
ScienceLogic Libraries and Execution
Environments
SL1 version 12.3.0

Table of Contents

Introduction to ScienceLogic Libraries and Execution Environments 3

What is a ScienceLogic Library? 4

What is an Execution Environment? 4

Managing ScienceLogic Libraries 6

Viewing the List of ScienceLogic Libraries 7

Searching and Filtering the List of ScienceLogic Libraries 8

Special Characters 9

Downloading a ScienceLogic Library 12

Importing a ScienceLogic Library 13

Creating a ScienceLogic Library 13

Important Notes on Creating ScienceLogic Libraries 13

Library File Type: py_package 14

Manually Building a ScienceLogic Library 15

Converting a py_directory ScienceLogic Library 22

Deleting a ScienceLogic Library 26

Managing Execution Environments 27

Viewing the List of Execution Environments 28

Searching and Filtering the List of Execution Environments 28

Special Characters 29

Creating an Execution Environment 32

Editing an Execution Environment 33

Copying an Execution Environment 34

Deleting an Execution Environment 35

Chapter

1
Introduction to ScienceLogic Libraries and

Execution Environments

Overview

This manual describes how to create and manage ScienceLogic Libraries and Execution Environments.

This chapter covers the following topics:

What is a ScienceLogic Library? 4

What is an Execution Environment? 4

3

4

What is a ScienceLogic Library?

Some Dynamic Applications, credential tests, and Run Book Actions in SL1 collect data or complete automated
actions by executing one or more blocks of Python code, called snippets. When this happens, SL1 passes
credentials and other configuration information to the snippet, and at the end of execution, the snippet either
passes collected data back to SL1 or runs an action.

A ScienceLogic Library is a package consisting of metadata and Python files that can be used by the Dynamic
Applications, credential tests, and Run Book Actions that use snippets. ScienceLogic Libraries can be included in
a PowerPack along with the Dynamic Applications, credential tests, and Run Book Actions that they support.

NOTE: As of SL1 12.1.0, ScienceLogic Libraries are built using Python 3.

These are a few reasons you might want to create and use a ScienceLogic library in your PowerPack. For
example, if you have a Python package you created that you want to share between snippets, or you have a third-
party package that needs to be available during snippet execution.

ScienceLogic Libraries use the py_package (.tar) format. This file type includes metadata and Python packages,
and allows you to take advantage of unit tests, automatic versioning, and other common packaging practices.
This format requires an understanding of Python packaging tools.

NOTE: Older versions of SL1 bundled ScienceLogic Libraries in a py_directory format. That format has since
been deprecated. Current ScienceLogic Libraries should be bundled only in a py_package format.

ScienceLogic Libraries can be installed on SL1 in three ways:

l Some libraries are included when you install SL1 or run system updates.

l Libraries that are included in a PowerPack are installed on SL1 when you install the PowerPack.

l Libraries can be manually imported into SL1.

You can view all of the installed ScienceLogic Libraries on the ScienceLogic Library Manager page (System
> Customize > ScienceLogic Libraries).

For details about how to manage libraries in SL1, see theManaging ScienceLogic Libraries chapter.

What is an Execution Environment?

To use a ScienceLogic Library, you must align it with an execution environment.

In the SL1 user interface, an execution environment is a list of one or more ScienceLogic libraries. When a
Dynamic Application snippet, Run Book Automation snippet, or credential test is executed, the execution
environment defines a virtual Python environment that is deployed on-demand and includes all of the
ScienceLogic libraries aligned with it for use during snippet execution.

What is a ScienceLogic Library?

What is an Execution Environment?

A ScienceLogic Library can be associated with multiple execution environments, allowing you to share code
between snippets, Dynamic Applications, and PowerPacks.

Execution environments must be specified when creating or editing the following:

l Snippets

l Credential tests

l Run Book Action policies that execute a snippet

When SL1 runs a snippet embedded in a Dynamic Application, credential test, or a Run Book Action, it
automatically deploys the runtime environment defined by the execution environment. The runtime environment
includes each library aligned with the execution environment, plus system libraries that are provided by SL1.

If you do not specify the execution environment for a Dynamic Application, credential test, or Run Book Action,
SL1 aligns them with a system-default execution environment. This default execution environment is defined in
each SL1 System update.

When you build a PowerPack, it automatically includes the execution environments that are aligned with the
PowerPack's Dynamic Applications, credential tests, and Run Book Actions that execute snippets.

NOTE: Additionally, built-in non-snippet Dynamic Application types use a pre-deployed, read only Python
3 execution environment, "sl1_default_ee". This execution environment appears on the Environment
Manager page (System>Customize> ScienceLogic Libraries>Action button>Execution Environments), but
you cannot edit or delete it. Whenever, new, built-in Dynamic Applications are created via the user
interface, they will be automatically assigned to this execution environment.

NOTE: As a part of this update, the internal collection processes and Internal Collection Dynamic
Applications (ICDAs) now run on Python 3. The snippet code that is included in these Dynamic Applications
must be Python 3, or at least Python 2/3-compliant.

For details about how to create and manage execution environments in SL1, see theManaging Execution
Environments chapter.

For more information about aligning execution environments with Dynamic Applications, credential tests, or Run
Book Actions, see the following manuals:

l Dynamic Application Development

l Snippet Dynamic Application Development

l Internal Collection Dynamic Application Development

l Discovery and Credentials

l Run Book Automation

5

Chapter

2
Managing ScienceLogic Libraries

Overview

This chapter describes how to manage ScienceLogic Libraries in SL1.

This chapter covers the following topics:

Viewing the List of ScienceLogic Libraries 7

Downloading a ScienceLogic Library 12

Importing a ScienceLogic Library 13

Creating a ScienceLogic Library 13

Manually Building a ScienceLogic Library 15

Converting a py_directory ScienceLogic Library 22

Deleting a ScienceLogic Library 26

6

7

Viewing the List of ScienceLogic Libraries

The ScienceLogic Library Manager page (System > Customize > ScienceLogic Libraries) displays a list of all
available ScienceLogic Libraries. From this page, you can download libraries, import new libraries, delete existing
libraries, or view and edit a list of Execution Environments that you can associate with a library.

