
Integration Service for Developers
Version 2.0.0

Table of Contents

Introduction to the Integration Service Tools 4
What is the Integration Service? 5
Tools Included with Integration Service 6
Prerequisites for Creating Integration Applications 7

Creating a Step 8
What is a Step? 9
Default Steps 10
Requirements 10
Creating a Step from the Step Template 11
Including the SubClass and Required Methods 11
Subclass 11
Required Methods 12

Defining the Logic for the Step 12
The init Method 12
The execute Method 13

Transferring Data Between Steps 14
Saving Data for the Next Step 14
Retrieving Data from a Previous Step 14
get_data_from_step_by_name 15
get_data_from_step_by_order 15
join_previous_step_data 16

Step Parameters 17
Base Parameters Available in All Steps 17

Defining a Parameter 17
Retrieving Parameter Values 18
Variable Substitution in Parameters 18
Retrieving Variable Values 19

Defining Logging for the Step 20
Raising Exceptions 20
Uploading Your Step 20
Uploading a Step with iscli 21
Uploading a Step with the API 21

Validating Your Step 22
Viewing Logs 22

Creating an Integration Application 25
What is an Integration Application? 26
Default Integration Application 27
Requirements 27
Creating an Integration Application from the Integration Template 27
Defining Required Fields for the Integration Application 28
Creating the List of Steps and Step Parameters 29
Specifying Values for name and file 30
Specifying the Parameters 30

Transferring Data Between Steps 30
Defining Retry Options for a Step 32
Defining Variables for an Integration Application 33
Uploading the Integration Application to the Integration Service System 34
Uploading an Integration Application with iscli 35
Uploading an Integration Application with the API 35

Running the Integration Application 36

Running the Integration Application with a Custom Queue 36
Defining a Custom Queue 37
Configuring an Integration Application to Use a Custom Queue 39
Configuring an Integration Application to Always Use a Custom Queue. 39
Configuring an Integration Application to Use a Custom Queue at Run Time 40

Defining a Configuration 40
Uploading the Configuration File to the Integration Service System 42
Uploading a Configuration with iscli 42
Uploading a Configuration with the API 43

Viewing a Report for an Integration Application 44
Viewing Logs for an Integration Application 46
Working with Integration Applications in the Integration Service User Interface 47
Editing an Integration Application in the User Interface 48
Configuring an Integration Application in the User Interface 49
Running or Stopping an Integration Application in the User Interface 51

Creating a Synchronization PowerPack 53
What is a Synchronization PowerPack? 54
Generating the Synchronization PowerPack Structure 54
Synchronization PowerPack Structure 55
Synchronization PowerPack Properties 55

Building a Synchronization PowerPack 56
Building a Synchronization PowerPack with Python3 56
Building a Synchronization PowerPack with the iscli Utility 56

Uploading a Synchronization PowerPack to the Integration Service 57
Uploading a Synchronization PowerPack with the User Interface 57
Uploading a Synchronization PowerPack with the iscli Utility 57

Activating and Installing a Synchronization PowerPack 58
Activating and Installing with the User Interface 58
Activating and Installing with the iscli Utility 58

Extending an Existing Synchronization PowerPack 59
Restrictions 59
Modifying Integration Application Definitions 59
Modifying a Step 59
Full Extended Step Example 60

ipaascore.BaseStep class 62
get_app_variable 63

Description 63
Syntax 63
Parameters 63
Return 63
Example 63

get_available_previous_step_input_positions 64
Description 64
Syntax 64
Return 64

get_data_from_step_by_name 65
Description 65
Syntax 65
Parameters 65
Return 65
Example 65

get_data_from_step_by_order 66

Description 66
Syntax 66
Parameters 66
Return 66
Exception 66
Example 66

get_name 67
Description 67
Syntax 67
Return 67

get_parameter 68
Description 68
Syntax 68
Parameters 68
Return 68
Example 68

get_parameter_from_previous_step 69
Description 69
Syntax 69
Parameters 69
Return 69

join_previous_step_data 70
Description 70
Syntax 70
Parameters 70
Return 70
Example 71

new_step_parameter 72
Description 72
Syntax 72
Parameters 72
Example 72

save_data_for_next_step 73
Description 73
Syntax 73
Parameters 73
Example 73

validate_parameter_values 74
Description 74
Syntax 74

Tools for the Integration Service 75
iscli 76
Syntax 76
List of Arguments 76
Example 78

IS API 78
Viewing API Documentation 78
Available Endpoints 78
POST 78
Querying for the State of an Integration Application 79
GET 79
REST 80

DELETE 80

Chapter

1
Introduction to the Integration Service Tools

Overview

This manual describes how you can use the tools included in the Integration Service and your own tools to create
your own integration applications, steps, and configurations that you can use with the Integration Service.

This chapter covers the following topics:

What is the Integration Service? 5

Tools Included with Integration Service 6

Prerequisites for Creating Integration Applications 7

4

5

What is the Integration Service?

The Integration Service enables intelligent, bi-directional communication between the ScienceLogic data platform
and external data platforms to promote a unified management ecosystem. The Integration Service allows users to
translate and share data between SL1 and other platforms without the need for programming knowledge. The
Integration Service is designed to provide high availability and scalability.

The following image shows an example of an integration application and its steps in the Integration Service user
interface:

The key elements of the Integration Service user interface include the following:

l Steps. A step is a generic Python class that performs a single action. Steps can accept zero or many input
parameters or data from previous steps, and steps can specify output to be used by other steps. The input
parameters are configurable variables and values used during execution. Steps can be re-used in multiple
integrations applications. When these steps are combined in an integration application, they provide a
workflow that satisfies a business requirement. All Python step code should be Python 3.7 or later. In the
image above, the steps display as part of the flowchart in the main viewing pane as well as the
Steps Registry pane.

l Integration Applications. An integration application is a JSON object that includes all the information
required for executing an integration on the Integration Service platform. An integration application combines
a set of steps that execute a workflow. The input parameters for each step are also defined in the application
and can be provided either directly in the step or in the parent integration application. In the image above,
the group of connected steps in the large pane make up the "Sync Organizations from SL1 to ServiceNow

What is the Integration Service?

Tools Included with Integration Service

Companies" integration application. You can access all integration applications on the Integrations page (

).

l Configuration Objects. A configuration object is a stand-alone JSON file that contains a set of configuration
variables used as input for an application. Configurations can include variables like hostname, user name,
password, or other credential information. Configuration objects allow the same application to be deployed
in multiple Integration Service instances, with different configurations. Click the [Configure] button from an
integration application in the Integration Service user interface to access the configuration object for that

integration application. You can access all configuration objects on the Configurations page ().

l Synchronization PowerPack. A Synchronization PowerPack (also called a SyncPack) contains all the code
and logic needed to perform integrations on the Integration Service platform. You can access the latest steps,
integration applications, and configurations for the Integration Service or a third-party integration (such as
ServiceNow) by downloading the most recent Synchronization PowerPack for that integration from

ScienceLogic. You can access all Synchronization PowerPacks on the SyncPacks page ().

The topics in this section describe how to create a step that is compatible with the Integration Service system. These
topics also describe parameters, built-in parameters, and transferring data.

After you have created one or more steps, you can use them in one or more integration applications.

Tools Included with Integration Service

The Integration Service includes the following tools for creating custom integrations:

l iscli. The Integration Service includes a command line tool called iscli (Integration Service Command Line
Interface). When you install the Integration Service, iscli is automatically installed. The iscli allows you to
upload integration applications, steps, and configurations. For more information on the iscli, see the section
on iscli.

l IS API. The Integration Service includes an API. When you install the Integration Service, the API is available.
For more information on the IS API, see the section on the IS API.

l ipaascore.BaseStep class. The Integration Service includes a Python class called ipaascore.BaseStep
class. This class includes multiple pre-defined functions that you can use when you are writing or editing a
step. For more information, see the section on ipaascore.BaseStep class.

l Base Steps Synchronization PowerPack. The Base Steps Synchronization PowerPack includes a number of
basic steps that perform common API calls. For more information, see Default Steps.

6

7

Prerequisites for Creating Integration Applications

To create your own integration application, you must:

l Deploy an Integration Service system and ensure it is accessible. For details, see the Integration Service
Platformmanual.

l Have SSH or console access to the Integration Service system, so you can use the iscli (Integration Service
Command Line Interface). You will use the iscli to upload steps, integration applications, and configurations
to the Integration Service.

l Be comfortable with Python.

l Install a local copy of a Python IDE to use for development.

l Install a local copy of an API tool, like cURL, Insomnia, or Postman.

l Install a local copy of a source-code editor like Notepad++, vi, or TextEdit.

Prerequisites for Creating Integration Applications

Chapter

2
Creating a Step

Overview

This chapter explains how to create your own custom step that you can then upload and run on an Integration
Service system.

NOTE: All Python step code should be Python 3.7 or later.

This chapter covers the following topics:

What is a Step? 9

Default Steps 10

Requirements 10

Creating a Step from the Step Template 11

Including the SubClass and Required Methods 11

Defining the Logic for the Step 12

Transferring Data Between Steps 14

Step Parameters 17

Defining Logging for the Step 20

Raising Exceptions 20

Uploading Your Step 20

Validating Your Step 22

Viewing Logs 22

What is a Step?

In an Integration Service system, a step is a generic Python class that performs a single action, such as caching
device data:

Steps accept arguments called input parameters. The parameters specify the values, variables, and
configurations to use when executing the step. Parameters allow steps to accept arguments and allow steps to be
re-used in multiple integrations. For example, you can use the same step to query both the local system and
another remote system; only the arguments, such as hostname, username, and password change.

You can view and edit the parameters for a step by opening the integration application, clicking [Open Editor] (

), and then clicking the gear icon () on a step to open the Step Editor pane:

A step can pass the data it generates during execution to a subsequent step. A step can use the data generated by
another step. Also, you can add test data to the step and click Custom Run to run test data for that step.

The Integration Service system analyzes the required parameters for each step and alerts you if any required
parameters are missing before the Integration Service runs the step.

Steps are grouped into the following types:

l Standard. Standard steps do not require any previously collected data to perform. Standard steps are
generally used to generate data to perform a transformation or a database insert. These steps can be run
independently and concurrently.

l Aggregated. Aggregated steps require data that was generated by a previously run step. Aggregated steps
are not executed by the Integration Service until all data required for the aggregation is available. These steps
can be run independently and concurrently.

l Trigger. Trigger steps are used to trigger other integration applications. These steps can be configured to be
blocking or not.

Default Steps

The Base Steps Synchronization PowerPack version 1.0.0 contains the "Template App" integration application.
You can use the "Template App" integration application as a template for building new integration applications.

The Base Steps Synchronization PowerPack also includes the following steps, which you can use in new and
existing integration applications:

l Cache Delete

l Cache Read

l Cache Save

l Direct Cache Read

l MS-SQL Describe

l MS-SQL Insert

l MS-SQL Select

l MySQL Describe

l MySQL Insert

l MySQL Select

l Query GraphQL

l Query REST

l Run a command through an SSH tunnel

l Trigger Application

TIP: To view the code for a step, select a Synchronization PowerPack from the SyncPacks page, click the
[Steps] tab, and select the step you want to view.

Requirements

To create a custom step, you must perform the following tasks:

1. Download or copy the step template, called stepTemplate.

2. Set up the required classes and methods in the step.

3. Define logic for the step, including transferring data between steps.

4. Define parameters for the step.

5. Define logging for the step.

6. Define exceptions for the step.

7. Upload the step to the Integration Service system.

8. Validate and test the step.

Creating a Step from the Step Template

The easiest way to create a new step is to use the step template that is included with the Integration Service system.
To copy this template to your desktop:

1. Using an API tool like Postman or cURL, use the APIGET /steps/{step_name}:

GET URL_for_your_Integration_Service _system/api/v1/steps/stepTemplate

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

2. Select and copy all the text in the stepTemplate.

3. Open a source-code editor and paste the content of the stepTemplate in the source-code editor.

4. Save the new file as newfilename.py

where:

l newfilename.py is the new name of the step and includes the .py suffix. The file name must be unique
within your Integration Server system and cannot contains spaces. Note that the step name will also be
the name of the Python class for the step.

