
SL1 PowerFlow for Developers
Version 2.6.0, rev 3

Table of Contents

Introduction to SL1 PowerFlow for Developers 4
What is SL1 PowerFlow? 5
Tools Included with PowerFlow 5
Prerequisites for Creating PowerFlow Steps and Applications 6

Creating a Step 7
What is a Step? 8
Using Steps in a PowerFlow Application 8
Using Input Parameters to Configure a Step 9
Sharing Data Between Steps 10
Types of Steps 10

Workflow for Creating a Step 11
Creating a Step from the Step Template 11
Example Code: stepTemplate 11

Including the Subclass and Required Methods 13
Subclass 14
Required Methods 14
Example Code: Subclass and Required Methods 15

Defining the Logic for the Step 17
The init Method 17
Defining the Step Name, Description, and Version 17
Defining Parameters for the Step 18

The execute Method 19
Transferring Data Between Steps 19
Saving Data for the Next Step 19
Retrieving Data from a Previous Step 20
get_data_from_step_by_name 20
get_data_from_step_by_order 21
join_previous_step_data 21

Step Parameters 22
Base Parameters Available in All Steps 22

Defining a Parameter 23
Retrieving Parameter Values 23
Variable Substitution in Parameters 24

Defining Logging for the Step 25
Raising Exceptions 26
Uploading Your Step 26
Uploading a Step with iscli 26
Uploading a Step with the API 27

Validating Your Step 27
Viewing Logs 28
Default Steps 30

Creating an SL1 PowerFlow Application 32
What is a PowerFlow Application? 33
Workflow for Creating an Application 34
View the "Template App" PowerFlow Application 34
Creating an Application from the Application Template 34
Defining Required Fields for the Application 35
Example Code: integration_template 36

Creating the List of Steps and Step Parameters 37
Specifying Values for name and file 38

Specifying the Parameters 39
Transferring Data Between Steps 39
Defining Retry Options for a Step 40
Defining Variables for an Application 42
Uploading the Application to PowerFlow 43
Uploading an Application with iscli 44
Uploading an Application with the API 44

Running the Application 45
Running the Application with a Custom Queue 46
Defining a Custom Queue 46
Configuring an Application to Use a Custom Queue 50
Configuring an Application to Always Use a Custom Queue 50
Configuring an Application to Use a Custom Queue at Run Time 52

Defining a Configuration Object 52
Uploading the Configuration Object to PowerFlow 54
Uploading a Configuration with iscli 55
Uploading a Configuration Object Using the API 55

View Logs for an Application 56
Creating a SyncPack 59
What is a SyncPack? 60
Generating the SyncPack Structure 60
SyncPack Structure 61
SyncPack Properties 62
Example Code: meta.json 62

Building a SyncPack 63
Building a SyncPack with Python3 63
Building a SyncPack with the iscli Utility 64

Extending an Existing SyncPack 64
Restrictions 64
Advanced Method: Extracting and Updating an Existing SyncPack 64
Basic Method: Modifying Individual Steps and Applications 66
Modifying Application Definitions 66
Modifying a Step 66

Example Code: Full Extended Step 68
Uploading a SyncPack with the PowerFlow User Interface 69
Uploading a SyncPack with the User Interface 69
Uploading a SyncPack with the iscli Utility 69

Activating and Installing a SyncPack 70
Activating and Installing a SyncPack with the User Interface 70
Activating and Installing with the iscli Utility 71

ipaascore.BaseStep class 72
get_app_variable 73

Description 73
Syntax 73
Parameters 73
Return 73
Example 73

get_available_previous_step_input_positions 75
Description 75
Syntax 75
Return 75

get_data_from_step_by_name 76

Description 76
Syntax 76
Parameters 76
Return 76
Example 76

get_data_from_step_by_order 77
Description 77
Syntax 77
Parameters 77
Return 77
Exception 77
Example 77

get_name 78
Description 78
Syntax 78
Return 78

get_parameter 79
Description 79
Syntax 79
Parameters 79
Return 79
Example 79

get_parameter_from_previous_step 81
Description 81
Syntax 81
Parameters 81
Return 81

join_previous_step_data 82
Description 82
Syntax 82
Parameters 82
Return 82
Example 83

new_step_parameter 84
Description 84
Syntax 84
Parameters 84
Example 85

save_data_for_next_step 86
Description 86
Syntax 86
Parameters 86
Example 86

validate_parameter_values 87
Description 87
Syntax 87

Reference: Tools for SL1 PowerFlow 88
iscli 89
Syntax 89
List of Arguments 90

PowerFlow API 91
Viewing API Documentation 91

Available Endpoints 91
POST 91
GET 92
DELETE 93

Chapter

1
Introduction to SL1 PowerFlow for Developers

Overview

This manual describes how you can use the tools included in SL1 PowerFlow and your own tools to create custom
PowerFlow applications, steps, and configuration objects that you can use with PowerFlow.

This chapter covers the following topics:

What is SL1 PowerFlow? 5

Tools Included with PowerFlow 5

Prerequisites for Creating PowerFlow Steps and Applications 6

4

5

What is SL1 PowerFlow?

SL1 PowerFlow enables intelligent, bi-directional integration between SL1 and third-party applications to
promote a unified management ecosystem. PowerFlow contains default workflows that let users translate and
share data between SL1 and third-party applications, and it also allows the development of standardized,
reusable snippets called "steps" that non-developers can use to create integration workflows without writing code.
In addition, PowerFlow is designed to provide high availability and scalability.

The following image shows an example of a PowerFlow application workflow and its steps in the PowerFlow user
interface:

Tools Included with PowerFlow

PowerFlow includes the following tools for creating custom integrations:

l iscli. PowerFlow includes a command-line tool called iscli (PowerFlow Command Line Interface). When you
install PowerFlow, iscli is automatically installed. The iscli allows you to upload PowerFlow applications,
steps, and configuration objects. For more information, see the section on iscli.

l IS API. PowerFlow includes an API. When you install PowerFlow, the API is available. For more information,
see the section on the API.

What is SL1 PowerFlow?

Prerequisites for Creating PowerFlow Steps and Applications

l ipaascore.BaseStep class. This Python class is included with PowerFlow, and it contains multiple pre-
defined functions that you can use when you are writing or editing a step. For more information, see the
section on ipaascore.BaseStep class.

l Base Steps SyncPack. The Base Steps SyncPack includes a number of basic steps that perform common API
calls. For more information, see Default Steps.

In addition, you can contact your ScienceLogic Customer Success Manager (CSM) to get access to the following
tool, which is not included in a PowerFlow system:

l PowerFlow SyncPack Cookiecutter. Provides a template that you can use to create SyncPacks in a
repeatable manner. For more information seeGenerating the SyncPack Structure.

Prerequisites for Creating PowerFlow Steps and Applications

To create your own PowerFlow steps and applications, you must:

l Deploy a PowerFlow system and ensure it is accessible. For details, see the SL1 PowerFlow Platform
manual.

l Have SSH or console access to the PowerFlow system, so you can use the iscli (PowerFlow Command
Line Interface). You will use the iscli to upload steps, applications, and configurations to PowerFlow.

l Be comfortable with Python.

l Install a local copy of a Python IDE to use for development.

l Install a local copy of an API tool, like cURL or Postman.

l Install a local copy of a source-code editor like Notepad++, vi, or TextEdit.

6

Chapter

2
Creating a Step

Overview

This chapter explains how to create one or more steps that you can then upload and use in your PowerFlow
system.

After you create steps, you can use them with other steps in one or more PowerFlow applications.

TIP: You can also use the PowerFlow user interface to perform many of the actions in this chapter. For more
information, seeManaging SL1 PowerFlow Applications.

NOTE: All Python step code should be Python 3.7 or later.