For each library, the page displays the following information:

TIP: To sort the list of ScienceLogic Libraries, click on a column heading. The list will be sorted by the column
value, in ascending order. To sort by descending order, click the column heading again. The Last
Edited column sorts by descending order on the first click; to sort by ascending order, click the column
heading again.

l Library Name. The name of the ScienceLogic Library.

l Version. The version number of the ScienceLogic Library.

l System. Displays True if the ScienceLogic Library is included in the latest release of SL1 and is aligned with
the "System" environment. Displays False if the ScienceLogic Library is included in an imported PowerPack
or manually installed by an administrator.

l Type. The file type used to bundle and deliver the ScienceLogic Library. Supported types include the
following:

o py_package (.tar format). A py_package is a tar file that contains Python packages and metadata
files (name, version, description, etc.). The py_package format is typically used by more experienced
developers to build complex solutions. ScienceLogic recommends using the py_package format
because it is easier to test and maintain.

o py_directory (.tar format). A py_directory is a tar file that includes Python files and is typically used by
novice developers to share short code snippets between Dynamic Applications or SL1 stacks. This
format does not let you manage items such as dependencies, version, or test, and is not
recommended.

NOTE: Older versions of SL1 bundled ScienceLogic Libraries in a py_directory format. That
format has since been deprecated. Current ScienceLogic Libraries should be bundled
only in a py_package format.

l Dependencies. A comma-separated list of other ScienceLogic Libraries on which the selected library is
dependent, if applicable. These additional libraries are included in the selected library's py_package.tar file.

l Description. A single-line description of the ScienceLogic Library's intended use.

l Python Version. The Python compatibility version.

l Edited By. The name of the ScienceLogic user who created or last edited the ScienceLogic Library.

l Last Edited. The date and time the ScienceLogic Library was created or last edited.

Viewing the List of ScienceLogic Libraries

Viewing the List of ScienceLogic Libraries

Searching and Filtering the List of ScienceLogic Libraries

The Filter-While-You-Type fields appear as a row of blank fields at the top of the list. These fields let you filter the
items that appear in the list.

The list is dynamically updated as you select each filter. For each filter, you must make a selection from a drop-
down menu or type text to match against. SL1 will search for entries that match the text, including partial matches.
Text matches are not case-sensitive, and you can use special characters in each text field.

By default, the cursor is placed in the first Filter-While-You-Type field. You can use the <Tab> key or your mouse
to move your cursor through the fields.

You can filter by one or more of the following parameters. Only items that meet all of the filter criteria are
displayed on the page.

l Library Name. You can enter text to match, including special characters, and the ScienceLogic Library
Manager page will display only ScienceLogic Libraries that have a matching name.

l Version. You can enter text to match, including special characters and the ScienceLogic Library
Manager page will display only ScienceLogic Libraries that have a matching version number.

l System. You can enter text to match, including special characters and the ScienceLogic Library
Manager page will display only ScienceLogic Libraries that have a matching System value.

l Type. You can enter text to match, including special characters and the ScienceLogic Library Manager
page will display only ScienceLogic Libraries that have a matching Type value.

l Dependencies. You can enter text to match, including special characters and the ScienceLogic Library
Manager page will display only ScienceLogic Libraries that have matching dependencies.

l Description. You can enter text to match, including special characters and the ScienceLogic Library
Manager page will display only ScienceLogic Libraries that have matching descriptions.

l Python Version. You can enter text to match, including special characters and the ScienceLogic Library
Manager page will display only ScienceLogic Libraries that have matching versions.

l Edited By. You can enter text to match, including special characters and the ScienceLogic Library
Manager page will display only ScienceLogic Libraries that were created or last edited by a matching
username.

l Last Edited. You can select from a list of time periods, and the ScienceLogic Library Manager page will
display only ScienceLogic Libraries that have been created or edited within that time period.

8

9

Special Characters

You can include the following special characters to filter by each column except those that display date and time:

NOTE: When searching for a string, SL1 will match substrings by default, even if you do not include any
special characters. For example, searching for "hel" will match both "hello" and "helicopter". When
searching for a numeric value, SL1 will not match a substring unless you use a special character.

String and Numeric

l , (comma). Specifies an "OR" operation. Works for string and numeric values. For example:

"dell, micro" matches all values that contain the string "dell" OR the string "micro".

l & (ampersand). Specifies an "AND " operation. Works for string and numeric values. For example:

"dell & micro" matches all values that contain both the string "dell" AND the string "micro", in any order.

l ! (exclamation point). Specifies a "not" operation. Works for string and numeric values. For example:

NOTE: You can also use the "!" character in combination with the arithmetical special characters (min-max,
>, <, >=, <=, =) described below.

l * (asterisk). Specifies a "match zero or more" operation. Works for string and numeric values. For a string,
matches any string that matches the text before and after the asterisk. For a number, matches any number
that contains the text. For example:

"hel*er" would match "helpers" and "helicopter" but not "hello".

"325*" would match "325", "32561", and "325000".

"*000" would match "1000", "25000", and "10500000".

l ? (question mark). Specifies "match any one character". Works for string and numeric values. For example:

"l?ver" would match the strings "oliver", "levers", and "lover", but not "believer".

"135?" would match the numbers "1350", "1354", and "1359", but not "135" or "13502"

Viewing the List of ScienceLogic Libraries

Viewing the List of ScienceLogic Libraries

String

l ^ (caret). For strings only. Specifies "match the beginning". Matches any string that begins with the specified
string. For example:

"^sci" would match "scientific" and "sciencelogic", but not "conscious".

"^happy$" would match only the string "happy", with no characters before or after.

"!^micro" would match all values that do not start with "micro".

"!^$" would match all values that are not null.

"!^" would match null values.

l $ (dollar sign). For strings only. Specifies "match the ending". Matches any string that ends with the specified
string. For example:

"ter$" would match the string "renter" but not the string "terrific".

"^happy$" would match only the string "happy", with no characters before or after.

"!fer$" would match all values that do not end with "fer".

"!^$" would match all values that are not null.

"!$" would match null values.

NOTE: You can use both ^ and $ if you want to match an entire string and only that string. For example,
"^tern$" would match the strings "tern" or "Tern" or "TERN"; it would not match the strings "terne" or
"cistern".

Numeric

l min-max. Matches numeric values only. Specifies any value between the minimum value and the maximum
value, including the minimum and the maximum. For example:

"1-5 "would match 1, 2, 3, 4, and 5.

l - (dash). Matches numeric values only. A "half open" range. Specifies values including the minimum and
greater or including the maximum and lesser. For example:

"1-" matches 1 and greater. So would match 1, 2, 6, 345, etc.

"-5" matches 5 and less. So would match 5, 3, 1, 0, etc.

l > (greater than). Matches numeric values only. Specifies any value "greater than". For example:

">7" would match all values greater than 7.

10

11

l < (less than). Matches numeric values only. Specifies any value "less than". For example:

"<12" would match all values less than 12.

l >= (greater than or equal to). Matches numeric values only. Specifies any value "greater than or equal to".
For example:

"=>7" would match all values 7 and greater.

l <= (less than or equal to). Matches numeric values only. Specifies any value "less than or equal to". For
example:

"=<12" would match all values 12 and less.

l = (equal). Matches numeric values only. For numeric values, allows you to match a negative value. For
example:

"=-5 " would match "-5" instead of being evaluated as the "half open range" as described above.