Including the SubClass and Required Methods

To execute successfully on the Integration Service system, your step must be a subclass of the ipaascore.BaseStep
class and include the init method and the execute method.

Subclass

The stepTemplate.py file is already configured to include the new step as a subclass of the ipaascore.BaseSetp
class. To update your step:

1. Use a source-code editor to open the re-named file for editing.

2. Notice that the file includes these lines of text:

from ipaascore.BaseStep import BaseStep
from ipaascommon import ipaas_exceptions

3. Do not remove or alter these lines of text.

4. Search for the following:

class stepTemplate(BaseStep):

5. Replace stepTemplate with the new name of the file (without the .py suffix).

6. Save and close the file.

Required Methods

To execute successfully on the Integration Service system, your step must contain at least twomethods:

l init method. Allows you to define initialization options and parameters for the step.

l execute method. The execute method includes the logic for the step and performs the action. After the
Integration Service system evaluates all parameters and initialization settings and aligns the step with a
worker process, the Integration Service system examines the execute method.

Without these methods, the Integration Service system will consider your step to be "incomplete" and will not
execute the step.

The stepTemplate.py file includes these twomethods and the syntax of some of the sub-methods you can use
within the main methods.

Defining the Logic for the Step

Each step requires the init method and the execute method. Within those methods, you can specify parameters and
logic for the step. The following sections describe how to do this.

The init Method

From the init method, you can define the friendly name, the step description, and the step version:

self.friendly_name = “friendly name of the step. This name appears in the user
interface”
self.description = “Description of the step”
self.version = “version number”

In the QueryREST step, the friendly name, description, and version number are defined like this:

def __init__(self):
self.friendly_name = “Query REST”
self.description = “Step facilitates REST interactions and will return the
returned data dictionary and specified headers as data to the next step”
self.version = “1.0.0”

From the init method, you also define the parameters for the step. The Integration Service system will examine the
parameters and enforce the parameters when the step is run.

For example, if you specify a parameter as required, and the user does not specify the required parameter when
calling the step, the Integration Service system will display an error message and will not execute the step.

To define a parameter, use the self.new_step_parameter function.

self.new_step_parameter(name=parameter_name, description="description", sample_
value="sample value", default_value=None, required=False)

where:

l name. The name of the parameter. This value will be used to create a name:value tuple in the integration
application file (in JSON).

l description. A description of the step parameter.

l sample_value. A sample value of the required data type or schema.

l default_value. If no value is specified for this parameter, use the default value. Can be any Python data
structure. To prevent a default value, specify "None".

l required. Specifies whether this parameter is required by the step. The possible values are "True" or "False".

Here is an example from the QueryREST step (available on each Integration Service system):

self.new_step_parameter(name=PREFIX_URL, description=“used with relative_url to
create the full URL.”, sample_value=“http://10.2.11.253”, default_value=None,
required=True)

The execute Method

From the execute method you can:

l Use Python logic and functions

l retrieve the value of a parameter with self.get_parameter

l retrieve the value of a variable with self.get_app_variables (variables are defined in the integration
application)

l Retrieve data from a previous step in the integration application

l Save data for use by the next step in the integration application

l Define logging for the step

l Define exceptions for the step

For details on all the functions you can use in the execute method, see the chapter on the ipaascore.BaseStep
class.

You can also define additional methods in the step. For examples of this, see the QueryREST step provided with
the Integration Service system.

For examples of the logic in a step, view one or more of the steps listed in Default Steps.

Transferring Data Between Steps

An essential part of integrations is passing data between tasks. The Integration Service system includes native
support for saving and transferring Python objects between steps. The ipaascore.BaseStep class includes multiple
functions for transferring data between steps.

Saving Data for the Next Step

The save_data_for_next_step function saves an object or other type of data and make the data available to
another step. The object to be saved and made available must be able to be serialized with pickle:

save_data_for_next_step(data_to_save)

where:

l data_to_save is a variable that contains the data.

NOTE: The data_to_save object must be of a data type that can be pickled by Python: None, True and False,
integers, long integers, floating point numbers, complex numbers, normal strings, unicode strings,
tuples, lists, set, and dictionaries.

The following is an example of the save_data_for_next_step function:

save_data = {'key': 'value'}
self.save_data_for_next_step(save_data)

The integration application must then specify that the data from the current step should be passed to one or more
subsequent step, using the output_to parameter. For details, see the section about using integration
applications to transfer data between steps.

Retrieving Data from a Previous Step

The ipaascore.BaseStep class includes multiple functions that retrieve data from a previous step:

l get_data_from_step_by_name

l get_data_from_step_by_order

l join_previous_step_data

NOTE: To retrieve data from a previous step, that previous step must save the data with the save_data_for_
next_step function, and the integration application must specify that the data from the previous step
should be passed to the current step using the output_to parameter.

get_data_from_step_by_name

The get_data_from_step_by_name function retrieves data saved by a previous step.

NOTE: Although the get_data_from_step_by_name function is simple to use, it does not allow you to write
a generic, reusable step, because the step name will be hard-coded in the function. The functions
join_previous_step_data or get_data_from_step_by_order allow you to create a more generic,
reusable step.

get_data_from_step_by_name(step_name)

where:

l step_name is the name of a previous step in the integration application.

The following is an example of the get_data_from_step_by_name function:

em7_data = self.get_data_from_step_by_name('FetchDevicesFromEM7')
snow_data = self.get_data_from_step_by_name('FetchDevicesFromSnow')

get_data_from_step_by_order

The get_data_from_step_by_order function retrieves data from a step based on the position of the step in the
integration application.

get_data_from_step_by_order(position)

where:

l position is the position of the step (the order that the step was run) in the integration application. Position starts
at "0" (zero).

For example:

l Suppose your integration application has four steps: stepA, stepB, stepC, and stepD

l Suppose stepA was run first (position "0") and includes the parameter "output_to":["stepD"]

l Suppose stepB was run second (position "1") and includes the parameter "output_to":["stepD"]

l Suppose stepC was run third (position "2") and includes the parameter "output_to":["stepD"]

l Suppose stepD was run fourth

l If the current step is stepD, and stepD needs the data from stepC, you could use the following:

data_from_stepC = self.get_data_from_step_by_order(2)

join_previous_step_data

The join_previous_step_data function is the easiest and most generic way of retrieving data from one or more
previous steps in the integration application.

If you are expecting similar data from multiple steps, or expecting data from only a single step, the join_previous_
step_data function is the best choice.

The join_previous_step_data function gathers all data from all steps that included the save_data_for_next_
step function and also include the output_to parameter in the integration application. By default, this function
returns the joined set of all data that is passed to the current step. You can also specify a list of previous steps from
which to join data.

The retrieved data must be of the same type. The data is then combined into a list in a dictionary.

If the data types are not the same, then the function will raise an exception.

join_previous_step_data([step_name])

where:

l step_name is an optional argument that specifies the steps. For example, if you wanted to join only the data
from stepA and stepD, you could specify

self.join_previous_step_data([“stepA”, “stepD”]),

The following is an example of the join_previous_step_data function in the QueryREST step (included in each
Integration Service system):

def query_with_url_generated_from_input(self):
“““
Iterates over data from previous steps and generates a relative url for each. Then
executes that command
:return:
“““
count = 0
input_data = self.join_previous_step_data()
payload = self.get_parameter(PAYLOAD)
if type(input_data) is list:

for input_d in input_data:
relative_url = self.get_parameter(RELATIVE_URL, input_d)
self.process_REST_command(payload, relative_url)
count += 1

elif type(input_data) is dict:
relative_url = self.get_parameter(RELATIVE_URL, input_data)
self.process_REST_command(payload, relative_url)
count += 1

else:
raise NotImplementedError(“Data type: {} is not currently supported for generating
relative urls form data”.format(type(input_data)))

Step Parameters

Steps accept arguments, called parameters. These arguments specify the values, variables, and configurations to
use when executing.

Base Parameters Avai lable in A l l Steps

The Integration services BaseClass has a few base parameters that are automatically inherited by all steps and
cannot be overwritten. You do not need to define these parameters before using them in steps:

l name. The Application-unique name for this step. That parameter can be used by other steps to refer to a
step.

l file. The name of the file that will be executed by the step. For example, you could write step logic in a single
file, but use that step logic with different integration applications and use different names for the step in each
integration application.

l output_to. A list indicating that the data retrieved from this step should be output to another step. Setting this
parameter links the steps, and the subsequent step will be able to retrieve data from the current step. The
format is:

"output_to":["stepA", "stepB"]

Defining a Parameter

From the init method, you define the parameters for the step. The Integration Service system will examine the
parameters and enforce the parameters when the step is run.

For example, if you specify a parameter as required, and the user does not specify the required parameter when
calling the step, the Integration Service system will display an error message and will not execute the step.

To define a parameter, use the new_step_parameter function.

new_step_parameter(name='', description='', sample_value='', default_value=None,
required=False)

where:

l name. The name of the parameter. This value will be used to create a name:value tuple in the integration
application file (in JSON).

l description. A description of the step parameter.

l sample_value. A sample value of the required data type or schema.

l default_value. If no value is specified for this parameter, use the default value. Can be any combination of
alphanumeric characters. To prevent a default value, specify "None".

l required. Specifies whether this parameter is required by the step. The possible values are "True" or "False".

Here is an example from the QueryREST step:

self.new_step_parameter(name=PREFIX_URL, description=“used with relative_url to
create the full URL.”, sample_value=“http://10.2.11.253”, default_value=None,
required=True)

Retrieving Parameter Values

To retrieve the latest value of a parameter, use the get_parameter function.

get_parameter(param_name, lookup_data=None)

where:

l param_name is the name of the parameter that you want to retrieve the value for.

l lookup_data is an optional dictionary that can provide a reference for additional variable substitutions.

For example, suppose we defined this parameter in the step named "GETgoogle.com":

self.new_step_parameter(name=prefix_url, description="used with relative_url to create
the full URL.", sample_value="http://10.2.11.253", default_value=None, required=True)

Suppose in the integration application that calls "GETgoogle.com", we specified:

"steps": [
{

"file": "QueryREST",
"method": "GET",
"name": "GETgoogle.com",
"output_to": ["next_step"],
"prefix_url": "http://google.com"

}
],

Suppose we use the get_parameter function in the step "GETgoogle.com" to retrieve the value of the "prefix_url"
parameter:

build_url_1 = self.get_parameter("prefix_url")

The value of build_url_1 would be "http://google.com".

Variable Substi tut ion in Parameters

The Integration Service system allows users to define variables, so that parameters can be populated dynamically.

To include a variable in a parameter, use the following syntax:

${exampleVariable}

The Integration Service system includes the following types of variables for use in parameters:

l ${object_from_previous_step}. The Integration Service system will search the data from the previous steps
for object_from_previous_step. If found, the Integration Service system will substitute the value of the object
for the variable

l ${config.exampleVariable}. Configuration variables are defined in a stand-alone file that lives on the
Integration Service system and can be accessed by all integration applications and their steps. Including the
config. prefix with a variable tells the Integration Service system to look in a configuration file to resolve the
variable. If you want to re-use the same settings (like hostname and credentials) between applications, define
configuration variables.

l ${appvar.exampleVariable}. Application variables are defined in the integration application. These
variables can be accessed only by steps in the integration application. Including the appvar. prefix with a
variable tells the Integration Service system to look in the integration application to resolve the variable.

l ${stepfunc.exampleFunctionargs}. The variable value will be the output from the user-defined function,
specified in exampleFunction, with the arguments specified in args. The exampleFunction must exist in the
current step. Additional parameters can be specified as args with a space delimiter. You can also specify
additional variable substitution values as the arguments. This allows you to dynamically set the value of a
variable using a proprietary function, with dynamically generated arguments. For example:

“param”: “${step_func.add_numbers 1 2}”

will call a function (defined in the current step) called “add_numbers” and pass it the arguments "1"
and "2". The value of "param" will be "3".

