip
deviceClass {

class

description

When we execute this query, GraphQL returns the requested data for each node:

{

"data": {
"devices": {
"edges": [
{
"node": {
"igd": "3",
"ip": "10.100.100.26",
"deviceClass": {
"class": "Sciencelogic, Inc.",
"description": "EM7 Data Collector"
}
}
}I
{
"node": {
migr: m27m,
"ip": "10.2.5.72",
"deviceClass": {
"class": "VMWare",

Connections, Edges, and Nodes 38

"description": "vCenter Server Appliance"

}
by

{...3 more nodes

Variables

Variables are dynamic values that can be used to replace arguments in your query, enabling you fo reuse the
query for multiple objects simply by changing the variable value.

When using variables, keep the following in mind:

« Variable names are always preceded by a dollar sign ($). For example: $variableName

« Before you can use a variable in a query, you must first declare the variable acceptable to use in the query.

o Place the declared variable in parentheses immediately after the operation name.

o Usethe format $variableName: scalarType, where $variableName represents the name of the
variable and scalarType represents the acceptable scalar type for that variable.

o Variable scalar types must match the type of the arguments that they will replace. For example, if you
are replacing a field that has a scalar type of "String", then your variable must also use the
"String" scalar type.

o If you declare a variable after the operation name, you must then use it in your query. You cannot
declare a variable and then not use it in the query.

o Example: query findUserAccount ($userID: ID)
o Optionally, when declaring a variable, you can assign the variable a default value.

o Place the default value immediately after the scalar type in the declaration, preceded by an equal
sign (=).

o Usethe format svariableName: scalarType = defaultValue, where $variableName
represents the name of the variable, scalarType represents the acceptable scalar type for that
variable, and defaultvalue represents the default value for that variable.

o Any variables that you do not define in the Query Variables pane will use the default value.
o Any variable values that you define in the Query Variables pane will override the default value.

o Exomp|e:query findUserAccount (SuserID: ID = 15)

39 Variables

e You must then insert the declared variable into your query.

o

Place the variable in parentheses immediately after the query object name, just like you would a
regular argument.

Use the format fieldName: $variableName, where fieldName representsthe argument field
name and $variableName represents the variable name.

Example: account (id: $userID)

o Finally, you must define the variable.

In the Query Variables pane at the bottom of the GraphiQL browser, define the variable value as a
JSON obiject.

Use the format "variableName": "value", where "variableName" represents the variable
name and "value" represents the value that you want to use in place of the variable in the query.

If you included a default value in your variable declaration, and the variable is using the default
value, you do not need to define the variable in the Query Variables pane.

Example: { "userID": "23" }

Example: Querying Basic Device Information Using a Variable

Here is an example of a query that uses a variable. In this example, we are asking GraphQlL to return some basic
information about a device, using a variable $deviceID that will be defined at the time we run the query to
replace the value in the id argument:

query deviceBasicInfo ($deviceID: ID!) {
device (id: S$devicelID) {
id
name
ip

organization {

}

id

deviceClass {

}

cl
de

ass
scription

state
active {

}

us
un
ma
sy
us

erDisabled

available

intenance

stemDisabled
erInitiatedMaintenance

We must then define this variable. To do so, we would type its value into the Query Variables pane in the
GraphiQL browser in the following format:

Variables

40

"deviceID": "27"

Fragments

Fragments are reusable units that you can include in multiple queries or mutations. Each fragment consists of a
group of fields that are all associated with the same type.

You might use fragments if you want to reuse the same set of fields for multiple objects. Rather than retyping the
same set of fields throughout your query, you can define those fields as a fragment and then just insert that
fragment in your query or mutation as needed.

Fragments are defined in the following format, where fragmentName represents the name you are giving the
fragment, Type is the type to which the fragment belongs, and fieldNames are the names of one or more fields
that belong to that type:

fragment fragmentName on Type {
fieldNames
}

After you have defined your fragment, you can then use it in any query or mutation in the same location where the
fields contained within the fragment would normally go, using the format . . . fragmentName.

When using fragments in your queries and mutations, keep the following in mind:

o Ifyou use multiple named fragments in the same document, each fragment's name must be unique. Inline
fragments do not have this requirement.

o All fragments, whether named or inline, can be declared only on objects, unions, and interfaces. (For more
information about unions and interfaces, see the GraphQL documentation.)

o Ifyou define a fragment, it must be used in your query or mutation.