Examples

l "!dell" matches all values that do not contain the string "dell".

l "!^micro" would match all values that do not start with "micro".

l "!fer$" would match all values that do not end with "fer".

l "!^$" would match all values that are not null.

l "!^" would match null values.

l "!$" would match null values.

l "!*" would match null values.

l "happy, !dell" would match values that contain "happy" OR values that do not contain "dell".

l "aio$". Matches only text that ends with "aio".

l "^shu". Matches only text that begins with "shu".

l "^silo$". Matches only the text "silo", with no characters before or after.

l "!silo". Matches only text that does not contains the characters "silo".

l "!^silo". Matches only text that does not start with "silo".

l "!0$". Matches only text that does not end with "0".

l "!^silo$". Matches only text that is not the exact text "silo", with no characters before or after.

l "!^". Matches null values, typically represented as "--" in most pages.

l "!$". Matches null values, typically represented as "--" in most pages.

l "!^$". Matches all text that is not null.

l silo, !aggr". Matches text that contains the characters "silo" and also text that does not contain "aggr".

l "silo, 02, !aggr". Matches text that contains "silo" and also text that contains "02" and also text that does not
contain "aggr".

Viewing the List of ScienceLogic Libraries

Downloading a ScienceLogic Library

l "silo, 02, !aggr, !01". Matches text that contains "silo" and also text that contains "02" and also text that does
not contain "aggr" and also text that does not contain "01".

l "^s*i*l*o$". Matches text that contains the letter "s", "i", "l", "o", in that order. Other letters might lie between
these letters. For example "sXiXlXo" would match.

l "!^s*i*l*o$". Matches all text that does not that contains the letter "s", "i", "l", "o", in that order. Other letters
might lie between these letters. For example "sXiXlXo" would not match.

l "!vol&!silo". Matches text that does not contain "vol" AND also does not contain "silo". For example, "volume"
would match, because it contains "vol" but not "silo".

l "!vol&02". Matches text that does not contain "vol" AND also contains "02". For example, "happy02" would
match, because it does not contain "vol' and it does contain "02".

l "aggr,!vol&02". Matches text that contains "aggr" OR text that does not contain "vol" AND also contains
"02".

l "aggr,!vol&!infra". Matches text that contains "aggr" OR text that does not contain "vol" AND does not
contain "infra".

l "*". Matches all text.

l "!*". Matches null values, typically represented as "--" in most pages.

l "silo". Matches text that contains "silo".

l " !silo ". Matches text that does not contain "silo".

l " !^silo$ ". Matches all text except the text "silo", with no characters before or after.

l "-3,7-8,11,24,50-". Matches numbers 1, 2, 3, 7, 8, 11, 24, 50, and all numbers greater than 50.

l "-3,7-8,11,24,50-,a". Matches numbers 1, 2, 3, 7, 8, 11, 24, 50, and all numbers greater than 50, and
text that includes "a".

l "?n". Matches text that contains any single character and the character "n". For example, this string would
match "an", "bn", "cn", "1n", and "2n".

l "n*SAN". Matches text the contains "n", zero or any number of any characters and then "SAN". For example,
the string would match "nSAN", and "nhamburgerSAN".

l "^?n*SAN$”. Matches text that begins with any single character, is following by "n", and then zero or any
number of any characters, and ends in "SAN".

Downloading a ScienceLogic Library

From the ScienceLogic Library Manager page, you can download ScienceLogic Libraries. Libraries that are
included in SL1 are bundled in a py_package format.

WARNING: ScienceLogic-authored libraries are copyrighted content and should not be modified without the
express permission of ScienceLogic.

12

13

NOTE: Older versions of SL1 bundled ScienceLogic Libraries in a py_directory format. That format has since
been deprecated. Current ScienceLogic Libraries should be bundled only in a py_package format.

To download a ScienceLogic Library:

1. Go to the ScienceLogic Library Manager page (System > Customize > ScienceLogic Libraries).

2. Click the save icon () of the ScienceLogic Library you want to download.

3. The library file is downloaded to your computer.

Importing a ScienceLogic Library

In addition to the ScienceLogic Libraries that are included in the latest version of SL1 or included in a PowerPack,
you can use the ScienceLogic Library Manager page to import additional libraries.

To import a library:

1. Go to the ScienceLogic Library Manager page (System > Customize > ScienceLogic Libraries).

2. Click the [Actions]menu and then select Import ScienceLogic Library.

3. The Import ScienceLogic Library dialog box appears. Use the [Browse] button to navigate to the
ScienceLogic Library file you want to import and then click the [Import] button.

4. The imported ScienceLogic Library appears on the ScienceLogic Library Manager page.

Creating a ScienceLogic Library

You can create your own library to import into SL1 in a py_package library file saved in uncompressed .tar
format. This section describes the requirements for a ScienceLogic-compatible library.

Important Notes on Creating ScienceLogic Libraries

NOTE: Older versions of SL1 bundled ScienceLogic Libraries in a py_directory format. That format has since
been deprecated. Current ScienceLogic Libraries should be bundled only in a py_package format.

NOTE: The option to use Python 3.9 execution environments is limited to the SL1 12.2.1.1, 12.2.1.2, and
12.2.3 releases.

Additionally, the SL1 12.3.0 release removed support for Python 3.9 entirely and added support for Python
3.11. Any Dynamic Applications that use Python 3.9 execution environments will stop working after
upgrading to SL1 12.3.0 or later.

If you are currently using Python 3.9 execution environments, then after updating to 12.3.0 or later, you
must create a Python 3.11 execution environment and align any Dynamic Applications that are currently

Importing a ScienceLogic Library

Creating a ScienceLogic Library

aligned to the Python 3.9 execution environments to Python 3.11 execution environment to make them
work again.

The following are important items to note when creating a ScienceLogic library:

l Library files must be saved in uncompressed .tar format.

l For best results, use GNU tar rather than bsdtar.

l You can only include wheel files (.whl) as additional dependencies. You cannot include any additional
packages in your library file that require compilation or linking because Python build tools are not included
in the SL1 platform.

l Any libraries that are bundled as dependencies in your py_package file will not be used if a newer version of
that library exists on the appliance unless you have a restriction in your package specifying a given version
to use.

l For example, if your library "my-library" requires the Python community package "requests" version 2.25.1,
you would create the library "requests" version "2.25.1" first. You would then import the requests library into
SL1 and align it and "my-library" to your Execution Environment. At runtime, both libraries, at those specific
versions, will be used.

l For an alternative example, if your library "my-library" requires the Python community package "requests",
but the version is not important, you would include the "requests" package as a ".whl" file in your "my-library"
library, adding it to the "manifest.txt" file. After aligning "my-library" to your Execution Environment, it will be
available at runtime. The "requests" package included in the "manifest.txt" will be available during the install
of "my-library", but may not be used if a newer acceptable package is found for install.

l For a py_package library, an optional "metadata.json" file can be included but it must include the requires_
python element, otherwise an error will be displayed upon import.