For details on defining configuration variables and application variables, see the chapter on defining an
integration.

Retrieving Variable Values

You can use the get_app_variable function to retrieve the latest value of a variable.

get_app_variable (variable_name)

where:

l variable_name is the name of the application variable that you want to retrieve the value for.

For example, suppose we defined this application variable in the integration application:

"app_variables": [
{

"name": "sl1_hostname",
"description": "The SL1 hostname to participate in the sync",
"sample_value": "10.2.253.115",
"default_value": null,
"required": true,
"value": 10.64.68.25

},
]

Suppose this integration application calls the step "sync_SL1_data".

In the step "sync_SL1_data" , we could use the following function to resolve the value of "sl1hostname":

hostname = self.get_app_variable("sl1_hostname")

The value of hostname would be "10.64.68.25".

Defining Logging for the Step

The Integration Service system includes a logger for steps. The BaseStep class initializes the logger, so it is ready for
use by each step.

To define logging in a step, use the following syntax:

self.logger.logging_level ("log_message")

where:

l logging_level is one of the following Python logging levels:

o critical

o error

o info

o warning

l log_message is the message that will appear in the step log.

For example :

self.logger.info("informational message")

Raising Exceptions

The Integration Service platform natively handles exceptions raised from custom steps. You can include a user-
defined exception or any standard Python exception.

If an exception is raised at runtime, the step will immediately be marked as a failure and be discarded.

To view the exception and the complete stack trace, use the steps from the section on Viewing Logs.

Uploading Your Step

When you create a new step or edit an existing step, you must upload the step to the Integration Service system.

There are two ways to upload a step to the Integration Service system:

l At the command line with the iscli utility

l With the Integration Service API

Uploading a Step with isc li

The Integration Service system includes a command line tool called iscli. When you install Integration Service
system, iscli is automatically installed.

To upload a step to the Integration Service system using iscli:

1. Either go to the console of the Integration Service system or use SSH to access the server.

2. Log in as isadmin with the appropriate password.

3. Enter the following at the command line:

iscli -u -s -f path_and_name_of_step_file.py -H hostname_or_IP_address_of_
integration_service_system -P port_number_of_http_on_integration_service_system -u
user_name -p password

where:

l name_of_step_file is the full pathname for the step.

l hostname_or_IP_address_of_integration_service_system is the hostname or IP address of the
Integration Service system.

l port_number_of_http_on_integration_service_system is the port number to access the Integration
Service system. The default value is 443.

l user_name is the user name you use to log in to the Integration Service system.

l password is password you use to log in to the Integration Service system.

Uploading a Step with the API

The Integration Service system includes an API. When you install the Integration Service system, the API is
available.

To upload a step with the API POST /steps:

POST /steps
{

"name": "name_of_step",
"data": "string"

}

where:

l data is all the information included in the step.

Validating Your Step

After uploading a step, you can use the API POST /steps run to run the step individually without running an
integration application. This allows you to validate that the step works as designed.

To run a step from the IS API:

POST /steps/run
{

"name": "name_of_step",
all other data from the .json file for the step

}

After the POST request is made, the Integration Service system will dispatch the step to a remote worker process
for execution. By default, the POST request will wait five seconds for the step to complete. To override the default
wait period, you can specify wait time as a parameter in the POST request. For example, to specify that the wait
time should be 10 seconds :

POST /steps/run?wait=10
{

"name": "example_step",
}

If the step completes within the wait time, the Integration Service system returns a 200 return code, logs, output,
and the result of the step.

If the step does not complete within the wait time, the Integration Service system returns a task ID. You can use this
task ID to view the logs for the step.

The API returns one of the following codes:

l 200. Step executed and completed within the timeout period.

l 202. Step executed but did not complete with timeout period or user did not specify wait. Returned data
includes task to query for the status of the step

l 400. Required parameter for the step is missing.

l 404. Step not found.

l 500. Internal error. Database connection might be lost.

Viewing Logs

After running a step, you can view the log information for a step. Log information for a step is saved for the duration
of the result_expires setting in the Integration Service system. The result_expires setting is defined in the file
opt/iservices/scripts/docker-compose.yml. The default value for log expiration is 24 hours.

NOTE: To view the log information for a step before running an integration, you can use the API POST /steps
run to run the step individually without running an integration application. You can then use the
information in step #3 - step #6 below to view step logs.

To view the log information for a step:

1. Run an integration application.

2. Using an API tool like Postman or cURL, use the APIGET /applications/{appName}/logs:

GET URL_for_your_Integration_Service _system/api/v1/applications/integration_
application_name/logs

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

3. You should see something like this:

{
"app_name": "example_integration",
"app_vars": {},

"href": "/api/v1/tasks/isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",
"id": "isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",
"start_time": 1527429570,
"state": "SUCCESS",
"steps": [

{
"href": "/api/v1/tasks/2df5e7d5-c680-4d9d-860c-e1ceccd1b189",
"id": "2df5e7d5-c680-4d9d-860c-e1ceccd1b189",
"name": "First EM7 Query",
"state": "SUCCESS",
"traceback": null

},
{

"href": "/api/v1/tasks/49e1212b-b512-4fa7-b099-ea6b27acf128",
"id": "49e1212b-b512-4fa7-b099-ea6b27acf128",
"name": "second EM7 Query",
"state": "SUCCESS",
"traceback": null

}
],
"triggered_by": [

{
"application_id": "isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",
"triggered_by": "USER"

}
]

}

4. In the "steps" section, Notice the lines that start with href and id. You can use these lines to view the logs
for the application and the steps.

5. To use the href value to get details about a step, use an API tool like Postman or cURL and then use the API
GET /steps{step_name}:

GET URL_for_your_Integration_Service _system/href_value

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l href_value is the href value you can copy from the log file for the integration application. The href
value is another version of the step name.

NOTE: To view logs for subsequent runs of the integration application, you can include the href specified in
the last_run field.

6. To use the task id value to views details about a step, use an API tool like Postman or cURL and then use the
APIGET /tasks/{task_ID}:

GET URL_for_your_Integration_Service _system/task_id

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l task_id is the id value you can copy from the log file for the integration application. The task
ID specifies the latest execution of the step.

NOTE: After you find the href and task ID for a step, you can use those values to retrieve the most recent logs
and status of the step.

Chapter

3
Creating an Integration Application

Overview

This chapter explains how to create your own integration application that can run on an Integration Service system.

This chapter covers the following topics:

What is an Integration Application? 26

Default Integration Application 27

Requirements 27

Creating an Integration Application from the Integration Template 27

Defining Required Fields for the Integration Application 28

Creating the List of Steps and Step Parameters 29

Transferring Data Between Steps 30

Defining Retry Options for a Step 32

Defining Variables for an Integration Application 33

Uploading the Integration Application to the Integration Service System 34

Running the Integration Application 36

Running the Integration Application with a CustomQueue 36

Defining a Configuration 40

Uploading the Configuration File to the Integration Service System 42

Viewing a Report for an Integration Application 44

Viewing Logs for an Integration Application 46

Working with Integration Applications in the Integration Service User Interface 47

What is an Integration Application?

In the Integration Service, an integration application is a JSON file that specifies which steps to execute and the
order in which to execute those steps. An integration application also defines variables and provides arguments for
each step.

The following is an example of an integration application:

Integration application JSON objects are defined by configuration settings, steps that make up the integration, and
application-wide variables used as parameters for each step. The parameters of each step can be configured
dynamically, and each step can be named uniquely while still sharing the same underlying class, allowing for
maximum re-use of code.

Integration applications can be executed through the REST API and are processed as an asynchronous task in the
Integration Service. During processing the user is provided a unique task ID for the application and each of its
tasks. Using the task IDs, the user can poll for the status of the integration application and the status of each
individual running step in the integration application.

Executing an integration application from the REST API allows the user to dynamically set one-time parameter
values for the variables defined in the integration.

The required parameters of integration applications are strictly enforced, and the Integration Service will refuse to
execute the integration application if all required variables are not provided.

Default Integration Application

The Integration Service system includes a pre-defined integration application called integration_template. This
default integration appears in the Integration Service user interface as the Template App integration application.

To view this integration application:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name}:

GET URL_for_your_Integration_Service _system/api/v1/applications/integration_
template

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

Requirements

To create an integration application, you must perform these tasks:

1. Download or copy the application template, called integration_template.

2. Define the required fields for the integration application.

3. Create the list of steps and step parameters.

4. Define application variables.

5. Upload the integration applecart to the Integration Service.

6. Validate and test the integration applications step.

Creating an Integration Application from the Integration
Template

The easiest way to create a new integration application is to use the application template that is included with the
Integration Service system. To copy this template to your desktop:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name }:

GET URL_for_your_Integration_Service _system/api/v1/applications/integration_
template

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

2. Select and copy all the text in the application.

3. Open a source-code editor and paste the application in the source-code editor.

4. Save the new file as newfilename.json

where:

l newfilename.json is the new name of the integration application includes the .json suffix. The file
name must be unique within your Integration Server system and cannot contains spaces.

Defining Required Fields for the Integration Application

Each integration application should include the following key:value pairs

"author": "name of the author",
"configuration": "if this integration application uses configuration variables,
specify the name of the configuration",
"description": "description of the integration application",
"friendly_name": "name that appears in the user interface",
"name": "file name without the py suffix".
"version": "version number",

The integration_template includes these required fields. You can edit the value for each key. To do so:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name}:

GET URL_for_your_Integration_Service _system/api/v1/applications/application_name

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l application_name is the integration application you want to edit.

2. Copy the contents of the integration application to a source-code editor.

3. Search for the section of the file that contains the text "description".

4. Supply new values for the following keys:

l author. User who created the integration template.

l configuration (if applicable). Configuration variables are defined in a stand-alone file (called a
configuration) that lives on the Integration Service system and can be accessed by all integration
applications and their steps. If your integration application or the steps in the application reference
configuration variables, you must specify the name of the configuration in this value. For more details
on creating a configuration, see the section on Defining a Configuration.

l description. This description will be displayed in the user interface when viewing the available
Integrations.

l friendly_name. The name of the integration application as it will appear in the user interface.

l name. Name of the file, without the .py suffix.

l Version. Version number of the integration application.

5. Save your changes. Save the file to the same name (application_name.json.)

6. To upload the integration application to the Integration Service system, see the section on Uploading an
Integration Application.

Creating the List of Steps and Step Parameters

In the integration application, you must specify the steps to execute and the order in which they should be
executed.

If steps do not have dependencies, the Integration Service system will execute steps in parallel. If steps have
dependencies (meaning one of the steps requires data from another step), the Integration Service system will
execute the step that provides data and then execute the step that consumes that data.

To edit the steps section of the integration application:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name}:

GET URL_for_your_Integration_Service _system/api/v1/applications/application_name

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l application_name is the integration application you want to edit.

2. Copy the contents of the integration application to a source-code editor.

3. Search for the section of the file that contains the text "steps".

4. The section of the integration application that specifies steps should look like this:

"steps":[
{

"name": "GETgoogle.com",
"file": "QueryREST",
"prefix_url": "http://google.com",
"method": "GET",
"output_to": ["next_step"]

},
{

"name": "next_step",
"file": "someOtherTask"

}
]

5. Edit the "steps" section as needed and save your changes. Be sure to your file as a .JSON file with the same
name as the integration application your downloaded.

6. To upload the integration application to the Integration Service system, see the section on Uploading an
Integration Application.

Specify ing Values for name and file

For each step, you must specify its name and the file it executes. These two keys can have the same value.

l name. The name for the step. Other steps in the integration application can use this name to refer to the
step. This value can include spaces. This name must be unique to the integration application.

l file. The name of the file that will be executed by the step. You could write step logic in a single file but use
that step logic with different integration applications and use different names for the step in each integration
application.

Specify ing the Parameters

When you add a step to an integration application, you must view the step and determine if it includes any required
parameters.