This chapter covers the following topics:

What is a Step? 8

Workflow for Creating a Step 11

Creating a Step from the Step Template 11

Including the Subclass and Required Methods 13

Defining the Logic for the Step 17

Transferring Data Between Steps 19

Step Parameters 22

Defining Logging for the Step 25

Raising Exceptions 26

7

https://docs.sciencelogic.com/latest/Content/Web_Content_Dev_and_Integration/IS_Platform/is_platform_integration_registry_and_editor.htm

8

Uploading Your Step 26

Validating Your Step 27

Viewing Logs 28

Default Steps 30

What is a Step?

In PowerFlow, a step is a generic Python class that performs a single action, such as gathering data about an
organization.

Steps can accept zero or many input parameters or data from previous steps, and steps can specify output to be
used by other steps. The input parameters are configurable variables and values used during execution.

You can use existing steps to create your own workflows, and you can re-use steps in more than one workflow.
When these steps are combined in an application, they provide a workflow that satisfies a business requirement.
All Python step code should be Python 3.7 or later.

The following image shows a step from the PowerFlow user interface:

Using Steps in a PowerFlow Application

You can create new steps or use existing steps to create your own workflows, and you can re-use steps in more
than one workflow. When these steps are combined as part of a PowerFlow application, they provide a workflow
that satisfies a business requirement.

For example, the set of steps below in the "Sync Organizations from SL1 to ServiceNow Companies" application
in the PowerFlow user interface gathers data about SL1 organizations and ServiceNow companies, processes that
data based on the configuration settings specified for that set of steps, and posts that data to SL1 and ServiceNow
to keep the organization and company data in sync in both places:

What is a Step?

What is a Step?

In the PowerFlow builder user interface, if you click the ellipsis icon () on a step, you can select View step code
to view the Python code for that step:

Using Input Parameters to Configure a Step

You can configure how a step works by adjusting a set of arguments called input parameters. The parameters
specify the values, variables, and configurations to use when executing the step. Parameters allow steps to accept
arguments and allow steps to be re-used in multiple integrations.

For example, you can use the same step to query both the local system and another remote system; only the
arguments, such as hostname, username, and password change.

To view and edit the input parameters for a step in the PowerFlow builder:

1. Go to the Applications page of the PowerFlow user interface and click the name of a PowerFlow
application.

2. Click the [Open Editor] button.

9

10

3. Click the ellipsis icon () on the step and select Configure. The Configuration pane for that step appears:

Sharing Data Between Steps

A step can pass the data it generates during execution to a subsequent step. A step can use the data generated by
another step. Also, you can run test data for that step by hovering over the [Run] button and selecting Custom
Run.

PowerFlow analyzes the required parameters for each step and alerts you if any required parameters are missing
before running the step.

Types of Steps

Steps are grouped into the following types:

l Standard. Standard steps do not require any previously collected data to perform. Standard steps are
generally used to generate data to perform a transformation or a database insert. These steps can be run
independently and concurrently.

l Aggregated. Aggregated steps require data that was generated by a previously run step. Aggregated steps
are not executed by PowerFlow until all data required for the aggregation is available. These steps can be
run independently and concurrently.

l Trigger. Trigger steps are used to trigger other PowerFlow applications. These steps can be configured to
be blocking or not (in other words, if the step is set to be blocking and it fails to trigger the application, the
application will fail).

A variety of generic steps are available from ScienceLogic, and you can access a list of steps by sending a GET
request using the API /steps endpoint.

What is a Step?

https://docs.sciencelogic.com/latest/Content/Web_Content_Dev_and_Integration/IS_Platform/is_platform_api.htm#GET

Workflow for Creating a Step

Workflow for Creating a Step

To create a custom step without using the PowerFlow user interface:

1. Download or copy the step template, called stepTemplate.

2. Set up the required classes and methods in the step.

3. Define logic for the step, including transferring data between steps.

4. Define parameters for the step.

5. Define logging for the step.

6. Define exceptions for the step.

7. Upload the step to PowerFlow.

8. Validate and test the step.

Creating a Step from the Step Template

The easiest way to create a new step is to use the step template that is included with PowerFlow. To copy this
template to your desktop:

1. Using an API tool like Postman or cURL, use the API GET /steps/{step_name}:

GET <URL_for_PowerFlow>/api/v1/steps/stepTemplate

where <URL_for_PowerFlow> is the IP address or URL for PowerFlow.

For example:

https://10.1.1.111/api/v1/steps/stepTemplate

2. Select and copy all the text from the "data" field in the stepTemplate.

3. Open a source-code editor and paste the content of the stepTemplate in the source-code editor.

4. Save the new file as newfilename.py where newfilename.py is the new name of the step and includes the
.py suffix.

The file name must be unique within your PowerFlow system and cannot contain spaces. Note that the step
name will also be the name of the Python class for the step.

Example Code: stepTemplate

You can also copy the following code from the stepTemplate.py file and paste it into a source-code editor to
create your own template file:

11

12

from ipaascore.BaseStep import BaseStep

from ipaascommon import ipaas_exceptions

"""

Name of the class must match the name of the file (without the .py)

"""

DESCRIPTION = "A brief description of what this step will do. This will be

visibile from the GUI"

class stepTemplate(BaseStep):

def __init__(self):

Define step parameters here that are expected as input for this

step. The values for the step parameters will

be defined as json data when making requests to execute this

step.

#

Any parameter values set in the step execution json will be

retrievable at runtime from the class.

#

If a param is defined as required, the parser will

throw an exception if a value is not set. Add as many parameters

as you like without repeating them

self.new_step_parameter(name="parameter_name", descrip-

tion="parameter description", sample_value="sample value",

default_value=None, required=False)

def execute(self):

"""

All logic main logic for executing the step happens here

:return:

"""

You can retrieve parameter value set in the json file (defined

in init) like this:

step_param_value = self.get_parameter("parameter_name")

You can retrieve application wide variable values like this:

Creating a Step from the Step Template

Including the Subclass and Required Methods

app_variable_value = self.get_app_variable("app-var-name")

You can log with the built in python logging levels like this.

All logging for this step will be written to

stdout and its own file

self.logger.info("Loaded parameter value: {val} for parameter:

{name}".format(val=step_param_value,

name="parameter_name"))

You can retrieve data saved from a previous step by name like

this:

other_step_data = self.get_data_from_step_by_name('previous_step_

name')

If you just want to get all data from all previous steps out-

puting to this one at once, you can

use the data merge helper:

all_step_data_combined = self.join_previous_step_data()

Perform whatever logic you want here

In the event of a failure, you can raise any exception to exit.

We recommend using the StepFailedException but

this is not required

raise ipaas_exceptions.StepFailedException("Error occurred")

You can save data generated from this step which will auto-

matically be available in subsequent steps like so:

save_data = {'key': 'value'}

self.save_data_for_next_step(save_data)

Including the Subclass and Required Methods

To execute successfully on PowerFlow, your step must be a subclass of the ipaascore.BaseStep class. The
ipaascore.BaseStep class is a Python class that is included with PowerFlow, and it contains multiple predefined
functions that you can use when you are writing or editing a step.

13

14

Your new step must include the initmethod and the executemethod. These methods are explained in the
Required Methods section, below.

Subclass

The stepTemplate.py file is already configured to include the new step as a subclass of the ipaascore.BaseStep
class. To update your step:

1. Use a source-code editor to open the new .py file for editing.

2. Notice that the file includes these lines of text:

from ipaascore.BaseStep import BaseStep

from ipaascommon import ipaas_exceptions

Do not remove or alter these lines of text.

3. Search for the following:

class stepTemplate(BaseStep):

4. Replace stepTemplate with the new name of the file (without the .py suffix).

5. Save and close the file.

Required Methods

To execute successfully on PowerFlow, your step must contain at least these two methods:

l init method. This method lets you define initialization options and parameters for the step.

l execute method. This method includes the logic for the step and performs the action. After PowerFlow
evaluates all parameters and initialization settings and aligns the step with a worker process, PowerFlow
examines the execute method.