TIP: A best practice is to version your libraries. Each time you make modifications to a library, create a new
version and a new execution environment that uses that version. In that way, you can use different versions
in different Dynamic Applications for testing purposes.

Library File Type: py_package

The py_package file type is the preferred library file type used to bundle Python packages and metadata files. A
py_package must have the metadata files described below along with the .whl file(s), and it must be saved in
uncompressed .tar format. You must create this tar file with Red Hat Enterprise Linux or a similar operating system
to ensure compatibility. Tar files created on MacOS are not supported.

NOTE: All metadata files included in the package must be at the root level of the directory.

Alternately, you can include a "metadata.json" file instead of the following .txt files, but the "metadata.json" file
must include the requires_python element, otherwise an error will be displayed upon import.

A py_package tar file must include the following files:

14

15

l __init__.py. This file is required for the directory to be used as a Python package. It identifies this as a
package.

l name.txt. This text file specifies the name of the library and must match the name of the package being
installed.

l version.txt. This text file specifies the version of the library and must match the version of the package being
installed.

l type.txt. This text file specifies that the library is a py_package type library.

l manifest.txt. This text file includes the Python package name and version (as specified in the name.txt and
version.txt files), followed by a list of additional supporting files that must be deployed to the internal
package repository to use the library. For example, if the library is dependent on another package, that
other package must be listed in the manifest file.

NOTE: The ScienceLogic library and the Python package must have the same name, and this name
must be the first entry in the manifest file.

l Wheel (.whl) file. This is a standard wheel file that you create. See Python documentation for more
information about creating wheel files. Wheel files must be compatible with the version of Python used in the
library. Wheel files must be able to work in Red Hat Enterprise Linux or a similar operating system, but they
do not need to be created in Red Hat.

NOTE: ScienceLogic supports Python 3-compatible libraries and wheel files. Legacy Python 2 support
is being deprecated, and ScienceLogic strongly encourages users to use Python 3 when
creating libraries. However, if you are creating a Python 2 library, then its corresponding
wheel file must also be Python 2-compatible.

IMPORTANT: The tar command requires that you include all of the files, but not the current working
directory. If you include the current working directory, then the import feature cannot find the root files. For
the best results, use the following command:

tar cvf thing.tar *

instead of this command:

tar cvf thing.tar .

Manually Building a ScienceLogic Library

To manually build a ScienceLogic library, follow this example:

Manually Building a ScienceLogic Library

Manually Building a ScienceLogic Library

1. Use the sample python library called silo_demo-0.0.7-py2.py3-none-any.whl:

l Create a project folder for your library, for example, myproject.

l Copy your project's python wheel file into your new project folder.

mkdir myproject

cp silo_demo-0.0.7-py2.py3-none-any.whl myproject/

2. Download a complete set of python dependencies for your python package. In this example case, there is
a dependency on requests. To download the dependency package, you need to change the project
directory to download the package and any transitive dependencies using the Python binary path in your
execution environment.

NOTE: Any non-pure Python dependencies included in your ScienceLogic Library must be built
distributions (wheels) that do not require a build stage. SL1 does not include compilation tools
for source distributions.

cd myproject

python3 -m pip download --find-links=. silo_demo==0.0.7

NOTE: To build these packages, ScienceLogic recommends that you are on Oracle Linux or Redhat based
x86-64 installation.

NOTE: Execute the python3 -m pip download command with a python3.6 interpreter to operate
correctly with version 11.3 or later of SL1. Some Linux distributions default the command python to
python2.7.

l The corresponding request python package and all its dependencies will download into your project
folder.

16

17

Looking in links: .

Processing ./silo_demo-0.0.7-py2.py3-none-any.whl

File was already downloaded /ScienceLogic/myproject/silo_

demo-0.0.7-py2.py3-none-any.whl

Collecting requests

Using cached requests-2.29.0-py3-none-any.whl (62 kB)

Collecting certifi>=2017.4.17

Using cached certifi-2022.12.7-py3-none-any.whl (155 kB)

Collecting urllib3<1.27,>=1.21.1

Using cached urllib3-1.26.15-py2.py3-none-any.whl (140 kB)

Collecting charset-normalizer<4,>=2

Using cached charset_normalizer-3.1.0-cp39-cp39-macosx_10_

9_x86_64.whl (124 kB)

Collecting idna<4,>=2.5

Using cached idna-3.4-py3-none-any.whl (61 kB)

Saved ./requests-2.29.0-py3-none-any.whl

Saved ./certifi-2022.12.7-py3-none-any.whl

Saved ./charset_normalizer-3.1.0-cp39-cp39-macosx_10_9_x86_

64.whl

Saved ./idna-3.4-py3-none-any.whl

Saved ./urllib3-1.26.15-py2.py3-none-any.whl

Successfully downloaded silo_demo requests certifi charset-

normalizer idna urllib3

l List the dependencies to ensure they are correct.

Manually Building a ScienceLogic Library

Manually Building a ScienceLogic Library

[myproject]$ ls -l

-rw-r--r--@ 1 dev staff 4524 May 2 11:31 silo_demo-0.0.7-

py2.py3-none-any.whl

-rw-r--r-- 1 dev staff 62499 May 3 16:31 requests-2.29.0-py3-

none-any.whl

-rw-r--r-- 1 dev staff 155255 May 3 16:31 certifi-2022.12.7-

py3-none-any.whl

-rw-r--r-- 1 dev staff 124711 May 3 16:31 charset_normalizer-

2.0.4-cp36-cp36mu-manylinux1_x86_64.whl

-rw-r--r-- 1 dev staff 61538 May 3 16:31 idna-3.4-py3-none-

any.whl

-rw-r--r-- 1 dev staff 140881 May 3 16:31 urllib3-1.26.15-

py2.py3-none-any.whl

CAUTION: SL1 comes pre-installed with the proper versions of wheel, setuptools, and pip wheels for each
release. Do not include these in your ScienceLogic library as it will cause a deployment failure.

3. Create themetadata.json file. Ensure that you are in your project folder and use your favorite editor tool to
create themetadata.json file.

The following example includes the minimum set of metadata required by SL1. The information supplied
corresponds to the principle python library you set up in step 1. The environment deployer will pip
install the principle python library based on the name and version metadata, so they must be
accurate.