To view details about a step (in our example, the step file is namedQueryREST):

1. Using an API tool like Postman or cURL, use the APIGET /steps/{step_name}:

GET URL_for_your_Integration_Service _system/api/v1/steps/QueryREST

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

2. The step GETgoogle.com (and its parent file, QueryREST) includes the following parameters that are defined
as "required":

self.new_step_parameter(name=METHOD, sample_value="GET", description="HTTP method
to perform", required=True)

self.new_step_parameter(name=PREFIX_URL, description="used with relative_url to
create the full URL.",sample_value="http://10.2.11.253", default_value=None,
required=True)

3. Therefore, when the integration application includes the step GETgoogle.com, the integration application
must supply values for the required parameters.

"method": "GET",
"prefix_url": "http://google.com",

Transferring Data Between Steps

An essential part of integrations is passing data between tasks. The Integration Service system includes native
support for saving and transferring Python objects between steps. Within a step, you can use one of the functions in
the included in the ipaascore.BaseStep class.

In an integration application, you can use the ouput_to key to specify that the results of a step should be piped to
one or more specified steps. The output_to key uses the following syntax:

"output_to": ["step_name1", "step name2"]

To pass data from step to step, you must include the output_to key along with the parameters for a step.

To edit the step parameters in the integration application:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name}:

GET URL_for_your_Integration_Service _system/api/v1/applications/application_name

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l application_name is the integration application you want to edit.

2. Copy the contents of the integration application to a source-code editor.

3. If you wanted the step "GETgoogle.com" to pass its output to the step "next-step",the integration application
would include the following :

"steps":[
{

"name": "GETgoogle.com",
"file": "QueryREST",
"prefix_url": "http://google.com",
"method": "GET",
"output_to": ["next_step"]

},
{

"name": "next_step",
"file": "someOtherTask"

}
]

l If steps have dependencies , the Integration Service system will first analyze all steps in an integration
application and ensure that data-gathering steps are performed before steps that require that data.

4. Edit the "steps" section as needed and save your changes. Be sure to your file as a .JSON file with the same
name as the integration application your downloaded.

5. To upload the integration application to the Integration Service system, see the section on Uploading an
Integration Application.

Defining Retry Options for a Step

The following parameters allows you to define multiple retry options for a step. You can specify that the Integration
Service system try to re-run a step if that step fails. Retries work following the rules of exponential backoff: the first
retry will have a delay of 1 second, the second retry will have a delay of 2 seconds, the third retry will delay 4
seconds, the fourth retry will delay 8 seconds, and so on. You can edit the retry_max and retry_backoff_max
values, below to further refine the retry settings.

You can include the following retry options in the integration application file, where you define parameters for each
step:

l retry_max . The maximum number of times the Integration Service system will retry to execute the step
before it stops retrying and logs a step failure. For example, if retry_max is 3, the Integration Service will retry
after 1 second, then 2 seconds, then 4 seconds, and stop if the last retry fails. Possible values are:

o Integer that specifies number of retries.

o The default value is "0" (zero).

l retry_backoff. Instead of using a defined interval between retries, the Integration Service system will
incrementally increase the interval between retries. Possible values are:

o True

o False

o The default value is "False".

l retry_jitter. Instead of using a defined interval between retries, the Integration Service system will retry the
step execution at random intervals. Possible values are:

o True

o False

o The default value is "False".

l retry_backoff_max. The maximum time interval for the retry_backoff option, in seconds. For example,
This means, if you have retry_max set to 15, the delays will be 1, 2, 4, 8, 16, 32, 64, 120, 240, 480, 600,
600, 600, 600, and 600. Possible values are:

o Integer that specifies number of seconds

o The default value is "600"

l retry_countdown. The interval between retries, in seconds. If you enabled retry_backup, the Integration
Service system will incrementally increase this interval:

o Integer that specifies number of seconds

o The default value is "180"

To define the retry options for a step in the integration application file:

1. Using an API tool like Postman or cURL, use the API GET /applications/{application_name}:

GET URL_for_your_Integration_Service _system/api/v1/applications/application_name

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l application_name is the integration application you want to edit.

2. Copy the contents of the integration application to a source-code editor.

3. If you wanted to add retry options to the step "GETgoogle.com", you could include the following:

"steps":[
{

"name": "GETgoogle.com",
"file": "QueryREST",
"prefix_url": "http://google.com",
"method": "GET",
"retry_max": 5
"retry_backoff": True
"retry_backoff_max": 600
"retry_countdown": 120
"output_to": ["next_step"]

},
{

"name": "next_step",
"file": "someOtherTask"

}
]

4. Edit the "steps" section as needed and save your changes. Be sure to your file as a .JSON file with the same
name as the integration application your downloaded.

Defining Variables for an Integration Application

Application variables are defined in the integration application. These variables can be accessed only by steps in
the integration application. In a step, including the appvar. prefix in a variable tells the Integration Service system
to look in the integration application to resolve the variable. In a step, application variables are used in step
parameters.

To define an application variable:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name}:

GET URL_for_your_Integration_Service _system/api/v1/applications/application_name

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l application_name is the integration application you want to edit.

2. Copy the contents of the integration application to a source-code editor.

3. Search for the section of the file that contains the text "app_variables".

4. In the integration_template file, the section looks like this:

"app_variables": [
{

"name": "exampleVariable", "value": "exampleValue","description": "Variables
defined here will be available in all steps of an application","required":
true,"sample_value": "SampleValue", "default_value": "DefaultValue"

}
],

5. You can copy and paste the example section above for each application variable you want to define.

6. For each application variable, supply values for the following keys:

l name. This key requires a value. The name of the variable.

l value. This key requires a value. This is the value that the variable will resolve to at runtime.

l description. A description of this variable. This description appears in the user interface. The default
value is null.

l required. Specifies whether the variable is required. Possible values are "True" or "False". The default
value is "False". If the variable is required, but a value is not specified and a default value is not
specified, the Integration Application will fail.

l sample_value. A sample value of the required data type or schema. The default value is null. For
example, if the parameter is "port" and the expected value is an integer, a good sample_value would
be "443".

l default_value. If no value is specified for this variable (in the value key), use the value of this key. The
default value of this key is null.

7. Edit the "app_variables" section as needed and save your changes. Be sure to your file as a .JSON file with
the same name as the integration application your downloaded.

8. To upload the integration application to the Integration Service system, see the section on Uploading an
Integration Application.

Uploading the Integration Application to the Integration
Service System

When you create a new integration application or edit an existing integration application, you must upload the
integration application to the Integration Service system. There are two ways to upload an integration application to
the Integration Service system:

l at the command line with the iscli tool

l with the Integration Service API

Uploading an Integrat ion Applicat ion with isc li

The Integration Service system includes a command-line utility called iscli. When you install Integration Service
system, iscli is automatically installed.

To upload an integration application to the Integration Service system using iscli:

1. Either go to the console of the Integration Service system or use SSH to access the server.

2. Log in as isadmin with the appropriate password.

3. Enter the following at the command line:

iscli -u -a -f path_and_name_of_integration application_file.py -H hostname_or_IP_
address_of_integration_service_system -P port_number_of_http_on_integration_
service_system -U user_name -p password

where:

l name_of_integration application_file is the full pathname for the integration application.

l hostname_or_IP_address_of_integration_service_system is the hostname or IP address of the
Integration Service system.

l port_number_of_http_on_integration_service_system is the port number to access the Integration
Service system. The default value is 443.

l user_name is the user name you use to log in to the Integration Service system.

l password is password you use to log in to the Integration Service system.

Uploading an Integrat ion Applicat ion with the API

The Integration Service system includes an API. When you install the Integration Service system, the API is
available.

To upload an integration application with the IS API:

POST /applications
{

"name": "name_of_integration application",
contents of the .json file for the integration application

}

The API returns one of the following:

l 200. Application successfully updated or added.

l 400. Name or data parameter is missing.

l 500. Internal error. Database connection might be lost.

Running the Integration Application

After uploading an integration application, you can run it to ensure that it works as designed. To run an integration
application from the IS API:

1. Using an API tool like Postman or cURL, use the API POST/applications/{application_name}/run:

POST https"//URL_for_your_Integration_Service _system/api/v1/applications/run

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l application_name is the integration application you want to edit.

2. The body of the post should contain:

{
"name": "name_of_integration application",
"params": {}

}

3. You can include the following parameters with the POST request:

l parameters use the syntax:

"parameter name":"parameter value"

l wait. Number of seconds to wait for integration application to complete.

l configuration. The configuration file to use with the integration application. For details, see the
section on configurations.

4. The API returns one of the following:

l 200. Application started successfully.

l 400. Name or data parameter is missing.

l 404. Application not found.

l 500. Internal error. Database connection might be lost.

Running the Integration Application with a Custom Queue

If your Integration Service system runs multiple integration applications and you might want to ensure that one of
those integration applications runs before other integration applications in the processing queues. To do this, you
can align a queue with a worker process; the worker process will be dedicated to only that queue, will listen only to
that queue, and process only jobs from that queue. You can then configure the high-priority integration application
to use the queue that you aligned with its own worker process.

There are two steps to using a custom queue:

l Defining the queue and aligning it with a worker

l Configuring the Integration Application to use the custom queue

Defining a Custom Queue

To create a custom queue:

1. SSH to the Integration Service system

2. Use a text editor like vi to edit the file /opt/iservices/scripts/docker-compose.yml.

3. The docker-compose.yml file contains definitions for worker processes. For example, you might see
something like this:

services:
steprunner:

image: sciencelogic/is-worker:latest
environment:
LOGLEVEL: 10
celery_log_level: 10
logdir: /var/log/iservices
broker_url: 'pyamqp://guest@rabbit//'
result_backend: 'redis://redis:6379/0'
db_host: 'couchbase,localhost'
secrets:

- is_pass
- encryption_key

deploy:
replicas: 2
networks:

- isnet
depends_on:

- redis
- rabbitmq
- couchbase

volumes:
- "/var/log/iservices:/var/log/iservices"
- "statedb:/var/run/celery/states/"

steprunner_1:
image: sciencelogic/is-worker:latest
environment:
LOGLEVEL: 10
celery_log_level: 10
logdir: /var/log/iservices
broker_url: 'pyamqp://guest@rabbit//'
result_backend: 'redis://redis:6379/0'
db_host: 'couchbase,localhost'
user_queues: 'test_queue'
secrets:

- is_pass
- encryption_key

deploy:
replicas: 2
networks:

- isnet
depends_on:

- redis
- rabbitmq

- couchbase
volumes:

- "/var/log/iservices:/var/log/iservices"
- "statedb:/var/run/celery/states/"

steprunner_2:
image: sciencelogic/is-worker:latest
environment:
LOGLEVEL: 10
celery_log_level: 10
logdir: /var/log/iservices
broker_url: 'pyamqp://guest@rabbit//'
result_backend: 'redis://redis:6379/0'
db_host: 'couchbase,localhost'
user_queues: 'critical_queue'
secrets:

- is_pass
- encryption_key

deploy:
replicas: 2
networks:

- isnet
depends_on:

- redis
- rabbitmq
- couchbase

volumes:
- "/var/log/iservices:/var/log/iservices"
- "statedb:/var/run/celery/states/"

4. The services with names that start with "steprunner" are the workers for the Integration Service system.

l Notice that the service named "steprunner" does not include any queues. This means that the worker
"steprunner" listens to the default queues in the Integration Service system.

NOTE: ScienceLogic recommends that you allot at least one worker to handle the default queues.

l To add additional services to your Integration Service system. copy all the lines included in the service
definition, paste it into the file, and rename the service.

l For example, you could copy all the lines from "steprunner_2", paste the text in the "services" section,
and rename the service "steprunner_3".

5. To create one or more queues and dedicate a worker to them, enter the following line in definition of the
worker, under the environment section:

user_queues: 'queue_name1, queue_name2'
where:

l queue_name1, queue_name2. The name of the new queues. The worker will monitor only these
queues and execute tasks only from these queues.