Without these methods, PowerFlow will consider your step to be "incomplete" and will not execute the step.

Including the Subclass and Required Methods

Including the Subclass and Required Methods

The stepTemplate.py file includes these two methods and the syntax of some of the sub-methods you can use
within the main methods:

Example Code: Subclass and Required Methods

For example, the "GetREST" step from the "Base Steps" SyncPack contains the following code (the init and
executemethods are bolded in the code below):

from ipaascommon.ipaas_exceptions import StepFailedException

from ipaascommon.ipaas_utils import str_to_bool

from base_steps_syncpack.steps.HTTPBaseStep import HTTPBaseStep

from base_steps_syncpack.util.request_params import (

chunk_size_param,

chunk_name_for_pos_in_url_param,

chunk_name_for_max_in_url_param,

chunk_name_for_total_param,

chunk_name_for_returned_param,

missing_return_total_param,

)

class GetREST(HTTPBaseStep):

15

16

def __init__(self):

super(GetREST, self).__init__()

self.friendly_name = "GetREST"

self.description = "Step facilitates REST GET interactions and

will return the returned data dictionary and specified headers as data to

the next step"

self.version = "1.0.0"

self.add_step_parameter_from_object(chunk_size_param)

self.add_step_parameter_from_object(chunk_name_for_pos_in_url_

param)

self.add_step_parameter_from_object(chunk_name_for_max_in_url_

param)

self.add_step_parameter_from_object(chunk_name_for_total_param)

self.add_step_parameter_from_object(chunk_name_for_returned_param)

self.add_step_parameter_from_object(missing_return_total_param)

self.enable_paging = True

self.method = "GET"

def execute(self):

if not self.chunk_size:

self.chunk_size = int(self.get_parameter(chunk_size_para-

m.name))

self.chunk_name_for_pos_in_url = self.get_parameter(

chunk_name_for_pos_in_url_param.name

)

self.chunk_name_for_max_in_url = self.get_parameter(

chunk_name_for_max_in_url_param.name

)

self.chunk_name_for_total = self.get_parameter(chunk_name_for_

total_param.name)

self.chunk_name_for_returned = self.get_parameter(

chunk_name_for_returned_param.name

)

if self.missing_return_total is None:

self.missing_return_total = str_to_bool(

self.get_parameter(missing_return_total_param.name)

)

Including the Subclass and Required Methods

Defining the Logic for the Step

try:

self.execute_request()

response = self.get_current_saved_data()

self.save_data_for_next_step(response)

except StepFailedException as err:

if len(err.args) > 1:

self.save_data_for_next_step(err.args[1])

raise StepFailedException(err.args[0])

Defining the Logic for the Step

Each step requires the initmethod and the executemethod. Within those methods, you can specify parameters
and logic for the step.

The init Method

Defining the Step Name, Description, and Version

From the initmethod, you can define the friendly name, the step description, and the step version. The following
code examples contain the definitions for each value:

self.friendly_name = "friendly name of the step. This name appears in

the user interface"

self.description = "Description of the step"

self.version = "version number"

In the "GetREST" step, the friendly name, description, and version number are defined like this:

def __init__(self):

self.friendly_name = "GetREST"

self.description = "Step facilitates REST interactions and will

return the returned data dictionary and specified headers as data to

the next step"

self.version = "1.0.0"

17

18

Defining Parameters for the Step

From the initmethod, you also define the input parameters for the step. The input parameters specify the values,
variables, and configurations to use when executing the step. Parameters allow steps to accept arguments and
allow steps to be re-used in multiple integrations. PowerFlow will examine the parameters for the step and
enforce the parameters when the step is run.

TIP: Parameters display as editable fields on the Configuration pane for that step in the PowerFlow user
interface.

For example, if you specify a parameter as required, and the user does not specify the required parameter when
calling the step, PowerFlow will display an error message and will not execute the step.

To define a new parameter, use the self.new_step_parameter function:

self.new_step_parameter(

name=<parameter_name>,

description="<description>",

sample_value="<sample_value>",

default_value=<default_value>,

required=<True/False>,

param_type=parameter_types.<Number/String/Boolean>Parameter(),

)

where:

l name. The name of the parameter. This value will be used to create a name:value tuple in the PowerFlow
application file (in JSON).

l description. A description of the step parameter.

l sample_value. A sample value of the required data type or schema.

l default_value. If no value is specified for this parameter, use the default value. Can be any Python data
structure. To prevent a default value, specify None.

l required. Specifies whether this parameter is required by the step. The possible values are True or
False.

l param_type. Specifies the type of parameter. Options include Number, String, Boolean. This setting is
optional.

Defining the Logic for the Step

Transferring Data Between Steps

The following is an example from the "Cache Save" step from the "Base Steps" SyncPack:

self.new_step_parameter(

name=SAVE_KEY,

description="The key for which to save this data with",

sample_value="keyA",

default_value=None,

required=True,

param_type=parameter_types.StringParameterShort(),

)

The execute Method

From the executemethod you can:

l Use Python logic and functions

l Retrieve the value of a parameter with self.get_parameter

l Retrieve data from a previous step in the application

l Save data for use by the next step in the application

l Define logging for the step

l Define exceptions for the step

For details on all the functions you can use in the executemethod, see the chapter on the ipaascore.BaseStep
class.

You can also define additional methods in the step. For examples of this and other examples of the logic in a
step, see the any of the steps in the "Base Steps" SyncPack provided with PowerFlow.

Transferring Data Between Steps

An essential part of integrations is passing data between tasks. PowerFlow includes native support for saving and
transferring Python objects between steps. The ipaascore.BaseStep class includes multiple functions for
transferring data between steps.

Saving Data for the Next Step

The save_data_for_next_step function saves an object or other type of data and make the data available to
another step. The object to be saved and made available must be able to be serialized with pickle. For more
information about pickle, see https://docs.python.org/3/library/pickle.html.

For example:

save_data_for_next_step(<data_to_save>)

where: <data_to_save> is a variable that contains the data.

19

https://docs.python.org/3/library/pickle.html

20

NOTE: The <data_to_save> object must be of a data type that can be pickled by Python: None, True
and False, integers, long integers, floating point numbers, complex numbers, normal strings,
unicode strings, tuples, lists, set, and dictionaries.

The following is an example of the save_data_for_next_step function:

save_data = {'key': 'value'}

self.save_data_for_next_step(save_data)

The PowerFlow application must then specify that the data from the current step should be passed to one or more
subsequent step, using the output_to parameter. For more information, see Transferring Data Between Steps.

Retrieving Data from a Previous Step

The ipaascore.BaseStep class includes multiple functions that retrieve data from a previous step:

l get_data_from_step_by_name

l get_data_from_step_by_order

l join_previous_step_data

IMPORTANT: To retrieve data from a previous step:

1. That previous step must save the data with the save_data_for_next_step function.

2. The PowerFlow application must specify that the data from the previous step should be passed to the
current step using the output_to parameter.

get_data_from_step_by_name

The get_data_from_step_by_name function retrieves data saved by a previous step.

NOTE: Although the get_data_from_step_by_name function is simple to use, it does not allow you to write
a generic, reusable step, because the step name will be hard-coded in the function. The join_
previous_step_data or get_data_from_step_by_order functions allow you to create a more
generic, reusable step.

For example:

get_data_from_step_by_name('<step_name>')

Transferring Data Between Steps

Transferring Data Between Steps

where <step_name> is the name of a previous step in the PowerFlow application. Use the system name
of the step, not the "friendly name" with spaces that appears in the PowerFlow user interface.

The following is an example of the get_data_from_step_by_name function:

em7_data = self.get_data_from_step_by_name('FetchDevicesFromEM7')

snow_data = self.get_data_from_step_by_name('FetchDevicesFromSnow')

get_data_from_step_by_order

The get_data_from_step_by_order function retrieves data from a step based on the position of the step in the
application.