Update the following fields with your information:

l meta_version. Leave this as default "0.2"

l description. A precise description of the ScienceLogic library

l manifest. Contains the complete list of wheel files from Step 2

l name. The precise name of the principle python package used by pip to install the python package.
In this example, the name is silo_demo.

l type. Leave this as default "py_package"

l version. The precise version of the principle python package used by pip to install the python
package. In this example, the version is 0.0.7.

l requires_python The specific versions of python you will use. For python2, use "~=2.7" and for
python3, use "~=3.6". You should follow PEP440 version specifiers.

18

19

NOTE: For more information about the PEP440 version specifiers, see the PEP440 webpage.

{

"meta_version": "0.2",

"fields": {

"description": "A demo ScienceLogic library",

"manifest": ["certifi-2022.12.7-py3-none-any.whl",

"charset_normalizer-2.0.4-cp36-cp36mu-manylinux1_x86_

64.whl", "idna-3.4-py3-none-any.whl", "requests-2.29.0-

py3-none-any.whl", "silo_demo-0.0.7-py2.py3-none-any.whl",

"urllib3-1.26.15-py2.py3-none-any.whl"],

"name": "silo_demo",

"type": "py_package",

"version": "0.0.7",

"requires_python": "~=3.6"

}

}

4. Validate themetadata.json file. Validating your JSON files ensures there aren't any errors in the pairing of
braces and syntax. To validate your metadata.json file type:

python -m json.tool metadata.json

5. Create the ScienceLogic library archive.

Give your archive a unique name so that it is easy to recognize and distinguish from other library archives. Since it
is possible to support multiple python runtime versions, ScienceLogic recommends that you include the python
version(s) supported in the library archive you create.

Use the following naming convention as a guide:

<lib name> + <lib version>. <runtime version/s>.tar

NOTE: The following commands must be run from inside the directory you created in step 1. For the
following examples, that is the myproject directory.

Manually Building a ScienceLogic Library

https://peps.python.org/pep-0440/#version-specifiers

Manually Building a ScienceLogic Library

For example:

l Create the .tar archive:

tar cvf silo_demo+0.0.7.py36.tar *

l Confirm the creation of the .tar archive by listing List the .tar files in the directory:

ls -l *.tar

-rw-r--r-- 1 em7admin em7admin 480256 Nov 29 16:28 silo_

demo+0.0.7.py36.tar

l Check the contents of the .tar archive:

tar tvf silo_demo+0.0.7.py36.tar

-rw-r--r-- 1 em7admin em7admin 161120 Nov 29 16:12 certifi-2022.9.24-

py3-none-any.whl

-rw-r--r-- 1 em7admin em7admin 39748 Nov 29 16:12 charset_normalizer-

2.0.4-cp36-cp36mu-manylinux1_x86_64.whl

-rw-r--r-- 1 em7admin em7admin 61538 Nov 29 16:12 idna-3.4-py3-none-

any.whl

-rw-r--r-- 1 em7admin em7admin 479 Nov 29 16:25 metadata.json

-rw-r--r-- 1 em7admin em7admin 62843 Nov 29 16:12 requests-2.28.1-py3-

none-any.whl

-rw-r--r-- 1 em7admin em7admin 4524 Nov 29 16:12 silo_demo-0.0.7-

py2.py3-none-any.whl

-rw-r--r-- 1 em7admin em7admin 140572 Nov 29 16:12 urllib3-1.26.13-

py2.py3-none-any.whl

CAUTION: Depending on your development environment, your .tar archiving tool may generate an archive
that is incompatible with the Linux distribution used by SL1. If this occurs, try extracting (tar
xvf myarchive.tar) or just listing the archive (tar tvf my archive.tar) on
your SL1 appliance before archiving to ensure compatibility with the following steps.

20

21

CAUTION: Only the contents of the directory you created in step 1 should be listed when you execute the
previous command. If the directory itself is included in the output, then the .tar archive will not
work correctly when imported into SL1. If this occurs, see the following knowledge base article
for more information, including steps to resolve the issue:
https://support.sciencelogic.com/s/article/14578.

6. Import the ScienceLogic library.

To import a ScienceLogic library, see Importing a ScienceLogic Library.

7. Create an SL1 Execution Environment.

l To create your python3 Execution Environment, go to the Environment Manager page
(System>Customize>ScienceLogic Libraries>Actions>Execution Environments) and click [New].

l In the Environment Name field, select python3.

l For this example, add the Environment Name Snippet Framework Demo py36 and click
[Save]. The compatible libraries are displayed and available to the python3 execution environment.

l Click the lightning bolt () to include all of the libraries in this environment.

IMPORTANT: The string found in requires_python will follow the same convention used for python
packages.

NOTE: A ScienceLogic library with requires_python>=3.6 would be compatible with any execution
environment greater than or equal to 3.6.

l Make note of the environment GUID for the following steps. In this example, the environment GUID
was:

0117E1C041D8CE0C69A8391C02E6DC3B

8. Align your ScienceLogic library to the SL1 Execution Environment.

l Return to the Environment Editor page (System>Customize>ScienceLogic
Libraries>Actions>Execution Environments). You should see that your ScienceLogic library is
available for alignment to your execution environment.

l Click the lightning bolt () to add your library to the environment.

9. Test your ScienceLogic library.

l Log on to the collector and deploy the ScienceLogic Execution Environment.

sudo -u s-em7-core /opt/em7/bin/python3 /opt/em7/lib/python3/sl_envs/env_

manager.pyc --debug 0117E1C041D8CE0C69A8391C02E6DC3B

l Activate your new environment.

Manually Building a ScienceLogic Library

https://support.sciencelogic.com/s/article/14578

Converting a py_directory ScienceLogic Library

source /opt/em7/envs/0117E1C041D8CE0C69A8391C02E6DC3B/bin/activate

l From the python command line, try importing your new package and executing its API.

[uenv-3869008638788123352]$ python

Python 3.6.8 (default, Nov 18 2021, 10:07:16)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-44.0.3)] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> from silo.demo import demo_class

>>>

NOTE: ScienceLogic is working to minimize the development effort through the use of Snippet Framework
and low code specifications. Unless your collection environment is unique, you may not need to
develop content such as manually building your ScienceLogic library.

Converting a py_directory ScienceLogic Library

Older versions of SL1 bundled ScienceLogic Libraries in a Python 2-compatible py_directory format. That format
has since been deprecated. Current ScienceLogic Libraries should be bundled only in a Python 3-compatible py_
package format.

To ensure your ScienceLogic Libraries continue operating as intended, you can convert Python 2 py_directory
ScienceLogic Libraries to a wheel for use in Python 3-compatible py_package ScienceLogic Libraries.

Typically, a py_directory package consists of a few Python modules in a project folder that is only one level deep
and consists only of Python content with no C extensions.