6. After you have updated the docker-compose file, you can update and re-deploy the Integration Service
system to pick up the changes to the docker-compose.yml file. To do this, SSH to the Integration Service
system and execute the following command:

docker stack deploy -c /opt/iservices/scripts/docker-compose.yml is4

Configuring an Integrat ion Applicat ion to Use a Custom Queue

There are two ways to specify that an integration application should use a custome queue:

l In the .JSON file for an integration applicaiton, you can specify that that integration application should always
use a custom queue.

l At run time, you can specify that an integration application shoudl use a custom queue only for that single
execution of the integration application.

Configuring an Integration Appl ication to Always Use a Custom Queue.

To specify that an integration application should always use a custom queue, edit the .json file for the integration
application. To do this:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name}.

GET URL_for_your_Integration_Service _system/api/v1/applications/application_name

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l application_name is the integration application you want to edit.

2. Copy the contents of the integration application to a source-code editor.

3. Search for the section of the file that contains the lines "author", "configuration", "description", "friendly_
name", and "name".

4. In that section of the file, added the bolded line:

"queue": "name_of_queue",

where:

l name_of_queue is one of the custom queues you defined in the docker-compose.yml file.

5. For example:

"author": "ScienceLogic, Inc.",
"configuration": "",
"description": "Read SL1 and ServiceNow devices and write them to a cache.",
"friendly_name": "Cache SL1 Devices using GraphQL",
"name": "cache_em7_device_data",
"generate_report": true,
"queue": "test_queue",

6. Save your changes. Save the file to the same name (application_name.json.)

7. The integration application will now always use the specified queue.

8. To upload your changes to the Integration Service system, see the section on Uploading an Integration
Application.

Configuring an Integration Appl ication to Use a Custom Queue at Run Time

After uploading an integration application, you can run it and specify a queue. To run an integration application
from the IS API:

1. Using an API tool like Postman or cURL, use the API POST/applications/{application_name}/run:

POST https://URL_for_your_Integration_Service _system/api/v1/applications/run

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l application_name is the integration application you want to edit.

2. The body of the post should contain:

{
"name": "name_of_integration application",
"params": {
"queue": "custom_queue"
}

}

3. You can include the following parameter with the POST request:

"queue": "name_of_queue"

where:

l name_of_queue is one of the custom queues you defined in the docker-compose.yml file.

4. The API returns one of the following:

l 200. Application started successfully.

l 400. Name or data parameter is missing.

l 404. Application not found.

l 500. Internal error. Database connection might be lost.

Defining a Configuration

Configuration variables are defined in a stand-alone JSON file called a configuration that lives on the Integration
Service system and can be accessed by all integration applications and their steps.

In a step, including the config. prefix with a variable tells the Integration Service system to look in a configuration
file to resolve the variable.

If you want to re-use the same settings (like hostname and credentials) between applications, define configuration
variables.

To define a configuration file:

1. Use a source-code editor to open a new file.

2. Copy and paste the following example text into the new file:

{
"author": "ScienceLogic, Inc.",
"description": "Fsun's config for demo.",
"name": "fsun-demo-settings",
"friendly_name": "Demo Settings",
"configuration_data": [

{
"encrypted": false,
"name": "em7_host",
"value": "10.2.11.42"

},
{

"encrypted": false,
"name": "em7_user",
"value": "em7admin"

},
{

"encrypted": true,
"name": "em7_password",
"value": "+dqGJe1NwTyvdaO2EizTWjJ2uj2C1wzBzgNqVhpdTHA="

},
],
}

3. To create your own configuration file, edit the following keys:

l author. Name of the author of the configuration file. This field is optional.

l description. Description of the configuration file. This field is optional.

l name. Name of the configuration file. The name cannot contain any spaces and should be unique in
your Integration Service system

l friendly_name. User-friendly name for the configuration.

4. The section under "configuration_data" defines each configuration variable. You can use these variables as
examples.

5. To create your own configuration variables, note the syntax:

l The variable definition is surrounded by curly braces

l Each key:value pair in the definition is separated with a comma.

6. To create your own configuration variable, define the following keys:

l encrypted. Specifies whether the value will appear in plain text or encrypted in this .json file. If set to
"true", specifies that when the value is uploaded, the Integration Service system will encrypt value of
the variable. The plain text value will never again be retrievable by an end user. The encryption key is
unique to each Integration Service system.

l name. Name of the configuration file (without the .json suffix). This value appears in the user
interface.

l value. The value to assign to the variable.

7. Repeat steps 5 and 6 for each configuration variable.

8. Save the new file as config_file.json

where:

l config_file.json is the name of the configuration file. This value must match the name key in the file.
The file name must be unique within your Integration Server system and cannot contains spaces.

Uploading the Configuration File to the Integration Service
System

When you create a new configuration file or edit an existing configuration file, you must upload the step to the
Integration Service system. There are two ways to upload a configuration file to the Integration Service system:

l at the command line with the iscli tool

l with the Integration Service API

Uploading a Configurat ion with isc li

The Integration Service system includes a command line tool called iscli. When you install Integration Service
system, iscli is automatically installed.

To upload a configuration file to the Integration Service system using iscli:

1. Either go to the console of the Integration Service system or use SSH to access the server.

2. Log in as isadmin with the appropriate password.

3. Type the following at the command line:

iscli -u -c -f path_and_name_of_configuration__file.py -H hostname_or_IP_address_
of_integration_service_system -P port_number_of_http_on_integration_service_system
-U user_name -p password

where:

l path_and_name_of_configuration__file is the full pathname for the step.

l hostname_or_IP_address_of_integration_service_system is the hostname or IP address of the
Integration Service system.

l port_number_of_http_on_integration_service_system is the port number to access the Integration
Service system. The default value is 443.

l user_name is the user name you use to log in to the Integration Service system.

l password is password you use to log in to the Integration Service system.

Uploading a Configurat ion with the API

The Integration Service system includes an API. When you install the Integration Service system, the API is
available.

To upload a configuration with the IS API:

POST /configurations
{

contents of the .json file for the configuration
}

The API returns one of the following:

l 200. Configuration successfully updated or added.

l 400. Name or data parameter is missing.

l 500. Internal error. Database connection might be lost.

Viewing a Report for an Integration Application

In the Integration Service user interface, the Reports page () contains a list of reports associated with
integration applications. If an integration application has the reporting feature enabled and the application
supports reports, then the Integration Service will generate a report each time you run the integration application.

An individual report displays data only from the most recent run of the integration application; a report is not an
aggregation of all previous runs.

You can search for a specific report by typing the name of that report in the Search field at the top of the Reports
page. The user interface filters the list as you type.

NOTE: Not all integration applications generate reports. Currently, only the "Integration Service System
Diagnostics" integration applications support the generation of reports.

To view details for an integration application report:

1. On the Reports page (), click the name of the integration application to expand the list of reports for that
application.

TIP:Click the arrow buttons to scroll forward and back through the list of reports.

2. Click a report name in the Report ID column. The Report Details page appears:

TIP: The Status field in a report displays the current state of the synced item, which can include
New, Removed, Updated, or Unchanged.

3. To view the detail page for the integration application on the Integrations page, click the Application
Name link.

TIP: From the detail page for the integration application, click [Reports] () to return to the Reports page.

4. To delete a report, open the report and click [Delete]. Click [OK] to delete the report.

Viewing Logs for an Integration Application

After running an integration application, you can view its log information. To view the log information for an
integration application:

1. Run an integration application.

2. Using an API tool like Postman or cURL, use the APIGET /applications/{appName}/logs:

GET URL_for_your_Integration_Service _system/api/v1/applications/integration_
application_name/logs

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

3. You should see something like this:

{
"app_name": "example_integration",
"app_vars": {},
"href": "/api/v1/tasks/isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",
"id": "isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",
"start_time": 1527429570,
"state": "SUCCESS",
"steps": [
{

"href": "/api/v1/tasks/2df5e7d5-c680-4d9d-860c-e1ceccd1b189",
"id": "2df5e7d5-c680-4d9d-860c-e1ceccd1b189",
"name": "First EM7 Query",
"state": "SUCCESS",
"traceback": null

},
{

"href": "/api/v1/tasks/49e1212b-b512-4fa7-b099-ea6b27acf128",
"49e1212b-b512-4fa7-b099-ea6b27acf128",
"name": "second EM7 Query",
"state": "SUCCESS",
"traceback": null

}
],
"triggered_by": [

{
"application_id": "isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",
"triggered_by": "USER"

}
]

}

4. Notice the bolded lines that start with href and id. You can use these lines to view the logs for the application.

5. To use the href value to get details about an application, use an API tool like Postman or cURL and use the
APIGET /applications/{appName}:

GET URL_for_your_Integration_Service _system/href_value

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l href_value is the href value you can copy from the log file. The href value is another version of the
application name.

NOTE: To view logs for subsequent runs of the integration application, you can include the href specified in
the last_run field.

6. To use the task id value to views details about an application, use an API tool like Postman or cURL and use
the APIGET /tasks/{task_ID}:

GET URL_for_your_Integration_Service _system/task_id

where:

l URL_for_your_Integration_Service _system is the IP address or URL for the Integration Service system.

l task_id is the id value you can copy from the log file for the integration application. The task
ID specifies the latest execution of the application.

Working with Integration Applications in the Integration
Service User Interface

You can log into the user interface for the Integration Service to edit, configure, and run an integration application.

Edit ing an Integrat ion Applicat ion in the User Interface

On the Integrations page, you can edit an existing integration application and its steps. You can also add and
remove steps from that application.

NOTE: You cannot overwrite integration applications where ScienceLogic, Inc. is listed as the Author, but you
can edit a ScienceLogic application and save it with a different name.

To edit an integration application:

1. From the Integrations page, select the integration application that you want to edit. The Integration
Application page for that application appears.

2. Click the [Open Editor] button (). The Steps Registry pane appears with a list of all of the steps that are
available for that integration application:

3. Scroll through the Steps Registry pane or use the Search field at the top of the pane to find the step you want
to add.

TIP:Click the [Actions] button () on a step to view more information about that step, including the
step ID, the Synchronization PowerPack for that step, and the step version author. You can also
click [Edit Step Code] to edit the code for that step.

4. Click the steps you want to add from the Steps Registry pane and drag them to the main viewing pane of the
Integration Application page to add them to the integration application.

5. To adjust the position of any step in the integration application, click the step you want to move and drag it to
its new location.

6. To edit the configuration for a step, click the gear icon () on the step and update the fields as needed. You
can add test data to the step and click Custom Run to run test data for that step.

7. To redirect the arrows connecting the steps, click an arrow and drag it to reposition it.

8. To remove a step, click the step to select it and press the [Delete] key on your keyboard.

9. To save the changes you made to the integration application, click [Save]. You can also click the Save as
option to save the application with a new name.

10. To stop editing and close the Search Steps Registry panel, click the [Close Editor] button ().

Configuring an Integrat ion Applicat ion in the User Interface

Before you can run an integration application, you must align the application with a configuration object from the
Configurations page. A configuration object defines global variables, such as endpoints and credentials, that
can be used by multiple steps and integration applications. Each variable in a configuration object is set up as a
name and value pair. You can also encrypt a variable to protect sensitive data like a password.

You can "align" the configuration object you want to use with an integration application from the Configuration
pane for that application integration.

To align a configuration object with an integration application:

1. From the Integrations page (), select the integration application that you want to align with a
configuration object. The Integration Application page for that integration application appears.

2. Click [Configure] (). The Configuration pane opens on the right side of the Integration Application
page:

TIP: To view a pop-up description of a field on the Configuration pane for an integration application,
hover over the label name for that field.

3. Select a configuration from the Configuration dropdown to "align" to this integration application. This step is
required for all integration applications.

TIP: You can select none from the Configuration dropdown to clear or "un-align" the selected
configuration object from an integration application. Also, if you did not select a configuration
object when editing fields on the Configuration pane, the previously set configuration object will
remain aligned (if there was a previously set configuration object).

4. Click [Show JSON Configs] to view the JSON configuration data for the configuration object. Click [Hide
JSON Editor] again to view the fields instead.