For example:

get_data_from_step_by_order(<position>)

where: <position> is the position of the step (the order that the step was run) in the PowerFlow application.
Position starts at 0 (zero).

For example:

l Suppose your application has four steps: stepA, stepB, stepC, and stepD

l Suppose stepA was run first (position 0) and includes the parameter output_to:[stepD]

l Suppose stepB was run second (position 1) and includes the parameter output_to:[stepD]

l Suppose stepC was run third (position 2) and includes the parameter output_to:[stepD]

l Suppose stepD was run fourth

If the current step is stepD, and stepD needs the data from stepC, you could use the following:

data_from_stepC = self.get_data_from_step_by_order(2)

join_previous_step_data

The join_previous_step_data function is the easiest and most generic way of retrieving data from one or more
previous steps in the application.

If you are expecting similar data from multiple steps, or expecting data from only a single step, the join_
previous_step_data function is the best choice.

The join_previous_step_data function gathers all data from all steps that included the save_data_for_next_
step function and also include the output_to parameter in the application. By default, this function returns the
joined set of all data that is passed to the current step. You can also specify a list of previous steps from which to
join data.

The retrieved data must be of the same type. The data is then combined into a list in a dictionary. If the data types
are not the same, then the function will raise an exception.

21

22

For example:

join_previous_step_data(<step_name>)

where <step_name> is an optional argument that specifies the steps. For example, if you wanted to join
only the data from stepA and stepD, you could specify the following:

self.join_previous_step_data(["stepA", "stepD"]),

The following is an example of the join_previous_step_data function in the "SaveToCache" step (included in
each PowerFlow system):

def execute(self):

data_from = self.get_parameter(DATA_FROM_PARAM, {})

if data_from:

data_to_cache = self.join_previous_step_data(data_from)

else:

data_to_cache = self.join_previous_step_data()

...

Step Parameters

Steps accept arguments, called input parameters. Users can configure these parameters to specify the values,
variables, and configurations to use when executing.

Base Parameters Available in All Steps

The BaseStep class has a few base parameters that are automatically inherited by all steps and cannot be
overwritten. You do not need to define these parameters before using them in steps:

l name. The application-unique name for this step. That parameter can be used by other steps to refer to a
step.

l file. The name of the file that will be executed by the step. For example, you could write step logic in a
single file, but use that step logic with different applications and use different names for the step in each
application.

l output_to. A list indicating that the data retrieved from this step should be output to another step. Setting
this parameter links the steps, and the subsequent step will be able to retrieve data from the current step.
The format is:

"output_to":["stepA", "stepB"]

Step Parameters

Step Parameters

Defining a Parameter

From the initmethod, you can define one ore more input parameters for the step. The PowerFlow system will
examine the parameters and enforce the parameters when the step is run.

For example, if you specify a parameter as required, and the user does not specify the required parameter when
calling the step, the PowerFlow system will display an error message and will not execute the step.

To define a parameter, use the new_step_parameter function.

self.new_step_parameter(

name=<parameter_name>,

description="<description>",

sample_value="<sample_value>",

default_value=<default_value>,

required=<True/False>,

param_type=parameter_types.<Number/String/Boolean>Parameter(),

)

where:

l name. The name of the parameter. This value will be used to create a name:value tuple in the PowerFlow
application file (in JSON).

l description. A description of the step parameter.

l sample_value. A sample value of the required data type or schema.

l default_value. If no value is specified for this parameter, use the default value. Can be any Python data
structure. To prevent a default value, specify None.

l required. Specifies whether this parameter is required by the step. The possible values are True or
False.

l param_type. Specifies the type of parameter. Options include Number, String, Boolean. This setting is
optional.

The following is an example from the GetREST step:

self.new_step_parameter(name=PREFIX_URL, description="used with

relative_url to create the full URL.", sample_

value="http://10.2.11.253", default_value=None, required=True)

Retrieving Parameter Values

To retrieve the latest value of a parameter, use the get_parameter function.

get_parameter("<param_name>", <lookup_data>=None)

where:

23

24

l <param_name>. The name of the parameter that you want to retrieve the value for.

l <lookup_data>. An optional dictionary that can provide a reference for additional variable substitutions.

For example, suppose we defined this parameter in the step named "GETgoogle":

self.new_step_parameter(name=prefix_url, description="used with relative_

url to create the full URL.", sample_value="http://10.2.11.253", default_

value=None, required=True)

Suppose in the PowerFlow application that calls "GETgoogle", we specified:

"steps": [

{

"file": "GetREST",

"name": "GETgoogle",

"output_to": ["next_step"],

"prefix_url": "http://google.com"

}

],

Suppose we use the get_parameter function in the step "GETgoogle" to retrieve the value of the "prefix_
url" parameter:

build_url_1 = self.get_parameter("prefix_url")

The value of build_url_1 would be "http://google.com".

Variable Substi tut ion in Parameters

PowerFlow lets you define variables so that input parameters can be populated dynamically.

To include a variable in a parameter, use the following syntax:

${<exampleVariable>}

Step Parameters

Defining Logging for the Step

PowerFlow includes the following types of variables that you can use in parameters:

l ${object_from_previous_step}. PowerFlow will search the data from the previous steps for
object_from_previous_step. If found, PowerFlow substitutes the value of the object for the variable.

l ${config.<exampleVariable>}. Configuration variables are defined in a stand-alone file that lives
on PowerFlow and can be accessed by all applications and their steps. Including the config. prefix with a
variable tells PowerFlow to look in a configuration file to resolve the variable. If you want to re-use the same
settings (like hostname and credentials) between applications, define configuration variables.

l ${appvar.<exampleVariable>}. Application variables are defined in the PowerFlow application.
These variables can be accessed only by steps in the application. Including the appvar. prefix with a
variable tells PowerFlow to look in the application to resolve the variable.

l ${stepfunc.<exampleFunctionargs>}. The variable value will be the output from the user-
defined function, specified in exampleFunction, with the arguments specified in args. The
exampleFunctionmust exist in the current step. Additional parameters can be specified as args with a
space delimiter. You can also specify additional variable substitution values as the arguments. This allows
you to dynamically set the value of a variable using a proprietary function, with dynamically generated
arguments. For example:

"param": "${step_func.add_numbers 1 2}"

will call a function (defined in the current step) called “add_numbers” and pass it the arguments "1" and
"2". The value of "param" will be "3".

For details on defining configuration variables and application variables, see Defining Variables for an
Application.

Defining Logging for the Step

PowerFlow includes a logger for steps. The BaseStep class initializes the logger, so it is ready for use by each step.

To define logging in a step, use the following syntax:

self.logger.<logging_level> ("<log_message>")

where:

l <logging_level> is one of the following Python logging levels:

o critical

o error

o info

o warning

l <log_message> is the message that will appear in the step log.

For example :

self.logger.info("informational message")

25

26

Raising Exceptions

PowerFlow natively handles exceptions raised from custom steps. You can include a user-defined exception or
any standard Python exception.

If an exception is raised at runtime, the step will immediately be marked as a failure and be discarded.

To view the exception and the complete stack trace, use the steps in Viewing Logs.

Uploading Your Step

When you create a new step or edit an existing step, you must upload the step to the PowerFlow system.

There are two ways to upload a step to the PowerFlow system:

l At the command line with the iscli utility

l With the API

Uploading a Step with iscli

The PowerFlow system includes a command-line tool called iscli. When you install PowerFlow, iscli is
automatically installed.

To upload a step to PowerFlow using iscli:

1. Either go to the console of PowerFlow or use SSH to access the server.

2. Log in as isadmin with the appropriate password.

3. Enter the following at the command line:

iscli -u -s -f <path_and_name_of_step_file>.py -H <hostname_or_IP_

address_of_powerflow> -P <port_number_of_http_on_powerflow> -U <user_

name> -p password

where:

l <path_and_name_of_step_file> is the full pathname for the step.

l <hostname_or_IP_address_of_powerflow> is the hostname or IP address of
PowerFlow.

l <port_number_of_http_on_powerflow> is the port number to access PowerFlow. The
default value is 443.

