
Internal Collection Dynamic Application
(ICDA) Development
SL1 version 11.3.0 GA

Table of Contents

Introduction 3
What is an Internal Collection Dynamic Application? 4
How Do ICDAs Work? 4
Types of ICDAs 5
Snippets and Execution Environments 5
Data Collected by ICDAs 6
Internal Collection Inventory Application Types 6
Filesystem Inventory 6
Interface Inventory 6

Internal Collection Performance Application Types 7
Availability 7
SNMP Detail 7
Filesystem Performance 7
Interface Performance 8
Port Performance 8
Process Inventory 8
Process Performance 9
Service Inventory 9
Service Performance 9

Creating Internal Collection Dynamic Applications 10
Viewing the List of ICDAs 11
Creating an ICDA 11
Creating a Container for the ICDA Snippet 13
Creating the Collection Objects 14
Adding the Snippet Code 15

Snippet Examples for ICDAs 16
Availability 16
Discovery 17
Filesystem Inventory 17
Filesystem Type 18
Interface Octets 19
Latency 19

Chapter

1
Introduction

Overview

This manual describes how to use Internal Collection Dynamic Applications (ICDAs) to gather data from
devices that do not support SNMP or to perform customized processing on collected SNMP data.

This manual does not cover elements of Dynamic Application development that are common to all
Dynamic Application types. You should be familiar with the common elements and concepts of Dynamic
Applications before reading this manual. For general information on planning, designing, using, and
troubleshooting Dynamic Applications, see the manual Dynamic Application Development.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter provides an overview of ICDAs. It contains the following topics:

This chapter covers the following topics:

What is an Internal Collection Dynamic Application? 4

How Do ICDAs Work? 4

Types of ICDAs 5

Snippets and Execution Environments 5

Data Collected by ICDAs 6

3

4

What is an Internal Collection Dynamic Application?

SL1 has traditionally used SNMP and an internal process called "internal collection" to collect the
following data for each device:

l Availability and latency

l System description, system uptime, and system local

l Filesystem inventory and performance

l Interface inventory and performance

However, you might need to monitor device data that is partially available through SNMP, or not available
at all through SNMP.

For devices that do not support SNMP, SL1 provides an additional method to collect this data called
Internal Collection Dynamic Applications (ICDAs). ICDAs combine the efficiency of internal collection with
the flexibility of dynamic applications, ensuring uniform data across SL1.

How Do ICDAs Work?

Internal Collection Dynamic Applications align to devices in the same way as other Dynamic Applications.
If the ICDA includes a discovery object, the ICDA automatically aligns with devices during discovery. You
can also manually align ICDAs to devices and include ICDAs in device templates.

When SL1 begins an internal collection, it checks to see if any ICDAs are aligned. If ICDAs are aligned,
SL1 performs an "Extended Internal Collection". The platform combines data it collected using ICDAs with
data it collected using an internal SNMP process, and then the platform completes the collection process.

The following illustration highlights the ICDA functionality in the collection process:

What is an Internal Collection Dynamic Application?

Types of ICDAs

NOTE: If SL1 collects this data using the SNMP-based internal collection and also collects this data
using ICDAs, the data from ICDAs takes precedence.

The ICDA data that SL1 collects is stored in a database that is separate from the dynamic application
database. ICDA results are stored where the corresponding internal collection would store its results.

ICDAs do not include presentation objects, thresholds, or alerts. SL1 evaluates alerts and events in
exactly the same way as for standard internal collection.

Types of ICDAs

There are two types of Internal Collection Dynamic Applications:

l Internal Collection Inventory. These ICDAs collect configuration data about filesystems, such as
storage size, filesystem type, and storage used. These ICDAs also collect configuration data about
interfaces, such as physical address, operational status, and IP addresses. In SL1, the available
Data Models for this Application Type are Filesystem Inventory and Interface Inventory. Use these
ICDAs to monitor inventory processes, like process_collect.py, which runs every 2 hours.

l Internal Collection Performance. Collects data about availability and latency, device information
(system description, system uptime, system local), filesystem performance, and interface
performance. In SL1, the available Data Models for this Application Type are Availability, Filesystem
Performance, SNMP Detail (includes Uptime, Description, and Locale), and Interface Performance.
Use these ICDAs to monitor performance collection processes, like process_check.py, which runs
every 5 minutes.