5. As needed, edit the other configuration values for the application. Press [Enter] after editing an item to make
sure your changes are saved.

NOTE: To prevent potential issues with security and configuration, any fields that are encrypted and

any configuration-specific fields containing a padlock icon () on the Configuration pane
cannot be edited.

6. When you are finished, click [Save] at the bottom of the Configuration pane.

Running or Stopping an Integrat ion Applicat ion in the User Interface

You can run an integration application directly from the Integrations page (the list view) or from the Integration
Application page (the detail view). If you run the integration application from the Integration Application page,
you have the following additional options:

l Run. Executes the integration application normally, with a log level of 1. This is the default, and it is the same
as the Run Now option from the Integrations page.

l Debug Run. Executes the integration application in Debug Mode with a log level of 10.

l Custom Run. Executes the integration application using a logging level that you specify (Error, Warning, Info,
or Debug). You can also add any customer parameters that you might want to use to test specific features in
the integration application.

To run an integration application:

1. From the Integrations page (), click the [Actions] button () for the integration application you want to
run and select Run Now.

TIP: You can also select an application from the Integrations page and click [Run] () from the
Integration Application page. If you hover over the [Run] button, you can select Debug Run or Custom
Run.

2. As the application runs, the color of the border around each step represents whether it is running, is
successful, or has failed:

Step Color Icon State

Blue Running

Green Successful

Red Failed

Yellow Warning

NOTE: Pop-up status messages also appear in the bottom left-hand corner of the Integration Application
page to update you on the progress of the application run.

3. If a step triggers a child application, a branch icon () appears in the upper right-hand corner of the step.
Double-click the branch icon to open the child application. Click the branch icon once to display the
triggered application's run ID as a link in a pop-up window. If no run ID is present, the branch icon displays
"NONE".

Chapter

4
Creating a Synchronization PowerPack

Overview

This chapter describes how to package your integration applications, steps, configuration objects, and utilities into
a Synchronization PowerPack.

NOTE: The label "SyncPack" is used in place of "Synchronization PowerPack" in the Integration Service user
interface.

This chapter covers the following topics:

What is a Synchronization PowerPack? 54

Generating the Synchronization PowerPack Structure 54

Building a Synchronization PowerPack 56

Uploading a Synchronization PowerPack to the Integration Service 57

Activating and Installing a Synchronization PowerPack 58

Extending an Existing Synchronization PowerPack 59

What is a Synchronization PowerPack?

A Synchronization PowerPack is a Python .whl file that contains integration applications, steps, configuration
objects, and utilities that can be used in the Integration Service. Synchronization PowerPacks are versioned and
can define dependencies on other Synchronization PowerPacks or on external Python packages.

When applications from a Synchronization PowerPack are executed, they run within a Python Virtual Environment
that contains the Synchronization PowerPack itself and its dependencies.

Generating the Synchronization PowerPack Structure

ScienceLogic uses a Cookiecutter repository for generating the standard Synchronization PowerPack structure.
This structure includes all necessary files and the default directory structure that is generated based on your
response to the prompts.

For more information about Cookiecutter, see https://cookiecutter.readthedocs.io/en/latest/.

To use Cookiecutter to generate the Synchronization PowerPack structure:

1. On a system with Python 3.6 or later installed, run the following command:

pip install cookiecutter
cookiecutter https://github.com/ScienceLogic/is_syncpack_cookiecutter.git

2. Complete the following fields:

l author. Name of the person or organization that created this Synchronization PowerPack.

l url_project. URL of the repository where this Synchronization PowerPack is hosted.

l syncpack_name. Developer name of the Synchronization PowerPack, without spaces. For example:
test_syncpack.

l syncpack_friendly_name. Friendly name of the Synchronization PowerPack, which will display in the
Integration Service user interface. For example: Test Synchronization PowerPack.

l syncpack_description. Short description of the Synchronization PowerPack, which will display in the
Integration Service user interface and in the readme file.

l version. Number of the Synchronization PowerPack version.

l requires_minimum_is_version. The minimum version of the Integration Service platform required
for this Synchronization PowerPack.

After you complete this process, Cookiecutter creates a new directory in your current working directory
named with the syncpack_name you specified.

https://cookiecutter.readthedocs.io/en/latest/

Synchronizat ion PowerPack Structure

After you use Cookiecutter to generate the Synchronization PowerPack structure, you can access the following files
and folders in the folder created by the previous process.

l MANIFEST.in. Allows the Python .whl file to contain non-Python files.

l README.md. The readme file for this Synchronization PowerPack, which is pre-populated with basic
information.

l docker. This directory contains the following Docker information:

o Dockerfile. Sample Dockerfile that can be used for building and testing the Synchronization
PowerPack in a CI/CD environment.

o docker-compose.yml. Docker Compose file that uses above container.

l setup.py. Python setup file for building the Synchronization PowerPack. You should not need to modify this
file.

l test_syncpack. This directory contains all Synchronization PowerPack content, including the following:

l __init__.py. Python init file.

l apps. This directory contains Synchronization PowerPack integration application json files.

l configs. This directory contains Synchronization PowerPack configuration object json files.

l [meta.json]. This file defines the Synchronization PowerPack properties.

l steps. This directory contains Synchronization PowerPack Step Python files.

l util. This directory contains Python classes or modules that can be used by multiple steps in the
Synchronization PowerPack .

l tox.ini. Basic tox configuration for running unit tests.

Synchronizat ion PowerPack Propert ies

Themeta.json file contains all configurable properties for a Synchronization PowerPack. This file is where you
define the name, friendly name, version, description, default schedules, tags, and supported Integration Service
version of the Synchronization PowerPack.

requires_dist is where you define the Python packages on which this Synchronization PowerPack depends. For
example, if you would like to use a step from the Base Steps Synchronization PowerPack and also use Amazon's
boto library, you would use the following:

"requires_dist": ["boto", "base_steps_syncpack"],

The following code block contains an example of themeta.json file:

{
"name": "test_syncpack",
"version": "0.0.1",
"summary":"Testing Syncpack",
"description":"IS Syncpack for testing",

"author":"John Smith",
"home_page":"https://example.com/test_syncpack",
"requires_dist":[],
"schedules": [

{
"application_id": "dummy_app",
"entry_id": "dummy app",

"params": {},
"schedule": {

"schedule_info": {
"run_every": 3600

},
"schedule_type": "frequency"

}
}

],
"tags":["test_syncpack"],
"critical": [],
"requires_is_version": ">=2.0.0"

}

Building a Synchronization PowerPack

After you complete your Synchronization PowerPack structure and place your integration applications, steps, and
configuration objects in the right directories, you can build the Synchronization PowerPack .whl file (wheel).

You can build a Synchronization PowerPack with Python3 or with the iscli utility that comes with the Integration
Service.

NOTE: Not included is how to build a Synchronization PowerPack automatically with CI/CD platforms.

Building a Synchronizat ion PowerPack with Python3

To build the Synchronization PowerPack wheel with Python3, run the following command from the top-level
Synchronization PowerPack directory:

python3 setup.py sdist bdist_wheel

This command creates build and dist folders within your SyncPack directory. In the dist folder, you will now have a
Python wheel that you can upload to the Integration Service.

Building a Synchronizat ion PowerPack with the isc li Ut ility

If you build your Synchronization PowerPack with the iscli utility, the utility builds and uploads the Synchronization
PowerPack to the Integration Service in one step.

To build and upload your Synchronization PowerPack with the iscli utility, run the following command:

iscli -H <IS-IP-host> -U <IS User> -p <IS Password> -ukf </path/to/SyncPack/Directory>

where </path/to/SyncPack/Directory> is the Synchronization PowerPack root that contains the setup.py file.

Uploading a Synchronization PowerPack to the Integration
Service

After you create your Synchronization PowerPack wheel, you can upload it to an Integration Service system. You
can upload this Synchronization PowerPack to Integration Service using the Integration Service user interface or
with the iscli utility.

Uploading a Synchronizat ion PowerPack with the User Interface

NOTE: You must import and install the ServiceNow Base Synchronization PowerPack before uploading and
installing any of the other ServiceNow Synchronization PowerPacks.

To import a Synchronization PowerPack in the Integration Service user interface:

1. On the SyncPacks page, click [Import SyncPack]. The Import SyncPack page appears.

2. Click [Browse] and select the .whl file for the Synchronization PowerPack you want to install.

TIP: You can also drag and drop a .whl file to the SyncPacks page.

3. Click [Import]. The Integration Service registers and uploads the Synchronization PowerPack. The
Synchronization PowerPack is added to the SyncPacks page.

NOTE: You cannot edit the content package in a Synchronization PowerPack published by ScienceLogic. You
must make a copy of a ScienceLogic Synchronization PowerPack and save your changes to the new
Synchronization PowerPack to prevent overwriting any information in the original Synchronization
PowerPack when upgrading.

Uploading a Synchronizat ion PowerPack with the isc li Ut ility

To upload a Synchronization PowerPack with the iscli utility:

1. Using a tool like secure copy (SCP), copy the Synchronization PowerPack from your local computer to your
Integration Service host.

2. Start an SSH session with your Integration Service host.

3. Run the following command:

iscli -ukf /path/to/test_syncpack-0.0.1-py2.py3-none-any.whl

NOTE: If you have already uploaded this Synchronization PowerPack to your Integration Service system and
you want to re-upload with the same version, add the -F flag to the above command.

4. You can now activate the Synchronization PowerPack in the Integration Service. See the following topic for
more information.

Activating and Installing a Synchronization PowerPack

After you upload a Synchronization PowerPack to the Integration Service, you need to activate and install the
Synchronization PowerPack to access its integration applications, steps, and configuration objects.

Activat ing and Installing with the User Interface

To install a Synchronization PowerPack in the Integration Service user interface:

1. On the SyncPacks page, click the [Actions] button () for the Synchronization PowerPack you want to install
and select Activate & Install. The Activate & Install SyncPackmodal appears.

TIP: By default, the SyncPacks page displays only activated and installed PowerPacks. If you do not see the

PowerPack that you want to install, click the toggle icon () on the SyncPacks page and select Show All
SyncPacks to see a list of the uninstalled PowerPacks.

2. Click [Yes] to confirm the activation and installation. When the Synchronization PowerPack is activated, the

SyncPacks page displays a green check mark icon () for that Synchronization PowerPack. If the activation

or installation failed, then a red exclamation mark icon () appears.

3. For more information about the activation and installation process, click the check mark icon () or the

exclamation mark icon () in the Activated column for that Synchronization PowerPack. For a successful
installation, the "Activate & Install SyncPack" integration application appears, and you can view the Step Log
for the steps. For a failed installation, the Error Logs window appears.

Activat ing and Installing with the isc li Utility

To activate and install an uploaded Synchronization PowerPack using the iscli utility, run the following command:

iscli -AIkn <syncpack_name> -V <syncpack version>

where <syncpack_name> is the name from the meta.json file, and<syncpack_version> is the version
number of the Synchronization PowerPack.

For example:

iscli -AIkn test_syncpack -V 0.0.1

NOTE: To force a re-activation of the Synchronization PowerPack, add -F to the above command.

Extending an Existing Synchronization PowerPack

Because the content that is included in a Synchronization PowerPack cannot be overwritten inside the Integration
Service, you will need to extend existing Synchronization PowerPacks with your own Synchronization PowerPack to
add customizations.

Restric t ions

l The names for integration applications, steps, and configuration objects must be unique within the entire
Integration Service platform. For example, you cannot have a step named "QueryREST", because that step is
already included in the Base Steps Synchronization PowerPack. You will need to change the name of your
customized step.

l Your new Synchronization PowerPack must include the Synchronization PowerPack you are extending in the
requires_dist list in yourmeta.json. This ensures that your Synchronization PowerPack will have access to
the integration applications and steps of the parent Synchronization PowerPack in its execution environment.

l After you install the Synchronization PowerPack, its environment will never be modified, even if the parent
Synchronization PowerPacks are updated. If you wish to include changes from the parent Synchronization
PowerPack, you will need to re-install your customized Synchronization PowerPack.