To perform this conversion, follow the example in this section, which uses a ScienceLogic Library called clevon.
The original contents of this library looked like this:

tar tvf clevon_v_1.4_~=2.7.tar

drwxr-xr-x 0 user staff 0 Oct 18 2023 clevon/

-rw-r--r-- 0 user staff 11341 Oct 18 2023 clevon/clevon_globals.py

-rw-r--r-- 0 user staff 1017 Oct 18 2023 clevon/misc.py

-rw-r--r-- 0 user staff 1425 Oct 18 2023 clevon/interface.py

-rw-r--r-- 0 user staff 0 Oct 18 2023 clevon/__init__.py

-rw-r--r-- 0 user staff 1975 Oct 18 2023 clevon/graphing.py

-rw-r--r-- 0 user staff 2430 Oct 18 2023 clevon/have_children.py

-rw-r--r-- 0 user staff 2399 Oct 18 2023 clevon/math_lesson.py

-rw-r--r-- 0 user staff 4 Oct 17 2023 clevon/version.txt

22

23

-rw-r--r-- 0 user staff 33 Oct 18 2023 clevon/description.txt

-rw-r--r-- 0 user staff 463 Oct 18 2023 clevon/chores.py

1. To convert this format, you must create a new project folder (project_folder, for this example) with
the following structure:

LICENSE.txt

README.md

pyproject.toml

src/

clevon/

clevon_globals.py

misc.py

interface.py

__init__.py

graphing.py

have_children.py

math_lesson.py

chores.py

NOTE: The LICENSE.txt and README.md files can be empty. Also, in this example, the metadata
version.txt and description.txt files were removed from the original py_directory contents.

Converting a py_directory ScienceLogic Library

Converting a py_directory ScienceLogic Library

2. The contents of the pyproject.toml file in the above example should look similar to this:

[build-system]

requires = ["setuptools"]

build-backend = "setuptools.build_meta"

[project]

name = "clevon"

version = "1.6"

authors = [

{ name="ScienceLogic, Inc.", email="author@sciencelogic.com" },

]

description = "A Crucible test package"

readme = "README.md"

requires-python = ">=3.6"

classifiers = [

"Programming Language :: Python :: 3",

"License :: OSI Approved :: MIT License",

"Operating System :: OS Independent",

]

3. Run the builder to package the wheel:

cd project_folder

python3 -m build

When the build finishes successfully, you should receive a message similar to this:

Successfully built clevon-1.6.tar.gz and clevon-1.6-py3-none-any.whl

NOTE: If the build does not work, you might need to first install the build package into your
environment:

python3 -m pip install build

24

25

4. As part of the previous step, a dist directory should have been created that contains the built wheel.
Confirm that the artifacts have been created:

ls -l dist

total 48

-rw-r--r-- 1 dayn.harum staff 9764 Sep 9 09:25 clevon-1.6-py3-

none-any.whl

-rw-r--r-- 1 dayn.harum staff 8618 Sep 9 09:25 clevon-1.6.tar.gz

5. Confirm that you can install, import, and uninstall the package:

cd dist

dist % python3 -m pip install --no-index --find-links=. clevon==1.6

Looking in links: .

Processing ./clevon-1.6-py3-none-any.whl

Installing collected packages: clevon

Successfully installed clevon-1.6

dist % python3

Python 3.9.5 (default, May 18 2021, 12:31:01)

[Clang 10.0.0] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more

information.

>>> import clevon

>>> clevon.__path__

['/Users/user/miniconda3/lib/python3.9/site-packages/clevon']

>>> from clevon import graphing

>>>

python3 -m pip uninstall clevon==1.6

Found existing installation: clevon 1.6

Uninstalling clevon-1.6:

Would remove:

/Users/user/miniconda3/lib/python3.9/site-packages/clevon-

1.6.dist-info/*

/Users/user/miniconda3/lib/python3.9/site-packages/clevon/*

Proceed (Y/n)? Y

Successfully uninstalled clevon-1.6

6. After you have successfully built the wheel, you can follow the steps in the sectionManually Building a
ScienceLogic Library to include it in a ScienceLogic Library.

Converting a py_directory ScienceLogic Library

Deleting a ScienceLogic Library

Deleting a ScienceLogic Library

The ScienceLogic Library Manager page allows you to delete ScienceLogic Libraries that are not currently in
use.

SL1 will not allow you to delete ScienceLogic Libraries that are aligned to execution environments that are being
used by any Dynamic Applications, credential tests, or Run Book Actions. You also cannot delete libraries that are
aligned to the "System" environment.

To delete a library:

1. Go to the ScienceLogic Library Manager page (System > Customize > ScienceLogic Libraries).

2. Select the ScienceLogic Library that you want to delete.

3. Click the Select Actionsmenu in the lower right of the page and select DELETE ScienceLogic Library, and
then click the [Go] button.

4. The selected ScienceLogic Library is deleted from the ScienceLogic Library Manager page.

26

Chapter

3
Managing Execution Environments

Overview

Execution environments let you share code between snippets, Dynamic Applications, and PowerPacks. Execution
environments have a global unique identifier (GUID), a name, and list of associated libraries. The libraries
associated with an execution environment provide a way to bundle reusable code in a self-contained
environment available in snippets. You can use different execution environments for different Dynamic
Application requirements.

This chapter covers the following topics:

Viewing the List of Execution Environments 28

Creating an Execution Environment 32

Editing an Execution Environment 33

Copying an Execution Environment 34

Deleting an Execution Environment 35

27

28

Viewing the List of Execution Environments

The Environment Manager page (System > Customize > ScienceLogic Libraries > Actions > Execution
Environments) displays a list of all existing execution environments.

For each execution environment, the page displays the following information:

TIP: To sort the list of execution environments, click on a column heading. The list will be sorted by the
column value, in ascending order. To sort by descending order, click the column heading again.

l Environment Name. The name of the execution environment.

l Env GUID. The execution environment's globally unique identifier.

l Env Type. The Python runtime version selected for the execution environment.

l Libs. The number of ScienceLogic Libraries aligned with the execution environment. Click the View Aligned

Libraries icon () to view the list of ScienceLogic Libraries that are aligned to a particular execution
environment.

Searching and Filtering the List of Execution Environments

The Filter-While-You-Type fields appear as a row of blank fields at the top of the list. These fields let you filter the
items that appear in the list.

The list is dynamically updated as you select each filter. For each filter, you must make a selection from a drop-
down menu or type text to match against. SL1 will search for entries that match the text, including partial matches.
Text matches are not case-sensitive, and you can use special characters in each text field.

By default, the cursor is placed in the first Filter-While-You-Type field. You can use the <Tab> key or your mouse
to move your cursor through the fields.