NOTE: The names for the ICDA Data Models follow the existing naming conventions used by the
internal collection processes.

Snippets and Execution Environments

Internal Collection Dynamic Applications collect data by executing one or more blocks of Python code,
called snippets. SL1 passes credential and other configuration information to the snippet, and at the end
of execution, the snippet must pass collected data back to SL1. The Dynamic Application developer
defines snippet code that collects data and processes data.

One way in which Dynamic Applications that use snippets are unique from most other types of Dynamic
Applications is that they can be aligned with a specific execution environment.

In the SL1 user interface, an execution environment is a list of one or more ScienceLogic libraries. When a
Dynamic Application snippet, Run Book Automation snippet, or credential test is executed, the execution
environment defines a virtual Python environment that is deployed on-demand and includes all of the
ScienceLogic libraries aligned with it for use during snippet execution.

5

6

When you create an Internal Collection Dynamic Application, you must select an execution environment
to align with that Dynamic Application. All of the snippets contained in the Dynamic Application will then
use that execution environment whenever the Dynamic Application runs. If you do not specify an
execution environment, SL1 will align the Dynamic Application with the default System environment.

You can create and manage execution environments on the Environment Manager page (System
> Customize > ScienceLogic Libraries > Actions > Execution Environments). For more information about
creating and managing execution environments, see the ScienceLogic Libraries and Execution
Environments manual.

Data Collected by ICDAs

This section lists the collection objects included in each type of Data Model.

NOTE: For each Data Model, this list also describes how to index the collection objects so they can be
merged with values from the internal, SNMP-based collection process. Ensure that you follow
the indexing format. Improper indexing could result in duplicated entities if the two types of
data cannot be merged.

The ICDA data takes precedence over any data collected during SNMP-based internal collection.

Internal Collect ion Inventory Applicat ion Types

Use these ICDAs to monitor inventory processes, like process_collect.py, which runs every 2 hours.

Fi lesystem Inventory

Index: Filesystem Name, such as /dev/sda1.

Objects:

l Storage Size. Measured in storage units.

l Filesystem Type. Type of filesystem, such as ext4.

l Storage Used. Measured in storage units.

l Storage Units. Measured in bytes per storage units.

l Media Type. Type of media, such as CD, hard drive, or flash drive.

Inter face Inventory

Index: SNMP interface index or user-defined unique index if only ICDA collects the data for the interface.

Objects:

Data Collected by ICDAs

Data Collected by ICDAs

l Name. String.

l Alias. String.

l Descr. String.

l Type. Interface type as defined in IF-MIB.

l Phys Address. String for the MAC Address.

l Speed. Measured in bps.

l High Speed. Measured in Megabits per second, or Mbps.

l Admin Status. Integer: up [1], down [2], testing[3].

l Operational Status. Integer: up [1], down [2], testing[3], unknown [4], dormant [5], not present [6],
lower layer down [7].

l Connector Present. Integer.

l 64-bit Support. True or false.

l Blade. Blade number.

l Port. Port number.

l IP Addresses. IP Address and Subnet, such as [(1.2.3.4, 255.255.255.0), (2.3.4.5,
255.255.255.128)].

Internal Collect ion Performance Applicat ion Types

Use these ICDAs to monitor performance collection processes, like process_check.py, which runs every
five minutes.

Avai labi l i ty

Index: None (this impacts the entire device, so there can only be only value per index).

Objects:

l Availability. True or false, depending on whether the device is available.

l Latency. Measures uptime in 10 millisecond increments.

SNMP Detai l

Index: None (this impacts the entire device, so there can only be only value per index).

Objects:

l System Description. String.

l System Uptime. Measured in 10-millisecond increments.

l System Locale. String.