Modify ing Integrat ion Applicat ion Definit ions

To change the API endpoint or query used in an existing integration application:

1. Copy the entire JSON file for the integration application from the original Synchronization PowerPack into the
apps directory of your new Synchronization PowerPack.

2. Rename the file so it will not conflict with the existing integration application.

3. In the JSON code, change the friendly_name, author, description, and version as required.

4. Make any other changes to the integration application as desired.

Modify ing a Step

You have twomethods for modifying a step. The first method is to change the code in a step itself, and the second
is to extend the step class and execute your own code before or after the existing step.

To change the logic performed within a step:

1. Copy the entire step Python file from the original Synchronization PowerPack into the steps directory of your
new Synchronization PowerPack.

2. Rename the file so it will not conflict with the existing step.

3. In the step file, change the class name to match the name of the step file.

4. In the __init__() section of the code, change the friendly_name, description , and version as
required.

5. Make any other changes to the step as desired.

To "extend" the behavior of an existing step by performing work before or after the existing logic:

1. Create a new step and give it a unique name.

2. Instead of importing and extending BaseStep import and extend the step class you would like to modify. For
example:

from base_steps_syncpack.steps.QueryGQL import QueryGQL

class OptionalQueryGQL(QueryGQL):

3. Complete the __init__() as normal, but make sure to call init of the super class to include all of its
parameters. For example:

super(OptionalQueryGQL, self).__init__()

4. Create your additional logic in the execute() function. This logic can be performed either before or after
you call the execute of the parent step. For example:

super(OptionalQueryGQL, self).execute()

NOTE: If you would like to perform additional logic after the execute of the parent step runs, you can access
the data from that step via self.get_current_saved_data().

Ful l Extended Step Example

from base_steps_syncpack.steps.QueryGQL import QueryGQL
from ipaascore import parameter_types
from ipaascommon.ipaas_utils import str_to_bool

class OptionalQueryGQL(QueryGQL):

def __init__(self):
super(OptionalQueryGQL, self).__init__()
self.friendly_name = "Optional QueryGQL Call"
self.description = "Optionally Runs GQL call."
self.version = "1.0.0"

self.new_step_parameter(
name="enable",
description="Should this step run.",
default_value=True,
required=False,
param_type=parameter_types.BoolParameterToggle()

)

def execute(self):
enabled = str_to_bool(self.get_parameter("enable", None))

if enabled:
super(OptionalQueryGQL, self).execute()

else:
self.logger.flow(

"Step is Disabled. Returning empty dict."
)
self.save_data_for_next_step(dict())

Chapter

5
ipaascore.BaseStep class

Overview

This chapter describes functions included in the ipaascore.BaseStep class. You can use these functions to define
the logic in a step.

This chapter covers the following topics:

get_app_variable 63

get_available_previous_step_input_positions 64

get_data_from_step_by_name 65

get_data_from_step_by_order 66

get_name 67

get_parameter 68

get_parameter_from_previous_step 69

join_previous_step_data 70

new_step_parameter 72

save_data_for_next_step 73

validate_parameter_values 74

get_app_variable

Descrip t ion

Retrieve the value of an application variable.

Syntax

get_app_variable(name)

Parameters

variable_name. The name of the application variable that you want to retrieve the value for.

Return

The value of the application variable.

Example

Suppose we defined this application variable in the integration application:

"app_variables": [
{

"name": "sl1_hostname",
"description": "The SL1 hostname to participate in the sync",
"sample_value": "10.2.253.115",
"default_value": null,
"required": true,
"value": 10.64.68.25

},
]

Suppose this integration application calls the step "sync_SL1_data".

In the step "sync_SL1_data", we could use the following function to resolve the value of "sl1hostname":

hostname = self.get_app_variable("sl1_hostname")

The value of hostname would be "10.64.68.25".

get_available_previous_step_input_positions

Descrip t ion

Retrieves the list of steps in the integration application along with the position of the step (the order that the step was
run in the integration application. Position "0" (zero) is reserved for the current step's arguments.

Syntax

get_available_previous_step_input_positions()

Return

Returns a list of tuples. Each tuple includes a step name and the step's position.

get_data_from_step_by_name

Descrip t ion

Retrieves data saved from a previous step.

NOTE: To retrieve data from a previous step, that previous step must save the data use the save_data_for_
next_step function and the integration application must specify that the data from the previous step
should be passed to the current step using the output_to parameter.

NOTE: Although the get_data_from_step_by_name function is simple to use, it does not allow you to write
a generic, reusable step, because the step name will be hardcoded in the function. The functions
join_previous_step_data or get_data_from_step_by_order allow you to create a more generic,
reusable step.

Syntax

get_data_from_step_by_name(step_name)

Parameters

step_name. The name of a previous step in the integration application.

Return

The data that was saved by the previous step.

Example

The following is an example of the get_data_from_step_by_name function:

em7_data = self.get_data_from_step_by_name('FetchDevicesFromEM7')
snow_data = self.get_data_from_step_by_name('FetchDevicesFromSnow')

get_data_from_step_by_order

Descrip t ion

This function retrieves data from a step based on the position of the step in the integration application.

NOTE: To retrieve data from a previous step, that previous step must save the data use the save_data_for_
next_step function and the integration application must specify that the data from the previous step
should be passed to the current step using the output_to parameter.

Syntax

get_data_from_step_by_order(pos)

Parameters

position. The position of the step (order that the step was run) in the integration application. Position values start at
"0" (zero) .

Return

The data that was saved by the previous step.

Exception

DataNotAvailableException

Example

l Suppose your integration application has four steps: stepA, stepB, stepC, and stepD

l Suppose stepA was run first (position "0") and includes the parameter "output_to":["stepD"]

l Suppose stepB was run second (position "1") and includes the parameter "output_to":["stepD"]

l Suppose stepC was run third (position "2") and includes the parameter "output_to":["stepD"]

l Suppose stepD was run fourth

l If the current step is stepD, and stepD needs the data from stepC, you could use the following:

data_from_stepC = self.get_data_from_step_by_order(2)

get_name

Descrip t ion

Returns the name of the current step.

Syntax

get_name()

Return

The name of the current step.

get_parameter

Descrip t ion

Retrieves a parameter value.

Syntax

get_parameter(param_name, lookup_data=None)

Parameters

param_name. The name of the parameter that you want to retrieve the value for.

lookup_data. An optional dictionary that can provide a reference for additional variable substitutions.

Return

Value of the requested parameter.

Example

For example, suppose we defined this parameter in the step named "GETgoogle.com":

self.new_step_parameter(name=prefix_url, description="used with relative_url to create
the full URL.",sample_value="http://10.2.11.253", default_value=None, required=True)

Suppose in the integration application that calls "GETgoogle.com", we specified:

"steps": [
{

"file": "QueryREST",
"method": "GET",
"name": "GETgoogle.com",
"output_to": ["next_step"],
"prefix_url": "http://google.com"

}
],

Suppose we use the get_parameter function in the step "GETgoogle.com" to retrieve the value of the "prefix_url"
parameter:

build_url_1 = self.get_parameter("prefix_url")

The value of build_url_1 would be "http://google.com".

get_parameter_from_previous_step

Descrip t ion

Retrieves a parameter value from a previous step.

Syntax

get_parameter_from_previous_step(parameter_name, step_name)

Parameters

param_name. The name of the parameter that you want to retrieve the value for.

step_name. the step from which you want to retrieve a parameter value.

Return

The value of the parameter.

join_previous_step_data

Descrip t ion

This function retrieves data from one or more previous steps in the integration application.

NOTE: To retrieve data from a previous step, that previous step must save the data use the save_data_for_
next_step function and the integration application must specify that the data from the previous step
should be passed to the current step using the output_to parameter.

If you are expecting similar data from multiple steps, or expecting data from only a single step, the join_previous_
step_data function is the best choice.

The join_previous_step_data function gathers all data from all steps that included the save_data_for_next_
step function and also include the output_to parameter in the integration application. By default, this function
returns the joined set of all data that is passed to the current step. You can also specify a list of previous steps from
which to join data.

The retrieved data must be of the same type. The data is then combined into a list or a dictionary. If the data types
are not the same, then the function will raise an exception

Syntax

join_previous_step_data(data_from)

Parameters

data_from. An optional argument that specifies the steps. For example, if you wanted to join only the data from
stepA and stepD, you could specify

self.join_previous_step_data([“stepA”, “stepD”]),

Return

Combined data structure, either a list or a dictionary, of all the retrieved step data.

Example

The following is an example of the join_previous_step_data function in the QueryREST step:

def query_with_url_generated_from_input(self):
“““
Iterates over data from previous steps and generates a relative url for each. Then
executes that command
:return:
“““
count = 0
input_data = self.join_previous_step_data()
payload = self.get_parameter(PAYLOAD)
if type(input_data) is list:

for input_d in input_data:
relative_url = self.get_parameter(RELATIVE_URL, input_d)
self.process_REST_command(payload, relative_url)
count += 1

elif type(input_data) is dict:
relative_url = self.get_parameter(RELATIVE_URL, input_data)
self.process_REST_command(payload, relative_url)
count += 1

else:
raise NotImplementedError(“Data type: {} is not currently supported for generating
relative urls form data”.format(type(input_data)))

new_step_parameter

Descrip t ion

Define a parameter for the step. The integration application will provide the parameter values during runtime.
If a parameter is defined as required, the step will fail with an exception if the parameter is not
provided.

Syntax

new_step_parameter(name='', description='', sample_value='', default_value=None, required=False)

Parameters

name. The name of the parameter. This value will be used to create a name:value tuple in the integration
application file (in JSON).

description. A description of the step parameter.

sample_value. A sample value of the required data type or schema.

default_value. If no value is specified for this parameter, use the default value. Can be any combination of
alphanumeric characters. To prevent a default value, specify "None".

required. Specifies whether this parameter is required by the step. The possible values are "True" or "False".

Example

Here is an example from the QueryREST step:

self.new_step_parameter(name=PREFIX_URL, description=“used with relative_url to create
the full URL.”, sample_value=“http://10.2.11.253”, default_value=None, required=True)

save_data_for_next_step

Descrip t ion

This function saves an object (usually a variable) and makes the data available to another step. The object must be
of a data type that can be pickled by Python.

Syntax

save_data_for_next_step(data_to_save)

Parameters

data_to_save. A variable that contains the data.

NOTE: The data_to_save object must be of a data type that can be pickled by Python: None, True and False,
integers, long integers, floating point numbers, complex numbers, normal strings, unicode strings,
tuples, lists, set, and dictionaries.

Example

The following is an example of the save_data_for_next_step function:

save_data = {'key': 'value'}
self.save_data_for_next_step(save_data)

The integration application must then specify that the data from the current step should be passed to one or more
subsequent step, using the output_to parameter. For details, see the section about using integration
applications to transfer data between steps.

validate_parameter_values

Descrip t ion

Validates the parameter values provided for an integration application. For example, the validate_parameter_
value function will raise an error if the user failed to provide a required parameter.

Syntax

validate_parameter_values()

Chapter

6
Tools for the Integration Service

Overview

The Integration Service includes the following tools to help you manage content:

l iscli. The Integration Service includes a command line tool called iscli. When you install Integration Service,
iscli is automatically installed. The iscli allows you to upload integration applications, steps, and
configurations.

l IS API. The Integration Service includes an API. When you install the Integration Service, the API is available.

This chapter covers the following topics:

iscli 76

IS API 78

75

76

iscli

The Integration Service system includes a command line tool called iscli. When you install the Integration Service
system, iscli is automatically installed. The iscli allows you to upload integration applications, steps, and
configurations.