Raising Exceptions

Validating Your Step

l <user_name> is the user name you use to log in to PowerFlow.

l password is the password you use to log in to PowerFlow.

Uploading a Step with the API

PowerFlow includes an API that you can use to upload steps.

To upload a step with the API POST /steps:

POST /steps

{

"name": "name_of_step",

"data": "string"

}

where data is all the information included in the step.

Validating Your Step

After uploading a step, you can use the API POST /steps/run to run the step individually without running an
application. This allows you to validate that the step works as designed.

To run a step from the IS API:

POST /steps/run

{

"name": "name_of_step",

all other data from the .json file for the step

}

After the POST request is made, PowerFlow will dispatch the step to a remote worker process for execution. By
default, the POST request will wait five seconds for the step to complete. To override the default wait period, you
can specify wait time as a parameter in the POST request. For example, to specify that the wait time should be 10
seconds :

POST /steps/run?wait=10

{

27

28

"name": "example_step",

}

If the step completes within the wait time, PowerFlow returns a 200 return code, logs, output, and the result of the
step.

IMPORTANT: If the step does not complete within the wait time, PowerFlow returns a task ID. You can use
this task ID to view the logs for the step.

The API returns one of the following codes:

l 200. Step executed and completed within the timeout period.

l 202. Step executed but did not complete with timeout period or user did not specify wait. Returned data
includes task to query for the status of the step

l 400. Required parameter for the step is missing.

l 404. Step not found.

l 500. Internal error. Database connection might be lost.

Viewing Logs

After running a step, you can view the log information for a step. Log information for a step is saved for the
duration of the result_expires setting in the PowerFlow system. The result_expires setting is defined in the file
opt/iservices/scripts/docker-compose.yml. The default value for log expiration is 24 hours.

NOTE: To view the log information for a step before running an integration, you can use the API POST
/steps run to run the step individually without running an application. You can then use the
information in step 3-6 below to view step logs.

To view the log information for a step:

1. Run a PowerFlow application.

2. Using an API tool like Postman or cURL, use the APIGET /applications/{appName}/logs:

GET <URL_for_PowerFlow>/api/v1/applications/<application_name>/logs

3. You should see something like this:

{

"app_name": "example_integration",

Viewing Logs

Viewing Logs

"app_vars": {},

"href": "/api/v1/tasks/isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",

"id": "isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",

"start_time": 1527429570,

"state": "SUCCESS",

"steps": [

{

"href": "/api/v1/tasks/2df5e7d5-c680-4d9d-860c-e1ceccd1b189",

"id": "2df5e7d5-c680-4d9d-860c-e1ceccd1b189",

"name": "First EM7 Query",

"state": "SUCCESS",

"traceback": null

},

{

"href": "/api/v1/tasks/49e1212b-b512-4fa7-b099-ea6b27acf128",

"id": "49e1212b-b512-4fa7-b099-ea6b27acf128",

"name": "second EM7 Query",

"state": "SUCCESS",

"traceback": null

}

],

"triggered_by": [

{

"application_id": "isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",

29

30

"triggered_by": "USER"

}

]

}

4. In the "steps" section, notice the lines that start with href and id. You can use these lines to view the
logs for the application and the steps.

5. To use the href_value to get details about a step, use an API tool like Postman or cURL and then use
the APIGET /steps{step_name}:

GET <URL_for_PowerFlow>/<href_value>

where <href_value> is the href value you can copy from the log file for the application. The href value
is another version of the step name.

NOTE: To view logs for subsequent runs of the application, you can include the href specified in the
last_run field.

6. To use the task id value to views details about a step, use an API tool like Postman or cURL and then use
the APIGET /tasks/{task_ID}:

GET <URL_for_PowerFlow>/<task_id>

where <task_id> is the ID value you can copy from the log file for the application. The task ID specifies
the latest execution of the step.

NOTE: After you find the href and task ID for a step, you can use those values to retrieve the most recent logs
and status of the step.

Default Steps

The "Base Steps" SyncPack contains a default set of steps that are used in a variety of different SyncPacks. You
must install and activate this SyncPack before you can run any of the other SyncPacks.

This SyncPack is included with the most recent release of the PowerFlowPlatform.

Starting with version 1.5.0 of the "Base Steps" SyncPack, the "QueryREST" has been deprecated. ScienceLogic
recommends that you use REST steps included in version 1.5.0 instead: "GetREST", "PostREST", "DeleteREST", and
"PutREST".

Default Steps

Default Steps

TIP: To view the latest releases of this SyncPack, see SL1 PowerFlow SyncPack Release Notes.

NOTE: You can download this SyncPack from the PowerPacks page of the Support Site.

31

https://docs.sciencelogic.com/release_notes_html/Content/sl1_workflow_automation_packs.htm
https://support.sciencelogic.com/s/powerpacks

Chapter

3
Creating an SL1 PowerFlow Application

Overview

This chapter explains how to create your own application that can run on a PowerFlow system.

TIP: You can also use the PowerFlow user interface to perform many of the actions in this chapter. For more
information, seeManaging SL1 PowerFlow Applications.

This chapter covers the following topics:

What is a PowerFlow Application? 33

Workflow for Creating an Application 34

View the "Template App" PowerFlow Application 34

Creating an Application from the Application Template 34

Defining Required Fields for the Application 35

Creating the List of Steps and Step Parameters 37

Transferring Data Between Steps 39

Defining Retry Options for a Step 40

Defining Variables for an Application 42

Uploading the Application to PowerFlow 43

Running the Application 45

Running the Application with a Custom Queue 46

Defining a Configuration Object 52

Uploading the Configuration Object to PowerFlow 54

32

https://docs.sciencelogic.com/latest/Content/Web_Content_Dev_and_Integration/IS_Platform/is_platform_integration_registry_and_editor.htm

33

View Logs for an Application 56

What is a PowerFlow Application?

In PowerFlow, an application is a JSON object that specifies which steps to execute and the order in which to
execute those steps. An application also defines variables and provides arguments for each step.

An application combines a set of PowerFlow steps that execute a workflow. The input parameters for each step
are also defined in the application and can be provided either directly in the step or in the parent application.

The following is an example of a PowerFlow application:

PowerFlow application JSON objects are defined by configuration settings, steps that make up the application,
and application-wide variables used as parameters for each step. The parameters of each step can be configured
dynamically, and each step can be named uniquely while still sharing the same underlying class, allowing for
maximum re-use of code.

You can run an application in the PowerFlow user interface. You can also execute an application through the
REST API, and PowerFlow will process the application as an asynchronous task. Executing an application from the
REST API lets you dynamically set parameter values for the variables defined in the application.

During processing, PowerFlow generates a unique task ID for the application and each of its tasks. Using the task
IDs, you can poll for the status of the application and the status of each individual running step in the application.

The required parameters of applications are strictly enforced, and PowerFlow will refuse to execute the
application if all required variables are not provided.

What is a PowerFlow Application?

Workflow for Creating an Application

Workflow for Creating an Application

To create a PowerFlow application, you must perform these tasks:

1. Download a copy of the application template.

2. Define the required fields for the application.

3. Create the list of steps and step parameters.

4. Define application variables.

5. Upload the application to PowerFlow.

6. Validate and test the application.

View the "Template App" PowerFlow Application

PowerFlow includes a pre-defined application called integration_template. This default application appears in
the PowerFlow user interface as the Template App application.

To view the Template App application:

1. Log into the PowerFlow user interface and go to the Applications page.

2. In the Search Applications field or the Application Name filter, type "Template App."

3. Select Template App from the list. The Template App detail page appears.

Creating an Application from the Application Template

The easiest way to create a new application is to use the application template that is included with the PowerFlow
system. To copy this template to your desktop:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name}:

GET <URL_for_PowerFlow>/api/v1/applications/integration_template

where <URL_for_PowerFlow> is the IP address or URL for the PowerFlow system.