Fi lesystem Performance

Index: Filesystem Name, such as /dev/sda1.

7

8

Objects:

l Storage Used. Measured in storage units.

l Storage Units. Measured in bytes per storage units.

l Percent Used. Measured in percentage of storage used.

Inter face Performance

Index: SNMP interface index or user-defined unique index if only ICDA collects data for the interface.

Objects:

l Phys Address. String for the MAC Address.

l Admin Status. Integer: up [1], down [2], testing[3].

l Operational Status. Integer: up [1], down [2], testing[3], unknown [4], dormant [5], not present [6],
lower layer down [7].

l ifInOctets. Interface Inbound Traffic in octets.

l ifOutOctets. Interface Outbound Traffic in octets.

l ifInDiscards. Interface Inbound Discards.

l ifOutDiscards. Interface Outbound Discards.

l ifOutErrors. Interface Outbound Errors.

l ifInErrors. Interface Inbound Errors.

Port Performance

Index: Data pair of port number and port protocol: TCP (0), UDP (1)

Objects:

l State. Port state, up or down.

Process Inventory

NOTE: ICDA process data does not merge with agent-collected data.

Index: Process Pid number

Objects:

l Name. String for the Process Name.

l Arguments. String for the Process Arguments.

l Path. String for the Process Path.

l User. String for the Process User.

Data Collected by ICDAs

Data Collected by ICDAs

l CPU Time. Integer.

l Memory Use. Integer.

l State. Integer.

Process Performance

NOTE: ICDA process data does not merge with agent-collected data.

Index: Process Pid number

Objects:

l Name. String for the Process Name.

l Arguments. String for the Process Arguments.

l Path. String for the Process Path.

l User. String for the Process User.

l CPU Time. Integer.

l Memory Use. Integer.

l State. Integer.

Service Inventory

Index: Service Name

Objects:

l Start Mode. String: Auto, Manual, Disabled, Anything Else.

l State. Integer: 0 (running), 1 (not running).

Service Performance

Index: Service Name

Objects:

l Start Mode. String: Auto, Manual, Disabled, Anything Else.

l State. Integer: 0 (running), 1 (not running).

9

Chapter

2
Creating Internal Collection

Dynamic Applications

Overview

This chapter describes how to create and use create Internal Collection Dynamic Applications (ICDAs).

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter includes the following topics:

This chapter covers the following topics:

Viewing the List of ICDAs 11

Creating an ICDA 11

Snippet Examples for ICDAs 16

10

11

Viewing the List of ICDAs

You can view all Internal Collection Dynamic Applications on the Dynamic Applications Manager page
(System > Manage > Applications) by typing "Internal" in the Type filter-while-you-type field:

TIP: To ensure the consistency of your data, do not use an ICDA to collect data on a device that was
previously monitored by another type of Dynamic Application.

Creating an ICDA

You can create custom Internal Collection Dynamic Applications (ICDAs) to gather data on devices that
do not support SNMP. Currently, ICDAs support only the snippet protocol.

NOTE: If you create an ICDA with a Data Model of Interface Inventory and the ICDA includes a
discovery Collection Object, the ICDA aligns with the device after the platform discovery runs.
As a result, SL1 does not discover interfaces until either the nightly discovery runs or the user
re-discovers the device manually by running the discovery session again, creating a new
discovery session, or initiating an ad hoc discovery.

To create an ICDA:

1. Go to the Dynamic Applications Manager page (System > Manage > Applications).

Viewing the List of ICDAs

Creating an ICDA

2. Click the [Actions] button and select Create New Dynamic Application. The Dynamic Applications
Create New Application page appears.

3. Complete the following fields:

l Application Name. Type a name for this ICDA.

l Application Type. Your options for ICDAs include Internal Collection Inventory or Internal
Collection Performance.