« You can use variables inside fragments. When you do so, add the variable to the appropriate field in the
fragment definition. Then, rather than defining the variable in the Query Variables pane, you can define it
when you declare it at the beginning of the query.

Example: Creating a Fragment for Account Fields

This query example demonstrates how to create and use a fragment within a query. In this example, we are
creating a fragment called accountInfo thatis associated with the Account type. The fragment includes the
fields id and user, plus the nested fields firstName, lastName, and email under the field contact:

fragment accountInfo on Account {
id
user
contact {
firstName
lastName
email

41 Fragments

https://graphql.org/learn/

query basicAccountInfo {
accounts (search: {organization: {has: {company: {eqg: "System"}}}}) {
edges {
node {
...accountInfo

}

Inline Fragments

If you are querying a field that returns an interface or union type, you must use an inline fragment for GraphQL to
return data from one of those types.

NOTE: For more information about unions and interfaces, see the GraphQL documentation.

When you use an inline fragment, you do not define the fragment separately from the query or mutation in which
it is being used. Instead, you define the fragment inline within a selection set.

Within a query or mutation, inline fragments are written in the following format, where Type is the type to which
the fragment fields belong, and fieldNames are the names of one or more fields that belong to that type:

on Type {
fieldNames

Example: Using an Inline Fragment

The following example uses an inline fragment. In the SL1 GraphQL AP, the 1ocation field has the custom
Address type as a return type. In turn, the Address type has the possible custom Usaddress type, which
consists of additional return fields. Due to this structure, if we want to query those fields, we will need to nest the
fields under the 1ocation field using an inline fragment when we form the query, specifying that the location
fields that we are including in the query belong to the Usaddress type within the schema:

query additionalAccountInfo {
account (id: 25) {
location {
on USAddress {

address
city
state
zip

Inline Fragments 42

https://graphql.org/learn/

Directives

Directives are keywords that you can use to make GraphQL perform custom logic in your queries. They can be
attached to a field or a fragment that you are including in your query, and can affect the query execution and the
results that GraphQlL fetches.

This is useful for situation where you otherwise would need to manually add or remove fields in your query based
on specific circumstances.

Each directive can appear only after the field or fragment that it decorates. They are preceded by the "@"
character and can include their own arguments. They are often used in conjunction with variables to create
queries with more complex dynamic logic.

GraphQL includes the following default operational directives:

Directive Argument Description

@skip (1f: If true, the field or fragment the directive decorates is skipped and not resolved
Boolean:) by GraphQL.

@include (if: If t rue, the field or argument the directive decorates is resolved and included in
Boolean!) the operation results.

Example: Using a Directive with a Variable

The following example illustrates a query that uses a directive with a variable. In this example, we have declared a
variable, $withIcon, and given it a default value of Boolean = true. We have then included the directive
@include (if: SwithIcon) onthe icon field. Because we have defined the default value of the swithIcon
variable as true, we are telling GraphQL to include the icon field in the query results if the device has an icon;
otherwise, if the device does not have an icon, GraphQL will still return data about that device but it will not
include data about the icon in the results for that device, since it does not have one:

query devices ($withIcon: Boolean = true) {
devices (first: 30) {

edges {

node {
id

name
ip

icon @include (if: S$withIcon) {
id

43 Directives

NOTE: As with any variable, you can override the default value by defining a different value for the variable
in the Query Variables pane.

Search Filters

GraphQL lets you add search expressions that filter the data returned in queries based on fields and parameters
that you specify. So, for instance, let's say that you want GraphQL to query only those devices that belong to o
specific device class. You could use afilter to limit the query to just the devices within that specific device class.

Filters are passed through fields as arguments. The basic syntax of a filter argument is:
(search: {<field>: {<operator>: <value>}})

Depending on your schema, your search argument could be longer, with additional fields and operators that
ultimately precede the filter value.

If your search argument includes a list, it might also include an array, which is wrapped in square brackets, [and
1. For example:

(search: {<field>: {<operator>: [<value 1>, <value 2>, <value 3>]1}})

Filter Operators

The fields in your search filter have specific allowable operators, which are defined for each field in the schema.

The following table describes the operators that you can use in GraphQlL filters.