2. Select and copy all the text in the application.

3. Open a source-code editor and paste the application in the source-code editor.

4. Save the new file as<newfilename>.json.

where<newfilename>.json is the new name of the application includes the .json suffix. The file name
must be unique within your PowerFlow system and cannot contain spaces.

34

35

Defining Required Fields for the Application

A PowerFlow application must include the following key:value pairs:

l "author": "name of the author",

l "configuration": "if this application uses configuration variables,
specify the name of the configuration object",

l "description": "description of the application",

l "friendly_name": "name that appears in the user interface",

l "name": "file name without the py suffix",

l "version": "version number",

The integration_template includes the required fields listed above. You can edit the value for each key. To do
so:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name}:

GET <URL_for_PowerFlow/api/v1/applications/<application_name>

where <application_name> is the application you want to edit.

2. Copy the contents of the application to a source-code editor.

3. Search for the section of the file that contains the text "description".

4. Supply new values for the following keys:

l author. User who created the application template.

l configuration (if applicable). Configuration variables are defined in a stand-alone file called a
configuration object that lives on the PowerFlow system and can be accessed by all PowerFlow
applications and their steps. If your application or the steps in the application reference configuration
variables, you must specify the name of the configuration object in this value. For more details on
creating a configuration object, see the section on Defining a Configuration Object.

l description. This description will be displayed in the PowerFlow user interface when viewing the
available applications.

l friendly_name. The name of the application as it will appear in the user interface.

l name. Name of the file, without the .py suffix.

l Version. Version number of the application.

5. Save your changes. Save the file to the same name (<application_name>.json.)

6. To upload the application to the PowerFlow system, see the section on Uploading an Application.

Defining Required Fields for the Application

Defining Required Fields for the Application

Example Code: integration_template

{

"app_variables": [

{

"created_by_user": true,

"default_value": "DefaultValue",

"description": "Variables defined here will be available in

all steps of an application. Note that setting app variables manually is

not recommended. Whenever an app is saved with steps referencing an

appvar, one will automatically be created",

"name": "exampleVariable",

"required": true,

"sample_value": "SampleValue",

"type": {

"args": {

"length": "short",

"password": false

},

"id": "string"

},

"value": "exampleValue"

}

],

"author": "ScienceLogic Inc.",

"configuration": null,

"content_type": "app",

"description": "Application template for creating apps",

"friendly_name": "Template App",

"generate_report": false,

"href": "/api/v1/applications/integration_template",

"id": "integration_template",

"last_modified": 1680277982,

"last_run": null,

"meta": {

"hidden": false

},

"name": "integration_template",

"queue": null,

36

37

"steps": [

{

"file": "GetREST",

"method": "GET",

"name": "Get REST Test",

"output_to": [

"Another GET Run"

],

"prefix_url": "https://ht-

tpbin.org/get?somevar=${appvar.exampleVariable}",

"step_type": "step",

"syncpack": "base_steps_syncpack"

},

{

"data_from": [

"GET REST Test"

],

"file": "GetREST",

"method": "GET",

"name": "Another GET Run",

"prefix_url": "https://ht-

tpbin.org/get?somevar=${appvar.exampleVariable}",

"step_type": "step",

"syncpack": "base_steps_syncpack"

}

],

"syncpack": "base_steps_syncpack",

"version": "1.2.0"

}

Creating the List of Steps and Step Parameters

In the PowerFlow application, you must specify the steps to execute and the order in which they should be
executed.

If steps do not have dependencies, PowerFlow will execute steps in parallel. If steps have dependencies (meaning
one of the steps requires data from another step), PowerFlow will execute the step that provides data and then
execute the step that consumes that data.

Creating the List of Steps and Step Parameters

Creating the List of Steps and Step Parameters

To edit the steps section of the application:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name}:

GET <URL_for_PowerFlow>/api/v1/applications/<application_name>

where <application_name> is the application you want to edit.

2. Copy the contents of the application to a source-code editor.

3. Search for the section of the file that contains the text "steps".

4. The section of the application that specifies steps should look like the following:

"steps":[

{

"name": "GETgoogle",

"file": "GetREST",

"prefix_url": "http://google.com",

"output_to": ["next_step"]

},

{

"name": "next_step",

"file": "someOtherStep"

}

]

5. Edit the "steps" section as needed and save your changes. Be sure to your file as a .JSON file with the
same name as the application your downloaded.

6. To upload the application to the PowerFlow system, see the section on Uploading an Application.

Specifying Values for name and file

For each step, you must specify its name and the file it executes. These two keys can have the same value.

38

39

l name. The name for the step. Other steps in the application can use this name to refer to the step. This
value can include spaces. This name must be unique to the application.

l file. The name of the file that will be executed by the step. You could write step logic in a single file but use
that step logic with different applications and use different names for the step in each application.

Specifying the Parameters

When you add a step to an application, you must view the step and determine if it includes any required
parameters.

To view details about a step (in our example, the step file is named "GetREST"):

1. Using an API tool like Postman or cURL, use the APIGET /steps/{step_name}:
GET <URL_for_PowerFlow>/api/v1/steps/GetREST

2. The step "GETgoogle" (and its parent file, "GetREST") includes the following parameter, which is defined as
"required":

self.new_step_parameter(name=PREFIX_URL, description="used with

relative_url to create the full URL.",sample_

value="http://10.2.11.253", default_value=None, required=True)

3. As a result, when the application includes the step "GETgoogle", the application must supply values for the
required parameters:

"prefix_url": "http://google.com",

Transferring Data Between Steps

An essential part of PowerFlow applications is passing data between tasks. PowerFlow includes native support for
saving and transferring Python objects between steps. Within a step, you can use one of the functions in the
included in the ipaascore.BaseStep class.

In a PowerFlow application, you can use the ouput_to key to specify that the results of a step should be piped to
one or more specified steps. The output_to key uses the following syntax:

"output_to": ["step_name1", "step name2"]

To pass data from step to step, you must include the output_to key along with the parameters for a step.

To edit the step parameters in the application:

1. Using an API tool like Postman or cURL, use the APIGET /applications/{application_name}:
GET ><URL_for_PowerFlow/api/v1/applications/<application_name>

where <application_name> is the application you want to edit.

2. Copy the contents of the application to a source-code editor.

Transferring Data Between Steps

Defining Retry Options for a Step

3. If you wanted the step "GETgoogle" to pass its output to the step "next-step", the application would include
the following:

"steps":[

{

"name": "GETgoogle.com",

"file": "GetREST",

"prefix_url": "http://google.com",

"method": "GET",

"output_to": ["next_step"]

},

{

"name": "next_step",

"file": "someOtherStep"

}

]

NOTE: If steps have dependencies , PowerFlow will first analyze all steps in an application and ensure
that data-gathering steps are performed before steps that require that data.

4. Edit the "steps" section as needed and save your changes. Be sure to save your file as a .JSON file with
the same name as the application you downloaded.

5. To upload the application to PowerFlow, see the section on Uploading an Application.

Defining Retry Options for a Step

The following parameters allows you to define multiple retry options for a step. You can specify that the
PowerFlow system try to re-run a step if that step fails. Retries work following the rules of exponential backoff: the
first retry will have a delay of 1 second, the second retry will have a delay of 2 seconds, the third retry will delay 4
seconds, the fourth retry will delay 8 seconds, and so on.

40

41

WARNING: As a best practice, you should only edit the retry_max parameter and avoid editing any of the
other retry parameters. Only advanced users who understand how the retries work and their
side effects when they are not set correctly should change the other retry parameters.