To access the iscli tool:

1. Either go to the console of the Integration Service system or use SSH to access the server.

2. Log in as isadmin with the appropriate password.

3. Type the following at the command line:

iscli -h

Syntax

l To upload a step:

iscli -u -s -f path_and_name_of_step_file.py -H hostname_or_IP_address_of_
integration_service_system -P port_number_of_http_on_integration_service_system -U
user_name -p password

l To upload an application:

iscli -u -a -f path_and_name_of_application_file.json -H hostname_or_IP_address_
of_integration_service_system -P port_number_of_http_on_integration_service_system
-U user_name -p password

l To upload a configuration:

iscli -u -c -f path_and_name_of_configuration_file.json -H hostname_or_IP_address_
of_integration_service_system -P port_number_of_http_on_integration_service_system
-U user_name -p password

List of Arguments

The following is a list of arguments you can use in the iscli tool:

l -h or --help. Help message.

l -H or --host. Hostname of content store. If left blank, default from config is used.

l -P or --port. Port of content store. If left blank, default from config is used.

l -U or --username. Username used to access content store. If left blank, default is used.

l -p or --password. Password used to access content store. If left blank, default is used.

l -u or --upload. Upload data to content store. Requires -f tag and a version to be used.

iscli

iscli

l -f or --fileLocation. File path of Synchronization PowerPacks, integration applications, steps, and
configuration objects to upload. Note that while you can bulk upload integration applications, steps, and
configuration objects, you cannot bulk upload Synchronization PowerPacks.

l -c or --configuration.

l -a or --application. Use the iscli tool to interact with an application.

l -s or --step. Use the iscli tool to interact with a step.

l -i or --insecure. Upload with an insecure (http) connection.

l -k or --syncpack. Use the iscli tool to interact with a Synchronization PowerPack.

l -A or --activate. Activate a Synchronization PowerPack. Requires -n, -v tag. -F is optional to force the
activation and the tag -I to install the Synchronization PowerPack.

l -I or --install. Install a Synchronization PowerPack. Requires -n, -v tag. -F is optional to force the installation.

l -n or --name. Name of the Synchronization PowerPack that will be activated.

l -V or --version. Version of the Synchronization PowerPack that will be activated.

l -F or --force. Force a Synchronization PowerPack activation or installation.

l -O or --overwrite. Specify if non-Synchronization PowerPack content will be overwritten.

l -l or --license. Use the CLI to license your IS system.

l -e or --email. Licensing: Customer Email.

l -C or --customer. Licensing: Customer Name.

l -o or --output. Licensing: Path to output license file.

You will use the following commands most often:

l Upload an application file. iscli –uaf <app-file>

l Upload a configuration file. iscli –ucf <config-fil>

l Upload a step file. iscli –usf <step-file>

77

78

Example

iscli -u -s -f path_and_name_of_step_file.py -H hostname_or_IP_address_of_
integration_service_system -P port_number_of_http_on_integration_service_system -U
user_name -p password

where:

l name_of_step_file is the full pathname for the step.

l hostname_or_IP_address_of_integration_service_system is the hostname or IP address of the
Integration Service system.

l port_number_of_http_on_integration_service_system is the port number to access the Integration
Service system.

l user_name is the user name you use to log in to the Integration Service system.

l password is password you use to log in to the Integration Service system.

IS API

The Integration Service includes an API. When you install the Integration Service, the API is available.

Viewing API Documentat ion

To view the full documentation for the IS API:

1. From the Integration Service system, copy the file /opt/iservices/scripts/swagger.yml to your local
computer.

2. Open a browser session and go to editor.swagger.io.

3. In the Swagger Editor, open the Filemenu, select Import File, and import the file swagger.yml. The right
pane in the Swagger Editor displays the IS API documentation.

Available Endpoints

POST

/applications. Add a new application or overwrite an existing application.

/applications/{appName}/run. Run a single application by name with saved or provided configurations.

/applications/run. Run a single application by name. For more information, seeQuerying for the State of an
Integration Application.

/configurations. Add a new configuration or overwrite an existing configuration.

/license. Add license data for this Integration Service system.

/roles/owner. Add a new owner assigned a specific role.

IS API

http://editor.swagger.io/

IS API

/steps. Add a new step or overwrite an existing step.

/steps/run. Run a single step by name.

/schedule. Add a new scheduled application integration.

/syncpacks/{syncpackName}/install. Install a specific Synchronization PowerPack version by name.

/tasks/{taskId}/replay. Replay a specific integration application. Replayed integration applications run with the
same application variables, configuration, and queue as the originally executed application.

/tasks/{taskId}/revoke. Revoke or terminate a specific task or integration application. If an application ID is
provided, all tasks associated with that integration application are be revoked.

Querying for the State of an Integration Appl ication

When triggering an integration application from the applications/run endpoint, you can query for the state of that
integration application in two ways:

1. Asynchronously. When you POST a run of an integration application to /applications/run, the response is
a integration status with a Task ID, such as: isap-23233-df2f24-etc. At any time, you can query for the current
state of that task from the endpoint /api/v1/tasks/isap-23233-df2f24-etc. The response includes all of
the steps run by the integration application, along with the status of the steps, and URL links to additional info,
such as logs for each step.

2. Synchronously. When you POST a run of an integration application, you can tell the Integration Service to
wait responding until the integration application is complete by adding the wait argument. For example,
/api/v1/applications/run?wait=20 will wait for 20 seconds before responding. The maximum wait time
is 30 seconds. When the integration application completes, or 30 seconds has passed, the API returns the
current status of the integration run. This process works the same as if you had manually queried
/api/v1/tasks/isapp-w2ef2f2f. Please note that while the API is waiting for your integration application to
complete, you are holding on to a thread. If you have multiple integration applications that run for a long
period of time, do not use a synchronous query unless you have no other option. ScienceLogic recommends
using an asynchronous query whenever possible.

GET

/about. Retrieve version information about the packages used by this Integration Service system.

/applications. Retrieve a list of all available applications on this Integration Service system.

/applications/{appName}. Retrieve a specific application.

/applications/{appName}/logs. Retrieve the logs for the specified application.

/cache/{cache_id}. Retrieve a specific cache to gather information about the user interface and the integration
applications.

/configurations. Retrieve a list of all configurations on this Integration Service system.

/configurations/{configName}. Retrieve a specific configuration.

79

80

/license. Retrieve license data for this Integration Service system.

/reports. Retrieve a list of paginated reports.

/reports/{reportId}. Retrieve a specific report by ID.

/roles. Retrieve a list of available roles on this Integration Service system.

/roles/owner. Retrieve a list of roles assigned to owners on this Integration Service system.

/roles/owner/{owner}. Retrieve the role assigned to a specific owner.

/schedule. Retrieve a list of all scheduled application integrations on this Integration Service system.

/steps. Retrieve a list of all steps on this Integration Service system.

/steps/{stepName}. Retrieve a specific step.

/syncpacks. Retrieve a list of all Synchronization PowerPacks on this Integration Service system.

/syncpacks/{synpackName}. Retrieve the full details about a specific Synchronization PowerPack.

/api/v1/syncpacks?only_installed=true. Retrieve a list of only the installed Synchronization PowerPacks on this
system.

/api/v1/syncpacks?only_activated=true. Retrieve a list of only the activated Synchronization PowerPacks on
this system.

/tasks/{taskId}. Retrieve a specific task.

REST

/tasks. Terminate all running tasks.

/tasks/{taskId}. Terminate a specific running task.

DELETE

/applications/{appName}. Delete an integration application by name.

/cache/{cache_id}. Delete a cache entry by name.

/configurations/{configName}. Delete a configuration by name.

/license. Delete license data for this Integration Service system.

/roles/owner. Delete a specific owner role.

/schedule. Delete a scheduled application integration by ID.

/reports/{appName}. Delete a specific report by name.

/reports/{reportId}. Delete a specific report by report ID.

IS API

IS API

/steps/{stepName}. Delete a specific step by name.

/syncpacks/{spName}. Delete a specific Synchronization PowerPack by name.

81

© 2003 - 2020, ScienceLogic, Inc.

All rights reserved.

LIMITATION OF LIABILITY ANDGENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and ScienceLogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without notice.
ScienceLogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

ScienceLogic, the ScienceLogic logo, and EM7 are trademarks of ScienceLogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to ScienceLogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

l ScienceLogic™
l EM7™ and em7™
l Simplify IT™
l Dynamic Application™
l Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
ScienceLogic’s trademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of ScienceLogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction to the Integration Service Tools
	What is the Integration Service?
	Tools Included with Integration Service
	Prerequisites for Creating Integration Applications

	Creating a Step
	What is a Step?
	Default Steps
	Requirements
	Creating a Step from the Step Template
	Including the SubClass and Required Methods
	Subclass
	Required Methods

	Defining the Logic for the Step
	The init Method
	The execute Method

	Transferring Data Between Steps
	Saving Data for the Next Step
	Retrieving Data from a Previous Step
	get_data_from_step_by_name
	get_data_from_step_by_order
	join_previous_step_data

	Step Parameters
	Base Parameters Available in All Steps
	Defining a Parameter
	Retrieving Parameter Values
	Variable Substitution in Parameters
	Retrieving Variable Values

	Defining Logging for the Step
	Raising Exceptions
	Uploading Your Step
	Uploading a Step with iscli
	Uploading a Step with the API

	Validating Your Step
	Viewing Logs

	Creating an Integration Application
	What is an Integration Application?
	Default Integration Application
	Requirements
	Creating an Integration Application from the Integration Template
	Defining Required Fields for the Integration Application
	Creating the List of Steps and Step Parameters
	Specifying Values for name and file
	Specifying the Parameters

	Transferring Data Between Steps
	Defining Retry Options for a Step
	Defining Variables for an Integration Application
	Uploading the Integration Application to the Integration Service System
	Uploading an Integration Application with iscli
	Uploading an Integration Application with the API

	Running the Integration Application
	Running the Integration Application with a Custom Queue
	Defining a Custom Queue
	Configuring an Integration Application to Use a Custom Queue
	Configuring an Integration Application to Always Use a Custom Queue.
	Configuring an Integration Application to Use a Custom Queue at Run Time

	Defining a Configuration
	Uploading the Configuration File to the Integration Service System
	Uploading a Configuration with iscli
	Uploading a Configuration with the API

	Viewing a Report for an Integration Application
	Viewing Logs for an Integration Application
	Working with Integration Applications in the Integration Service User Interface
	Editing an Integration Application in the User Interface
	Configuring an Integration Application in the User Interface
	Running or Stopping an Integration Application in the User Interface

	Creating a Synchronization PowerPack
	What is a Synchronization PowerPack?
	Generating the Synchronization PowerPack Structure
	Synchronization PowerPack Structure
	Synchronization PowerPack Properties

	Building a Synchronization PowerPack
	Building a Synchronization PowerPack with Python3
	Building a Synchronization PowerPack with the iscli Utility

	Uploading a Synchronization PowerPack to the Integration Service
	Uploading a Synchronization PowerPack with the User Interface
	Uploading a Synchronization PowerPack with the iscli Utility

	Activating and Installing a Synchronization PowerPack
	Activating and Installing with the User Interface
	Activating and Installing with the iscli Utility

	Extending an Existing Synchronization PowerPack
	Restrictions
	Modifying Integration Application Definitions
	Modifying a Step
	Full Extended Step Example

	ipaascore.BaseStep class
	get_app_variable
	Description
	Syntax
	Parameters
	Return
	Example

	get_available_previous_step_input_positions
	Description
	Syntax
	Return

	get_data_from_step_by_name
	Description
	Syntax
	Parameters
	Return
	Example

	get_data_from_step_by_order
	Description
	Syntax
	Parameters
	Return
	Exception
	Example

	get_name
	Description
	Syntax
	Return

	get_parameter
	Description
	Syntax
	Parameters
	Return
	Example

	get_parameter_from_previous_step
	Description
	Syntax
	Parameters
	Return

	join_previous_step_data
	Description
	Syntax
	Parameters
	Return
	Example

	new_step_parameter
	Description
	Syntax
	Parameters
	Example

	save_data_for_next_step
	Description
	Syntax
	Parameters
	Example

	validate_parameter_values
	Description
	Syntax

	Tools for the Integration Service
	iscli
	Syntax
	List of Arguments
	Example

	IS API
	Viewing API Documentation
	Available Endpoints
	POST
	Querying for the State of an Integration Application
	GET
	REST
	DELETE