You can filter by one or more of the following parameters. Only items that meet all of the filter criteria are
displayed on the page.

l Environment Name. You can enter text to match, including special characters, and the Environment
Manager page will display only execution environments that have a matching name.

l Env GUID. You can enter text to match, including special characters, and the Environment Manager
page will display only execution environments that have a matching GUID.

l Env Type. You can enter text to match, and the Environment Manager page will display only execution
environments that have a matching Python runtime version for the execution environment.

l Libs. You can enter text to match, including special characters, and the Environment Manager page will
display only execution environments that have a matching number of aligned ScienceLogic Libraries.

Viewing the List of Execution Environments

Viewing the List of Execution Environments

Special Characters

You can include the following special characters to filter by each column except those that display date and time:

NOTE: When searching for a string, SL1 will match substrings by default, even if you do not include any
special characters. For example, searching for "hel" will match both "hello" and "helicopter". When
searching for a numeric value, SL1 will not match a substring unless you use a special character.

String and Numeric

l , (comma). Specifies an "OR" operation. Works for string and numeric values. For example:

"dell, micro" matches all values that contain the string "dell" OR the string "micro".

l & (ampersand). Specifies an "AND " operation. Works for string and numeric values. For example:

"dell & micro" matches all values that contain both the string "dell" AND the string "micro", in any order.

l ! (exclamation point). Specifies a "not" operation. Works for string and numeric values. For example:

NOTE: You can also use the "!" character in combination with the arithmetical special characters (min-max,
>, <, >=, <=, =) described below.

l * (asterisk). Specifies a "match zero or more" operation. Works for string and numeric values. For a string,
matches any string that matches the text before and after the asterisk. For a number, matches any number
that contains the text. For example:

"hel*er" would match "helpers" and "helicopter" but not "hello".

"325*" would match "325", "32561", and "325000".

"*000" would match "1000", "25000", and "10500000".

l ? (question mark). Specifies "match any one character". Works for string and numeric values. For example:

"l?ver" would match the strings "oliver", "levers", and "lover", but not "believer".

"135?" would match the numbers "1350", "1354", and "1359", but not "135" or "13502"

29

30

String

l ^ (caret). For strings only. Specifies "match the beginning". Matches any string that begins with the specified
string. For example:

"^sci" would match "scientific" and "sciencelogic", but not "conscious".

"^happy$" would match only the string "happy", with no characters before or after.

"!^micro" would match all values that do not start with "micro".

"!^$" would match all values that are not null.

"!^" would match null values.

l $ (dollar sign). For strings only. Specifies "match the ending". Matches any string that ends with the specified
string. For example:

"ter$" would match the string "renter" but not the string "terrific".

"^happy$" would match only the string "happy", with no characters before or after.

"!fer$" would match all values that do not end with "fer".

"!^$" would match all values that are not null.

"!$" would match null values.

NOTE: You can use both ^ and $ if you want to match an entire string and only that string. For example,
"^tern$" would match the strings "tern" or "Tern" or "TERN"; it would not match the strings "terne" or
"cistern".

Numeric

l min-max. Matches numeric values only. Specifies any value between the minimum value and the maximum
value, including the minimum and the maximum. For example:

"1-5 "would match 1, 2, 3, 4, and 5.

l - (dash). Matches numeric values only. A "half open" range. Specifies values including the minimum and
greater or including the maximum and lesser. For example:

"1-" matches 1 and greater. So would match 1, 2, 6, 345, etc.

"-5" matches 5 and less. So would match 5, 3, 1, 0, etc.

l > (greater than). Matches numeric values only. Specifies any value "greater than". For example:

">7" would match all values greater than 7.

Viewing the List of Execution Environments

Viewing the List of Execution Environments

l < (less than). Matches numeric values only. Specifies any value "less than". For example:

"<12" would match all values less than 12.

l >= (greater than or equal to). Matches numeric values only. Specifies any value "greater than or equal to".
For example:

"=>7" would match all values 7 and greater.

l <= (less than or equal to). Matches numeric values only. Specifies any value "less than or equal to". For
example:

"=<12" would match all values 12 and less.

l = (equal). Matches numeric values only. For numeric values, allows you to match a negative value. For
example:

"=-5 " would match "-5" instead of being evaluated as the "half open range" as described above.

Examples

l "!dell" matches all values that do not contain the string "dell".

l "!^micro" would match all values that do not start with "micro".

l "!fer$" would match all values that do not end with "fer".

l "!^$" would match all values that are not null.

l "!^" would match null values.

l "!$" would match null values.

l "!*" would match null values.

l "happy, !dell" would match values that contain "happy" OR values that do not contain "dell".

l "aio$". Matches only text that ends with "aio".

l "^shu". Matches only text that begins with "shu".

l "^silo$". Matches only the text "silo", with no characters before or after.

l "!silo". Matches only text that does not contains the characters "silo".

l "!^silo". Matches only text that does not start with "silo".

l "!0$". Matches only text that does not end with "0".

l "!^silo$". Matches only text that is not the exact text "silo", with no characters before or after.

l "!^". Matches null values, typically represented as "--" in most pages.

l "!$". Matches null values, typically represented as "--" in most pages.

l "!^$". Matches all text that is not null.

l silo, !aggr". Matches text that contains the characters "silo" and also text that does not contain "aggr".

l "silo, 02, !aggr". Matches text that contains "silo" and also text that contains "02" and also text that does not
contain "aggr".

31

32

l "silo, 02, !aggr, !01". Matches text that contains "silo" and also text that contains "02" and also text that does
not contain "aggr" and also text that does not contain "01".

l "^s*i*l*o$". Matches text that contains the letter "s", "i", "l", "o", in that order. Other letters might lie between
these letters. For example "sXiXlXo" would match.

l "!^s*i*l*o$". Matches all text that does not that contains the letter "s", "i", "l", "o", in that order. Other letters
might lie between these letters. For example "sXiXlXo" would not match.

l "!vol&!silo". Matches text that does not contain "vol" AND also does not contain "silo". For example, "volume"
would match, because it contains "vol" but not "silo".

l "!vol&02". Matches text that does not contain "vol" AND also contains "02". For example, "happy02" would
match, because it does not contain "vol' and it does contain "02".

l "aggr,!vol&02". Matches text that contains "aggr" OR text that does not contain "vol" AND also contains
"02".

l "aggr,!vol&!infra". Matches text that contains "aggr" OR text that does not contain "vol" AND does not
contain "infra".

l "*". Matches all text.

l "!*". Matches null values, typically represented as "--" in most pages.

l "silo". Matches text that contains "silo".

l " !silo ". Matches text that does not contain "silo".

l " !^silo$ ". Matches all text except the text "silo", with no characters before or after.

l "-3,7-8,11,24,50-". Matches numbers 1, 2, 3, 7, 8, 11, 24, 50, and all numbers greater than 50.

l "-3,7-8,11,24,50-,a". Matches numbers 1, 2, 3, 7, 8, 11, 24, 50, and all numbers greater than 50, and
text that includes "a".

l "?n". Matches text that contains any single character and the character "n". For example, this string would
match "an", "bn", "cn", "1n", and "2n".

l "n*SAN". Matches text the contains "n", zero or any number of any characters and then "SAN". For example,
the string would match "nSAN", and "nhamburgerSAN".

l "^?n*SAN$”. Matches text that begins with any single character, is following by "n", and then zero or any
number of any characters, and ends in "SAN".