You can include the following retry options in the PowerFlow application file, where you define parameters for
each step:

l retry_max . The maximum number of times the PowerFlow system will retry to execute the step before it
stops retrying and logs a step failure. For example, if retry_max is 3, PowerFlow will retry after 1 second,
then 2 seconds, then 4 seconds, and stop if the last retry fails. The default value is 3.

l retry_backoff. Instead of using a defined interval between retries, the PowerFlow system will incrementally
increase the interval between retries. Possible values are True or False. The default value is False.

l retry_jitter. Instead of using a defined interval between retries, the PowerFlow system will retry the step
execution at random intervals. Possible values are True or False. The default value is False.

l retry_backoff_max. The maximum time interval for the retry_backoff option, in seconds. For example,
This means, if you have retry_max set to 15, the delays will be 1, 2, 4, 8, 16, 32, 64, 120, 240, 480, 600,
600, 600, 600, and 600. The default value is 600 seconds.

l retry_countdown. The interval between retries, in seconds. If you enabled retry_backup, the PowerFlow
system will incrementally increase this interval. The default value is 180.

WARNING: Use caution when editing the retry_countdown option. If you set it to a value smaller
than the default of 180 seconds, PowerFlow might experience collisions between task
executions, and PowerFlow might stop unexpectedly. If you set this option to a value
larger than the default, you might have to wait longer for a task to execute.

To define the retry options for a step in the application file:

1. Using an API tool like Postman or cURL, use the API GET /applications/{application_name}:
GET <URL_for_PowerFlow>/api/v1/applications/<application_name>

where <application_name> is the application you want to edit.

2. Copy the contents of the application to a source-code editor.

Defining Retry Options for a Step

Defining Variables for an Application

3. If you wanted to add retry options to the step "GETgoogle", you could include the following:
"steps":[

{

"name": "GETgoogle",

"file": "GetREST",

"prefix_url": "http://google.com",

"retry_max": 5

"retry_backoff": True

"retry_backoff_max": 600

"retry_countdown": 120

"output_to": ["next_step"]

},

{

"name": "next_step",

"file": "someOtherStep"

}

]

4. Edit the "steps" section as needed and save your changes. Be sure to save your file as a .JSON file with
the same name as the application you downloaded.

Defining Variables for an Application

Application variables are defined in the PowerFlow application. These variables can be accessed only by steps in
the application. In a step, including the appvar. prefix in a variable tells the PowerFlow system to look in the
application to resolve the variable. In a step, application variables are used in step parameters.

To define an application variable:

1. Using an API tool like Postman or cURL, use the API GET /applications/{application_name}:

GET <URL_for_PowerFlow>/api/v1/applications/<application_name>

42

43

where <application_name> is the application you want to edit.

2. Copy the contents of the application to a source-code editor.

3. Search for the section of the file that contains the text "app_variables".

4. In the integration_template file, the section looks like this:

"app_variables": [

{

"name": "exampleVariable", "value": "exampleValue","description":

"Variables defined here will be available in all steps of an

application","required": true,"sample_value": "SampleValue",

"default_value": "DefaultValue"

}

],

5. You can copy and paste the example section above for each application variable you want to define.

6. For each application variable, supply values for the following keys:

l name. This key requires a value. This is the name of the variable.

l value. This key requires a value. This is the value that the variable will resolve to at runtime.

l description. A description of this variable. This description appears in the user interface. The
default value is null.

l required. Specifies whether the variable is required. Possible values are "True" or "False". The
default value is "False". If the variable is required, but a value is not specified and a default value is
not specified, the application will fail.

l sample_value. A sample value of the required data type or schema. The default value is null. For
example, if the parameter is "port" and the expected value is an integer, a good sample_value
would be "443".

l default_value. If no value is specified for this variable (in the value key), use the value of this
key. The default value of this key is null.

7. Edit the "app_variables" section as needed and save your changes. Be sure to your file as a .JSON file
with the same name as the application your downloaded.

8. To upload the application to PowerFlow system, see the section on Uploading an Application.

Uploading the Application to PowerFlow

When you create a new application or edit an existing application, you must upload the application to
PowerFlow. There are two ways to upload an application to PowerFlow:

Uploading the Application to PowerFlow

Uploading the Application to PowerFlow

l at the command line with the iscli tool

l with the API

Uploading an Application with iscli

The PowerFlow system includes a command-line utility called iscli. When you install PowerFlow system, iscli is
automatically installed.

To upload an application to the PowerFlow system using iscli:

1. Either go to the console of the PowerFlow system or use SSH to access the server.

2. Log in as isadmin with the appropriate password.

3. Enter the following at the command line:

iscli -u -a -f <path_and_name_of_application_file>.py -H <hostname_

or_IP_address_of_powerflow> -P <port_number_of_http_on_powerflow> -U

<user_name> -p password

where:

l <path_and_name_of_application_file> is the full pathname for the application.

l <hostname_or_IP_address_of_powerflow> is the hostname or IP address of PowerFlow.

l <port_number_of_http_on_powerflow> is the port number to access PowerFlow. The
default value is 443.

l <user_name> is the user name you use to log in to PowerFlow.

l password is the password you use to log in to PowerFlow.

Uploading an Application with the API

To specify that an application always uses a custom queue, edit the .JSON file for the application::

1. Using an API tool like Postman or cURL, use the API POST/applications/{application_name}/run:
POST https://<URL_for_PowerFlow>/api/v1/applications/<application_

name>/run

where <application_name> is the application you want to edit.

2. Copy the contents of the application to a source-code editor.

3. Search for the section of the file that contains the lines "author", "configuration", "description", "friendly_
name", and "name".

4. In that section of the file, added the bolded line:
"queue": "<name_of_queue>",

where <name_of_queue> is one of the custom queues you defined in the docker-compose.yml file.

44

45

5. For example:
"author": "ScienceLogic, Inc.",

"configuration": "",

"description": "Read SL1 and ServiceNow devices and write them to a

cache.",

"friendly_name": "Cache SL1 Devices using GraphQL",

"name": "cache_em7_device_data",

"generate_report": true,

"queue": "test_queue",

6. Save your changes. Save the file to the same name:<application_name>.json. The application will now
always use the specified queue.

7. To upload your changes to the PowerFlow system, see Uploading an application.

Running the Application

After uploading an application to PowerFlow, you can run it to ensure that it works as designed.

To run an application from the API:

1. Using an API tool like Postman or cURL, use the API POST/applications/{application_name}/run:

POST https://<URL_for_your_PowerFlow_

system>/api/v1/applications/<application_name>/run

where <application_name> is the application you want to edit.

2. The body of the post should contain:

{

"name": "name_of_application",

"params": {}

}

Running the Application

Running the Application with a Custom Queue

3. You can include the following parameters with the POST request:

l parameters use the following syntax:

"parameter name":"parameter value"

l wait. Number of seconds to wait for application to complete.

l configuration. The configuration object to use with the application. For details, see
configuration objects.

4. The API returns one of the following:

l 200. Application started successfully.

l 400. Name or data parameter is missing.

l 404. Application not found.

l 500. Internal error. Database connection might be lost.

Running the Application with a Custom Queue

If your PowerFlow system runs multiple applications, you might want to ensure that one of those applications runs
before other applications in the processing queues. To do this, you can align a queue with a worker process; the
worker process will be dedicated to only that queue, will listen only to that queue, and process only jobs from that
queue. You can then configure the high-priority application to use the queue that you aligned with its own worker
process.