Operator Function

and returns data only where all parts separated by and are true
or returns data if any parts separated by or are true

not returns data only where the parts following not are not true
eq equals

neq does not equal

gt greater than

1t less than

gte greater than or equal to

lte less than or equal to

beginsWith string begins with

Search Filters 44

Operator Function

endsWith string ends with

contains string contains
doesNotBeginWith | string does not begin with
doesNotEndWith string does not end with
doesNotContain string does not contain

in value is included in an explicit set
notln value is not included in an explicit set
from value is included in a calculated set
has non-null calculated set intersection
isNull value is null

isNotNull value is not null

isTrue value is true

isFalse value is false

Example: Querying Devices from the Same Device Class

Here is an example of a query that uses a search filter. In this example, we are asking GraphQL to return the
device IDs of all the devices in our SL1 system that have the device class "Sciencelogic, Inc.":

query getSLlAppliances {
devices (search: {deviceClass: {has: {class: {eq: "SciencelLogic, Inc."}}}}) {
edges {
node {
id
t

Example: Querying a List of Specific Devices

Here is an example of a query that uses a search filter that includes a list of specific devices. In this example, we
are asking GraphQlL to return the device IDs, IP addresses, and device class names and descriptions for three
specific devices in SL1—the devices with device IDs 3, 27, and 2132:

query specificDevices {
devices (search: {id: {in: [3, 27, 21321}}) {
edges {
node {
id

45 Search Filters

ip

deviceClass {
class
description

Query Pagination

When you write and execute a GraphQL query, GraphQL might return a large number of data results matching
that query. Obviously, it would be difficult to wade through an extremely long list of results. Pagination can help
make the list of results more manageable and readable.

The SL1 GraphQL API uses cursor pagination, which uses several possible arguments to set a unique
identifie—a cursor—that maps to a specific record in your data set. GraphQL can then use that cursor as @
bookmark to determine where pagination should begin or end. The identifier type varies based on the data field
and its scalar type; it might be an integer or a string. You can also use variables to determine the cursor position.

You can use the following arguments in cursor pagination:

o The after argument indicates the unique identifier of the record you want to establish as the cursor, after
which you want GraphQL to start returning results. Here are a few examples:
o The argument (after: 5) would return results starting with the sixth record in the list that matched
your query.

o The argument (after: "exampleUserID") would return results that matched your query starting
with the record after the one that included the field value exampleUser1b.

o The argument (after: S$deviceID)would return results that matched your query starting with the
record after the one indicated by the $deviceID variable field value, which you would define in the
Query Variables pane of the GraphiQL browser.

o The first argument indicates the number of records to return from the record established as the cursor.
Here are a few examples:
o The argument (first: 10) would return the first 10 records that matched your query.

o Theargument (first: 25, after: "exampleUserID") would return results for the first 25
records that matched your query after the one that included the field value exampleUser1p.

o Theargument (first: 15, after: $deviceID) would return results for the first 15 records that
matched your query after the one indicated by the $deviceID variable field value, which you would
define in the Query Variables pane of the GraphiQL browser.

Query Pagination 46

o The before argument indicates the unique identifier of the record you want to establish as the cursor,
before which you want GraphQL to start returning results. Here are a few examples:
o The argument (before: 15) would return the first 14 records that matched your query.

o The argument (before: "exampleUserID") would return results that matched your query up to
but not including the record that included the field value exampleUserID and working backwards
towards the beginning of the data set.

o The argument (before: $deviceID)would return results that matched your query up to but not
including the record indicated by the $deviceID variable field value, which you would define in the
Query Variables pane of the GraphiQL browser, and working backwards towards the beginning of
the data set.

o The last argument indicates the number of records to return prior to the cursor.
o The argument (last: 10) would return the last 10 records that matched your query.

o The argument (last: 30, before: "exampleUserID") would return results for the last 30
records that matched your query before the one that included the field value exampleUserIp.

o The argument (last: 25, after: S$deviceID) would return results for the last 30 records that
matched your query before the one indicated by the sdeviceID variable field value, which you
would define in the Query Variables pane of the GraphiQL browser.

There is one additional important piece to query pagination: The pageInfo field. The pageInfo field typically
goes at the end of your query, below the data fields that you want to query, and can display information about the
total number of results that match your query parameters, as well as information about whether the page of
results that displays when you execute the query has additional pages of results before or after it.

You can use one or more of the following nested fields under the pageInfo field:
o The hasPreviousPage field indicates if there are additional results prior to the page of fetched data

results. It will display t rue in the data results if there are additional pages; otherwise, it will display false.

o The hasNextPage field indicates if there are additional results after the page of fetched data results. It will
display true in the data results if there are additional pages; otherwise, it will display false.

o The matchCount field indicates the total number of records that can be fetched for your query. This is
helpful, as it lets you know how many batches you will need to fetch.