Creating an Execution Environment

SL1 includes several execution environments from preloaded PowerPacks and system updates for your use. If
needed, you can also create new execution environments. After you have successfully created an execution
environment, it will appear in the list of execution environments available for aligning with Dynamic Applications,
credential tests, and Run Book Actions.

NOTE: The option to use Python 3.9 execution environments is limited to the SL1 12.2.1.1, 12.2.1.2, and
12.2.3 releases.

Creating an Execution Environment

Editing an Execution Environment

Additionally, the SL1 12.3.0 release removed support for Python 3.9 entirely and added support for Python
3.11. Any Dynamic Applications that use Python 3.9 execution environments will stop working after
upgrading to SL1 12.3.0 or later.

If you are currently using Python 3.9 execution environments, then after updating to 12.3.0 or later, you
must create a Python 3.11 execution environment and align any Dynamic Applications that are currently
aligned to the Python 3.9 execution environments to Python 3.11 execution environment to make them
work again.

To create an execution environment:

1. From the Environment Manager page (System > Customize > ScienceLogic Libraries > Actions
> Execution Environments), click the [New] button.

2. On the Environment Editor page, type a name for the new execution environment in the Environment
Name field, select a Python version from the Environment Type drop-down, and then click the save icon (

).

NOTE: Each execution environment is assigned an Env GUID, which makes it unique. Since two
environments can share a name, it is a best practice to use the Name field to version an
environment when updating its contents.

3. The Library Alignment pane appears, displaying a list of ScienceLogic Libraries that you can align with
the new execution environment. Click the align icon () for a ScienceLogic Library to align that library to
the new execution environment.

TIP: You can select the Filter Libraries By Python Version drop-down to filter ScienceLogic libraries
compatible with the execution environment runtime. This feature is set to on by default.

4. Align any additional ScienceLogic libraries to the execution environment as needed.

TIP: If necessary, you can click the unalign icon () for a ScienceLogic Library to remove that library's

alignment with the new execution environment.

5. When you are finished, click the save icon () again to save the execution environment with the

ScienceLogic Library alignment you selected, and then click [Close].

Editing an Execution Environment

You can edit an execution environment by clicking its wrench icon (). When you do so, you can change the
environment's name, align additional ScienceLogic Libraries to the environment, or remove its alignment with one

33

34

or more libraries.

WARNING: Do not edit ScienceLogic-created execution environments. You may make a copy of the
execution environment, but ScienceLogic often updates these execution environments in a release, which
will overwrite any existing execution environment of the same globally unique identifier (GUID).

To edit an execution Environment:

1. From the Environment Manager page (System > Customize > ScienceLogic Libraries > Actions
> Execution Environments), click the edit icon () for the execution environment that you want to edit.

2. On the Environment Editor page, you can do any of the following:

l Change the environment's name in the Environment Name field.

l Align additional ScienceLogic Libraries to the execution environment by clicking the appropriate align
icons ().

l Remove the execution environment's alignment with one or more libraries by clicking the appropriate
unalign icons ().

3. When you are finished, click the save icon () and then click [Close].

Copying an Execution Environment

If you want to create a new execution environment that has traits similar to an existing environment, you can make
a copy of the existing execution environment that you can then edit as needed. When you copy an existing
execution environment, the new environment includes the same libraries as the original environment, but it will
have a new globally unique identifier (GUID).

CAUTION: Making a copy of an execution environment does not mean there will be a duplicate runtime
environment. Environments that share a set of libraries will result in the same virtual runtime
environment to optimize space on the Data Collector.

To copy an execution environment:

1. From the Environment Manager page (System > Customize > ScienceLogic Libraries > Actions
> Execution Environments), click the copy icon () for the execution environment that you want to copy.
A confirmation message appears.

2. Click [OK] to continue. A copy of the selected execution environment appears on the Environment
Manager page. By default, it has the same name as the original execution environment, followed by the
word "(copy)".

Copying an Execution Environment

Deleting an Execution Environment

Deleting an Execution Environment

If you no longer need an execution environment and it is not currently aligned with a Dynamic Application,
credential test, or Run Book Action, then you can delete it. SL1 will not allow you to delete execution
environments that are being used by any Dynamic Applications, credential tests, or Run Book Actions.

CAUTION: Do not delete execution environments that are shipped with SL1.

To delete an execution environment:

1. From the Environment Manager page (System > Customize > ScienceLogic Libraries > Actions
> Execution Environments), click the delete icon () for the execution environment that you want to delete.

2. A confirmation message appears. Click [OK] to continue.

3. The execution environment is deleted from the Environment Manager page.

35

© 2003 - 2024, ScienceLogic, Inc.

All rights reserved.

LIMITATION OF LIABILITY AND GENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and ScienceLogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without notice.
ScienceLogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

ScienceLogic, the ScienceLogic logo, and EM7 are trademarks of ScienceLogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to ScienceLogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

l ScienceLogic™
l EM7™ and em7™
l Simplify IT™
l Dynamic Application™
l Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
ScienceLogic’s trademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of ScienceLogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com. For more information, see
https://sciencelogic.com/company/legal.

mailto:legal@sciencelogic.com
https://sciencelogic.com/company/legal

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction to ScienceLogic Libraries and Execution Environments
	What is a ScienceLogic Library?
	What is an Execution Environment?

	Managing ScienceLogic Libraries
	Viewing the List of ScienceLogic Libraries
	Searching and Filtering the List of ScienceLogic Libraries
	Special Characters

	Downloading a ScienceLogic Library
	Importing a ScienceLogic Library
	Creating a ScienceLogic Library
	Important Notes on Creating ScienceLogic Libraries
	Library File Type: py_package

	Manually Building a ScienceLogic Library
	Converting a py_directory ScienceLogic Library
	Deleting a ScienceLogic Library

	Managing Execution Environments
	Viewing the List of Execution Environments
	Searching and Filtering the List of Execution Environments
	Special Characters

	Creating an Execution Environment
	Editing an Execution Environment
	Copying an Execution Environment
	Deleting an Execution Environment