4. Click the [Save] button. The [Properties] tab updates to show the relevant fields for the ICDA:

12

13

5. In the Execution Environment drop-down list, select the execution environment to which you want to
align the Dynamic Application. An execution environment is an on-demand Python environment that
includes the supporting modules, code, scripts, directories, and files (packaged in one or more
ScienceLogic Libraries) needed to run a snippet. An execution environment includes its own
installation directories, doesn't share libraries with other environments, and allows granular control of
dependencies, versions, and permissions. The default execution environment is System. For more
information, see the ScienceLogic Libraries manual.

6. In the Data Model drop-down list, select the type of data you want to collect with this ICDA. The
values in the drop-down are dependent on the value in the Application Type field. The value in the
Data Model field list determines the available options in the Object Link drop-down list on the
[Collections] tab. For example, if you select Availability for the Data Model, then you can choose only
Availability or Latencyin the Object Link drop-down list.

l If you selected Internal Collection Inventory as the Application Type, the Data Model drop-
down includes:
o Filesystem Inventory. Monitors Storage Size, Filesystem Type, Storage Used, Storage

Units, or Media Type.
o Interface Inventory. Monitors Name, Alias, Description, Type, Physical Address, Speed,

High Speed, Admin Status, Operational Status, Connector Present, 64-bit Support,
Blade, Port, or IP Address.

l If you selected Internal Collection Performance as the Application Type, the Data Model drop-
down includes:
o Availability. Monitors Availability or Latency.
o Filesystem Performance. Monitors Storage Used, Storage Units, or Percentage Used.
o SNMP Detail. Monitors System Description, System Uptime, or System Locale.
o Interface Performance. Monitors Octets In, Octets Out, Errors In, Errors Out, Discards In,

Discards Out, Physical Address, Admin Status, or Operational Status.

7. Update the remaining fields as needed, and then click the [Save] button.

8. Next, create a container for your ICDA snippet code.

Creating a Container for the ICDA Snippet

In Snippet Dynamic Applications, each collection object must be associated with a snippet. Therefore, in
ICDAs you must create the container for the snippet code before creating the collection objects for this
ICDA.

To create a container for the snippet code:

1. Click the [Snippets] tab.

Creating an ICDA

Creating an ICDA

2. Complete the following fields:

l Snippet Name. The name of the snippet.

l Active State. Specifies whether the snippet should be executed by SL1 when performing
collection for the ICDA.

l Required. Specifies whether this snippet is required for successful collection of all other
snippet requests. Choices are:

o Required - Stop Collection. If this snippet request fails, the platform will not attempt to
execute any other snippet requests in this ICDA. Dynamic Applications that consume the
cache of this ICDA will halt collection.

o Not Required - Continue Collection. If this snippet request fails, the platform will continue
executing all remaining snippet requests in this ICDA. Dynamic Applications that consume
the cache of this ICDA will continue collection.

l Snippet Code. The python code that will be executed when SL1 performs collection for this
ICDA. You will add the snippet code later.

3. Click the [Save] button.

4. Repeat this process for each collection you want to use in conjunction with a snippet.

5. Next, create the collection objects for your ICDA.

Creating the Collect ion Objects

To create the collection object or objects for this ICDA:

14

15

1. Click the [Collections] tab.

2. Complete the following fields to create the collection object:

l Object Name. Type the name of the collection object.

l Snippet Arguments. Specify any arguments you want to pass to the snippet.

l Class Type. Depending on the type of collection object you want to create, select
[33] ICDA Object or [100] Discovery.

l String Type. Define the string type for this snippet. Select Standard or Hex Code.

l Object Link. Select the specific type of data you want to collect with this ICDA. The options in
this drop-down list are based on your selection for the Data Model field on the [Properties] tab.

l Snippet. Select the name of the snippet you created in the previous process.

3. Update the remaining fields as needed, and then click the [Save] button.

4. Repeat these steps to create additional collection objects you want to use in conjunction with a
snippet.

5. Next, add the snippet code for your new ICDA.

Adding the Snippet Code

To add the snippet code to a new ICDA:

1. Click the [Snippets] tab.

2. In the Snippet Registry pane, select the relevant snippet and click its wrench icon (). Information
about that snippet appears in the top pane:

Creating an ICDA

Snippet Examples for ICDAs

3. In the Snippet Code field, type or paste your python code for the collection object.

4. Click the [Save] button and close the modal page for the ICDA.

Snippet Examples for ICDAs

The following snippets were created by ScienceLogic to use as sample snippets for ICDAs.