When paging backwards over a data set, the hasPreviousPage field nested under pageInfo is used in
conjunction with the 1ast and before arguments in other parts of your query.

When paging forward over a data set, the hasNextPage field nested under pageInfo is used in conjunction with
the first and after arguments.

Example: Querying the First Five Devices Listed in SL1

Here is an example of a query that uses a simple pagination method. In this example, we are searching for
information about the first five devices listed in our SL1 system:

query firstFiveDevices {
devices (first: 5) {
edges {
node {
id

47 Query Pagination

name

Example: Determining the Total Number of Query Results

Here is an example of a query that uses the pagelnfo field and its nested field matchCount to determine the total
number of results for this query:

query howManyPages {

devices (first:
edges {
node {
id
}
}
pageInfo {

3) A

hasPreviousPage

hasNextPage
matchCount

}

In the query data results that display when we execute the query, we can see from the matchcount field value
that there are 25 devices that match our query:

{

"data": {
"devices": {
"edges": [
{
"node": {
"id": "3"
}
}I
{
"node" {
"id": "27"
}
}I
{
"node": {
"id": "2132"
}
}
]I
"pageInfo": {
"hasPreviousPage": false,
"hasNextPage": true,

"matchCount": 25

Query Pagination

48

Example: Using Cursor-based Query Pagination

Here is an example of a query that uses a more complex cursor-based pagination method. In this example, we
are searching for information about the first 10 devices that appear in the data set after a specific device, which

we will define with a variable.

First, we must determine the cursor value for the record that we want to establish as the cursor. In this example,

we want to use the 15th device as the cursor, so we would first do the following in GraphQL:

query getTenDevices {
devices (first: 15, after:"") ({
edges {
node {
id
ip
name
state
}
cursor
}
pageInfo {
hasNextPage

}

That query returns the following data results:

{
"data": {
"devices": {
"edges": [
{
...first 14 records
}I
{

"node": {
"id":. 27",
"ip": "10.2.5.72",
"name": "10.2.5.72",
"state": "O"
}I
"cursor": "OpcmVijdGlvbiI6ImEFzYyJoXX0="

}

] 14

"pageInfo": {
"hasNextPage": true

49

Query Pagination

In these results, we see that the cursor value for the 15th device is "OpcmvidGlvbiI6ImFzYyJ9xx0=". We now
need to use that cursor value in combination with a variable to get the first 10 device records after that 15th
device. To do this, we will create a new query that uses a variable safter as the value of the argument after:

query getTenDevices ($after: String!) {
devices (first: 10, after: Safter) {
edges {
node {
id
ip
name
state

}

cursor

}

pageInfo {
hasNextPage

}

}

Note that, in the query above, the hasNextPage field nested under pageInfo is used in conjunction with the
first and after arguments passed through the devices field. When paging forward through a data set using
cursor-based pagination, the hasNextPage field is always used in conjunction with the first and after
arguments; when paging backwards through a data set, the hasPreviousPage field nested under pageInfo is
always used in conjunction with the 1ast and before arguments.

Finally, we must define the variable $after with the cursor value that we previously determined. To do so, we
would type its value into the Query Variables pane in the GraphiQL browser in the following format:

{
"after": "OpcmVjdGlvbiI6ImFzYyJ9XX0="

}

When we execute the query, GraphQlL returns the requested data about the first 10 records after the cursor.

Querying the Sciencelogic GraphQL API from an External
Application

After you have determined the queries you want to execute using the GraphiQL interface, you can execute those
queries from an external application by performing an HTTPS request to the GraphQL URI for your SL1 system.
To execute a GraphQL query using an HTTPS request:

o Use the POST method.

o Setthe content-type header to "application/json".

o Specify the username and password of an appropriate user account.

o Inthe request content, send JSON in the following structure:

{

Querying the Sciencelogic GraphQL APl from an External Application 50

"query":" [GraphQL query]"
}

For example, to execute the original example query, you would POST the following JSSON:

{

"query":"query devices { devices { edges { node { id name} } } }"

51 Querying the Sciencelogic GraphQL APl from an External Application

Chapter

Mutations

Overview

This chapter describes how to form mutations in GraphQL to create, update, or delete data in SL1. It describes
how to form basic mutation syntax and use variables, fragments, and directives in your mutations. Each section
includes one or more examples to further illustrate each topic.

NOTE: GraphQL is a complex language, and the information in this chapter is not an exhaustive list of every
possible option at your disposal when writing and executing a mutation. For additional information
about any of the subjects in this chapter, or for information not covered in this chapter, see the
GraphQL documentation.