Availabi l i ty

from silo_builtin_caching import get_cached_request_result
Windows_Server_Uptime_REQ_GUID = '32CA377A59190A6AB83DC5EDB05CA7E7'
result = {

'if': get_cached_request_result(self, Windows_Server_Uptime_REQ_GUID)
}

print "**"
print result

for grp_id, grp in self.oids.iteritems():
for obj_id, obj in grp.iteritems():

try:
(req, oid) = obj['oid'].split('.')
result_list = result[req].get(oid, {}).values()

except ValueError:
self.logger.ui_debug('Skipping OID %d' % obj_id)
continue

if len(result_list) >= 1 and float(result_list[0]) > 0.0:
obj['result'] = [(0, True)]

#obj['result'] = [(0, True if len(result_list) >= 1 and float(result_list[0])
> 0.0 else False)]
print obj

16

17

Discovery

from silo_common.global_definitions import CRED_SSH

import paramiko

if self.cred_details['cred_type'] == CRED_SSH:
host = self.cred_details['cred_host']
user = self.cred_details['cred_user']
passwd = self.cred_details['cred_pwd']
timeout = self.cred_details['cred_timeout'] / 1000
port = self.cred_details['cred_port']

ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

ssh.connect(host, username=user, password=passwd, port=port, timeout=timeout)
stdin, stdout, stderr = ssh.exec_command("uname")
os = stdout.readlines()
if os[0].startswith("Linux"):

result_handler['disc'] = True
ssh.close()

else:
self.logger.debug("ICDA Filesystem | DID %s: Incorrect credential type aligned,
must be SSH" % self.did)

Filesystem Inventory

from silo_builtin_caching import get_cached_request_result

import re

#Enum to translate drive type to string

FS_ENUM_TYPES={
0: 'Unknown',
1: 'No Root Directory',
2: 'Removable Disk',
3: 'Local Disk',
4: 'Network Drive',
5: 'Compact Disc',
6: 'RAM Disk'

}

result = get_cached_request_result(self, WINDOWS_SERVER_DISK_CONFIGURATION_REQ_GUID)

indexes = set()

units_object = {}

for grp_id, grp in self.oids.iteritems():
for obj_id, obj in grp.iteritems():
oid = obj['oid']
result_list = result.get(oid, {}).items()

#Keep track of all the indexes (which are the filesystem names)

Snippet Examples for ICDAs

Snippet Examples for ICDAs

#Rewrite the results list to clean up filesystem names
for (i, (k, v)) in enumerate(result_list):

#An empty string index will attempt to use the label first,
#and fall back to " " if there is no label
if k == '':

k = result.get('label',{}).get('',' ')
result_list[i] = (k, v)

#Add a backslash to drive letters to match the output from SNMP
elif re.match('[A-Z]:$', k):

k += '\\'
result_list[i] = (k, v)

indexes.add(k)

#If this is the 'units' object, set it aside for later processing
if obj['oid'] == 'units':

units_object = obj
continue

#Translate the drivetype enum to a string
if obj['oid'] == 'drivetype':

result_list = [(index, FS_ENUM_TYPES.get(int(value), value)) for index, value
in result_list]

obj['result'] = result_list

#Do the processing for the units object (all units are 1 - bytes)

units_object['result'] = [(i, 1) for i in indexes]