This chapter includes the following topics:

What are Mutations? ... 53
MULGHiON Ty PeS 53
Basic Mutation Syntax .l 53
Example: Updating a User's Name ... 54
VAriables ... 54
Example: Using Variables in a Mutation ... 55
Fragments .. 55
Example: Using a Fragmentin a MUtQtion 55
Directives 56
Example: Using a Directive in a Mutation ... 56

52

https://graphql.org/learn/

What are Mutations?

Mutations are GraphQL operations that modify data in the system and then return a value. Typically, mutations
create new data, update existing data, or delete existing data.

Mutation Types

Most mutations fall into one of three types:

o Create. These mutations add new data to your system.
« Update. These mutations update existing data on your system.

o Delete. These mutations remove existing data from your system.
There are also less common mutation types, such as Validate, Set, Upgrade, Duplicate, and Save.

To see a full list of mutations that are available for SL1, see the schema in the GraphiQL browser.

Basic Mutation Syntax

The most basic syntax of a mutation involves the following elements:

o Operation type. For mutations, this is mutation. Unlike queries, the operation type is required when
executing a mutation.

o Operation name. A name that you define for the operation. While operation names are not always
required, they are helpful to have for logging and debugging purposes.

o Object. The mutation object, as defined in the schema. This is written as a verb—typically "create", "update”,
or "delete"—followed by the name of the object you are mutating, written together in camel case. For
example, if you wanted to create a new physical device, you would use the object
createPhysicalDevice. If you wanted to update an existing system process monitoring policy, you would
use the object updateMonitorSystemProcess.

o Argument(s). The data that you want to pass to the database through the mutation. These are defined in
the following structure: (fieldName: value"). The schema lists the argument field name and value type
pairs that are available for each mutation field. Depending on the specific mutation, it might have no
arguments, one argument, or multiple arguments. If it has multiple arguments, the argument structure is
(fieldName: "value", fieldName: "value"),with any additional arguments separated by
additional commas.

o Return field(s). The fields that you want GraphQL to return when you execute the mutation. For example,
you might include a return field if you want to see the new state of an object after an update.

NOTE: If you mutate multiple objects, GraphQL executes the mutations on those objects in sequence, one
after the other.

53 What are Mutations?

Example: Updating a User's Name

Here is an example of a basic mutation. In this example, we are updating the name of an existing SL1 user:

mutation updateUserID {
updateAccount (id: "11", user: "Example User", acceptedEula: true) {
id
user
acceptedEula

}

In this example:

o mutation is the operation type.
o updateUserName is the operation name that we defined for this specific operation.

o updateAccount is the object. We are telling GraphQL that we want to update an existing user account in

SLT.

e id: "11",user: "Example User",and acceptedEula: true are the argumentsthat we are passing
to the database. We are telling GraphQlL that the user account we want to update has the user ID "11", and
that we want to update that user's name to "Example User" and indicate that the user has accepted the SL1
end user license agreement.

e id, user, and acceptedEula are the return fields. We are telling GraphQL that, after it mutates the
specified user account, we want it to return the user's ID and name, as well as confirmation the user is
marked as having accepted the SL1 end user license agreement, so that we can verify the information.

When we execute this mutation, GraphQL returns the following, confirming that the mutation has updated the
fields that we told it to:

"data": {
"updateAccount": {
"id": "11",
"user": "Example User",
"acceptedEula": true
}
}
}
Variables

Just like with queries, you can use variables to dynamically replace arguments in mutations, enabling you to
reuse the mutation for multiple objects simply by changing the variable value.

The same rules apply to using variables in mutations as in queries.

Variables 54

Example: Using Variables in a Mutation

In this example, we are taking the same mutation that we executed in the previous example and replacing the
defined argument values with variables. This enables us to use the same mutation numerous times to add
multiple new users by simply re-defining the variable values as needed:

mutation updateUserID($id: ID!, S$SuserName: String!, $Eula: Boolean = true) {
updateAccount (id: $id, user: $userName, acceptedEula: $Eula) {
id
user
acceptedEula

}

We must then define these variables. To do so, we would type their values into the Query Variables pane in the
GraphiQL browser in the following format:

{"id": "11", "userName": "Example User"}

NOTE: In the above example, we did not define the $Eula variable because we declared a default value of
true foritin our mutation. If we had wanted instead to pass a value of false, then we would have
specified that with the other variable definitions in the Query Variables pane.