Filesystem Type

from silo_common.global_definitions import CRED_SSH

import paramiko

if self.cred_details['cred_type'] == CRED_SSH:
host = self.cred_details['cred_host']
user = self.cred_details['cred_user']
passwd = self.cred_details['cred_pwd']
timeout = self.cred_details['cred_timeout'] / 1000
port = self.cred_details['cred_port']

ssh = paramiko.SSHClient()
ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())
ssh.connect(host, username=user, password=passwd, port=port, timeout=timeout)

stdin, stdout, stderr = ssh.exec_command("df --output=target,fstype",
timeout=timeout)

results = []
lines = stdout.readlines()[1:]
for line in lines:

fs_name, fs_type = map(lambda line: line.strip(), line.split(' ', 1))
results.append((fs_name, fs_type))

result_handler['fs_type'] = results
ssh.close()

else:
self.logger.debug("ICDA Filesystem | DID %s: Incorrect credential type aligned,
must be SSH" % self.did)

18

19

Interface Octets

from silo_common.credentials import snmph_from_cred_array

from silo_common.exceptions import SnmpError

OID_ifInOctets = '.1.3.6.1.2.1.2.2.1.10'

results = []

try:
snmp_h = snmph_from_cred_array(self.cred_details, self.ip)
octets_in_walk = snmp_h.walk(OID_ifInOctets)

for oid, value in octets_in_walk:
if_index = oid.split('.')[-1]
offset to make this differentiable from the value returned by normal internal
collection
if_in_octets = int(value) + 100000
results.append((if_index, if_in_octets))

except SnmpError, err:
self.logger.ui_debug("An SNMP error occurred during interface performance
collection")

finally:
result_handler['ifInOctets'] = results

Latency

from silo_collect.tools import latency_ping

from silo_common.network import ip

ip_obj = ip(self.ip)

add large offset to make ICDA data stand out

result_handler['latency'] = [('0', latency_ping(ip_obj, logger=self.logger) + 5000)]

Snippet Examples for ICDAs

© 2003 - 2022, ScienceLogic, Inc.

All rights reserved.

LIMITATION OF LIABILITY AND GENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUTWARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS
DISCLAIM ALLWARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information on this Site, information on
this Site may contain inadvertent technical inaccuracies or typographical errors, and ScienceLogic™
assumes no responsibility for the accuracy of the information. Information may be changed or
updated without notice. ScienceLogic™ may also make improvements and / or changes in the
products or services described in this Site at any time without notice.

Copyrights and Trademarks

ScienceLogic, the ScienceLogic logo, and EM7 are trademarks of ScienceLogic, Inc. in the United
States, other countries, or both.

Below is a list of trademarks and service marks that should be credited to ScienceLogic, Inc. The ®
and ™ symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and
may not be appropriate for materials to be distributed outside the United States.

l ScienceLogic™
l EM7™ and em7™
l Simplify IT™
l Dynamic Application™
l Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver
of ScienceLogic’s trademark or other intellectual property rights concerning that name, slogan, or
logo.

Please note that laws concerning use of trademarks or product names vary by country. Always
consult a local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and
enforceability of any remaining provisions. This is the entire agreement between the parties relating
to the matters contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks.
Therefore, if you become aware of any improper use of ScienceLogic Trademarks, including
infringement or counterfeiting by third parties, report them to Science Logic’s legal department
immediately. Report as much detail as possible about the misuse, including the name of the party,
contact information, and copies or photographs of the potential misuse to: legal@sciencelogic.com.
For more information, see https://sciencelogic.com/company/legal.

mailto:legal@sciencelogic.com
https://sciencelogic.com/company/legal

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction
	What is an Internal Collection Dynamic Application?
	How Do ICDAs Work?
	Types of ICDAs
	Snippets and Execution Environments
	Data Collected by ICDAs
	Internal Collection Inventory Application Types
	Filesystem Inventory
	Interface Inventory

	Internal Collection Performance Application Types
	Availability
	SNMP Detail
	Filesystem Performance
	Interface Performance
	Port Performance
	Process Inventory
	Process Performance
	Service Inventory
	Service Performance

	Creating Internal Collection Dynamic Applications
	Viewing the List of ICDAs
	Creating an ICDA
	Creating a Container for the ICDA Snippet
	Creating the Collection Objects
	Adding the Snippet Code

	Snippet Examples for ICDAs
	Availability
	Discovery
	Filesystem Inventory
	Filesystem Type
	Interface Octets
	Latency