Fragments

Similar to their use in queries, you can use fragments in mutations to group together a set of fields associated
with a particular type that you can then reuse to define return fields in multiple mutations.

The same rules apply to using fragments in mutations as in queries.

Example: Using a Fragment in a Mutation

In this example, we are taking the same mutation that we executed in the previous example and replacing the
return fields id, user, and acceptedEula with the fragment accountInfo. This enables us to use the same
return fields every time we use that mutation to add a new user:

fragment accountInfo on Account {
id
user
acceptedEula

}

mutation updateUserID($id: ID!, S$SuserName: String!, $Eula: Boolean = true) {
updateAccount (id: $id, user: S$userName, acceptedEula: $Eula) {
...accountInfo

}

55 Fragments

Directives

You can use directives to make GraphQL perform custom logic in your mutations, just as you can in queries.
They can be attached to a field or a fragment that you are including in your mutation, and can affect the data that
GraphQL displays when you execute the mutation.

The same rules apply to using fragments in mutations as in queries.

Example: Using a Directive in a Mutation

In this example, we are taking the same scenario and fields as in the first example, with one exception: this time,
we are not marking the user as having accepted the SL1 end user license agreement by passing the argument
acceptedEula: true tothe updateAccount mutation, as we did previously.

We are still going to include the acceptedEula return field, however. This will inform us whether the user has
already accepted the SL1 end user license agreement without us having done it for them.

But in this scenario, we are only concerned with users who have not accepted the license agreement. Therefore,
we are going to include a directive to skip the inclusion of the acceptedEula return field if GraphQL determines
that the value is already true:

mutation updateUserID ({
updateAccount (id: "11", user: "Example User") {
id
user
acceptedEula @skip(if: true)

}

As you can see, because that user account has already accepted the license agreement, GraphQL does not
return the acceptedEula field when we execute the mutation:

{

"data": {
"updateAccount": {
"id": "11",
"user": "Example User"

Directives 56

© 2003 - 2021, Sciencelogic, Inc.
All rights reserved.
LIMITATION OF LIABILITY AND GENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although Sciencelogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and Sciencelogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without noftice.
Sciencelogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

Sciencelogic, the Sciencelogic logo, and EM7 are trademarks of Sciencelogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to Sciencelogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

« Sciencelogic™

« EM7™ andem7™

o Simplify IT™

o Dynamic Application™

« Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
Sciencelogic’s frademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of Sciencelogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com

»

Sciencelogic

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction
	What is GraphQL?
	How Does SL1 Use GraphQL?
	Authentication and User Access
	The GraphiQL User Interface

	GraphQL Terminology and Punctuation
	GraphQL Terminology
	Schema
	Types
	Operations
	Queries
	Mutations

	Object Types
	Fields
	Arguments
	Return Types
	Connections
	Edges
	Nodes
	Variables
	Fragments
	Directives

	Case-Sensitivity
	Punctuation

	Using the GraphiQL User Interface
	What is the GraphiQL User Interface?
	GraphiQL User Interface Elements
	Query Pane
	Query Variables Pane
	Results Pane
	Documentation Explorer Pane
	Toolbar Buttons

	The GraphQL Schema
	Exploring the GraphQL Schema in the Documentation Explorer
	Example 1: Using the Schema to Execute a Simple Query
	Example 2: Using the Schema to Execute a Complex Query
	Example 3: Using the Schema to Execute a Mutation

	Queries
	What Are Queries?
	Basic Query Syntax
	Example: Querying a Single Device
	Example: A Simple Query without the Operation Type query

	Connections, Edges, and Nodes
	Example: A Query with Edges and Nodes

	Variables
	Example: Querying Basic Device Information Using a Variable

	Fragments
	Example: Creating a Fragment for Account Fields

	Inline Fragments
	Example: Using an Inline Fragment

	Directives
	Example: Using a Directive with a Variable

	Search Filters
	Filter Operators
	Example: Querying Devices from the Same Device Class
	Example: Querying a List of Specific Devices

	Query Pagination
	Example: Querying the First Five Devices Listed in SL1
	Example: Determining the Total Number of Query Results
	Example: Using Cursor-based Query Pagination

	Querying the ScienceLogic GraphQL API from an External Application

	Mutations
	What are Mutations?
	Mutation Types
	Basic Mutation Syntax
	Example: Updating a User's Name

	Variables
	Example: Using Variables in a Mutation

	Fragments
	Example: Using a Fragment in a Mutation

	Directives
	Example: Using a Directive in a Mutation