There are two steps to using a custom queue:

l Defining the queue and aligning it with a worker

l Configuring the application to use the custom queue

Defining a Custom Queue

To create a custom queue:

1. SSH to the PowerFlow system.

2. Use a text editor like vi to edit the file /opt/iservices/scripts/docker-compose.yml.

3. The docker-compose.yml file contains definitions for worker processes. For example, you might see
something like this:

services:

steprunner:

image: sciencelogic/pf-worker:latest

environment:

46

47

logdir:

/var/log/iservices

broker_url: 'pyamqp://guest@rabbit//'

result_backend:

'redis://redis:6379/0'

db_host: 'couchbase,localhost'

secrets:

- is_pass

- encryption_key deploy:

replicas: 2 networks:

- isnet volumes:

- "/var/log/iservices:/var/log/iservices"

- /var/log/iservices:/var/log/contentapi:rw

- read_only: true

source: syncpacks_virtualenvs

target: /var/syncpacks_virtualenvs

type: volume

steprunner_1:

image: sciencelogic/pf-worker:latest

environment:

LOGLEVEL: 10

celery_log_level: 10

logdir:

/var/log/iservices

Running the Application with a Custom Queue

Running the Application with a Custom Queue

broker_url: 'pyamqp://guest@rabbit//'

result_backend:

'redis://redis:6379/0'

db_host: 'couchbase,localhost'

user_queues: 'test_queue'

secrets:

- is_pass

- encryption_key deploy:

replicas: 2

networks:

- isnet

volumes:

- "/var/log/iservices:/var/log/iservices"

- /var/log/iservices:/var/log/contentapi:rw

- read_only: true

source: syncpacks_virtualenvs

target: /var/syncpacks_virtualenvs

type: volume

steprunner_2:

image: sciencelogic/pf-worker:latest

environment:

LOGLEVEL: 10

celery_log_level: 10

logdir:

48

49

/var/log/iservices

broker_url: 'pyamqp://guest@rabbit//'

result_backend:

'redis://redis:6379/0'

db_host: 'couchbase,localhost'

user_queues: 'critical_queue'

secrets:

- is_pass

- encryption_key deploy:

replicas: 2

networks:

- isnet

volumes:

- "/var/log/iservices:/var/log/iservices"

- /var/log/iservices:/var/log/contentapi:rw

- read_only: true

source: syncpacks_virtualenvs

target: /var/syncpacks_virtualenvs

type: volume

4. The services with names that start with "steprunner" are the workers for the PowerFlow system.

l Notice that the service named "steprunner" does not include any queues. This means that the worker
"steprunner" listens to the default queues in the PowerFlow system.

NOTE: ScienceLogic recommends that you allot at least one worker to handle the default
queues.

Running the Application with a Custom Queue

Running the Application with a Custom Queue

l To add additional services to your PowerFlow system. copy all the lines included in the service
definition, paste it into the file, and rename the service.

l For example, you could copy all the lines from "steprunner_2", paste the text in the "services" section,
and rename the service "steprunner_3".

5. To create one or more queues and dedicate a worker to them, enter the following line in definition of the
worker, under the environment section:

user_queues: '<queue_name1>,<queue_name2>'

where <queue_name1>,<queue_name2> are the names of the new queues. The worker will monitor
only these queues and execute tasks only from these queues.

6. After you have updated the docker-compose file, you can update and re-deploy PowerFlow to pick up the
changes to the docker-compose file. To do this, SSH to PowerFlow and execute the following command:

docker stack deploy -c /opt/iservices/scripts/docker-compose.yml

iservices

Configuring an Application to Use a Custom Queue

There are two ways to specify that a PowerFlow application should use a custom queue:

l In the .JSON file for the application, you can specify that the application should always use a custom
queue.

l At run time, you can specify that the application should use a custom queue only for that single execution of
the application.

Configuring an Application to Always Use a Custom Queue

To specify that an application always uses a custom queue, edit the .JSON file for the application:

1. Using an API tool like Postman or cURL, use the API POST/applications/{application_name}/run:
POST https://<URL_for_PowerFlow>/api/v1/applications/<application_

name>/run

where <application_name> is the application you want to edit.

2. Copy the contents of the application to a source-code editor.

3. Search for the section of the file that contains the lines "author", "configuration", "description", "friendly_
name", and "name".

50

51

4. In that section of the file, add the bolded line:
"queue": "<name_of_queue>",

where <name_of_queue> is one of the custom queues you defined in the docker-compose.yml file.

For example:
"author": "ScienceLogic, Inc.",

"configuration": "",

"description": "Read SL1 and ServiceNow devices and write them to a

cache.",

"friendly_name": "Cache SL1 Devices using GraphQL",

"name": "cache_em7_device_data",

"generate_report": true,

"queue": "test_queue",

5. Save your changes. Save the file to the same name:<application_name>.json. The application will now
always use the specified queue.

6. To upload your changes to the PowerFlow system, see Uploading an application.

Running the Application with a Custom Queue

Defining a Configuration Object

Configuring an Application to Use a Custom Queue at Run Time

After uploading an application, you can run it and specify a queue.

To run an application from the PowerFlow API:

1. Using an API tool like Postman or cURL, use the API POST/applications/{application_name}/run:

POST https://<URL_for_PowerFlow>/api/v1/applications/<application_

name>/run

where <application_name> is the application you want to edit.

2. The body of the post should contain:

{

"name": "name_of_application",

"params": {

"queue": "custom_queue"

}

}

3. You can include the following parameter with the POST request:
"queue": "<name_of_queue>"

where <name_of_queue> is one of the custom queues you defined in the docker-compose.yml file.

4. The API returns one of the following:

l 200. Application started successfully.

l 400. Name or data parameter is missing.

l 404. Application not found.

l 500. Internal error. Database connection might be lost.

Defining a Configuration Object

Configuration variables are defined in a stand-alone JSON file called a configuration that lives on PowerFlow
and can be accessed by all applications and their steps.

52

53

In a step, including the config. prefix with a variable tells PowerFlow to look in a configuration file to resolve the
variable.

If you want to re-use the same settings (like hostname and credentials) between applications, define configuration
variables.

To define a configuration file:

1. Use a source-code editor to open a new file.

2. Copy and paste the following example text into the new file:

{

"author": "ScienceLogic, Inc.",

"description": "Fsun's config for demo.",

"name": "fsun-demo-settings",

"friendly_name": "Demo Settings",

"configuration_data": [

{

"encrypted": false,

"name": "em7_host",

"value": "10.2.11.42"

},

{

"encrypted": false,

"name": "em7_user",

"value": "em7admin"

},

{

"encrypted": true,

"name": "em7_password",

Defining a Configuration Object

Uploading the Configuration Object to PowerFlow

"value": "+dqGJe1NwTyvdaO2EizTWjJ2uj2C1wzBzgNqVhpdTHA="

},

],

}

3. To create your own configuration file, edit the following keys:

l author. Name of the author of the configuration file. This field is optional.

l description. Description of the configuration file. This field is optional.

l name. Name of the configuration file. The name cannot contain any spaces and should be unique in
your PowerFlow system.

l friendly_name. User-friendly name for the configuration.

4. The section under "configuration_data" defines each configuration variable. You can use these
variables as examples.

5. To create your own configuration variables, note the syntax:

l The variable definition is surrounded by curly braces

l Each key:value pair in the definition is separated with a comma.

6. To create your own configuration variable, define the following keys:

l encrypted. Specifies whether the value will appear in plain text or encrypted in this .json file. If set to
"true", specifies that when the value is uploaded, the PowerFlow system will encrypt value of the
variable. The plain text value will never again be retrievable by an end user. The encryption key is
unique to each PowerFlow system.

l name. Name of the configuration file (without the .json suffix). This value appears in the user
interface.

l value. The value to assign to the variable.

7. Repeat steps 5-6 for each configuration variable.

8. Save the new file as<config_file>.json.

where<config_file> is the name of the configuration file. This value must match the name key in the file.
The file name must be unique within your PowerFlow system and cannot contain spaces.

Uploading the Configuration Object to PowerFlow

When you create a new configuration file or edit an existing configuration object, you must upload the step to the
PowerFlow system. There are two ways to upload a configuration object file to the PowerFlow system:

54

55

l at the command line with the iscli tool

l with the API

Uploading a Configuration with iscli

The PowerFlow system includes a command line tool called iscli. When you install PowerFlow system, iscli is
automatically installed.

To upload a configuration file to the PowerFlow system using iscli:

1. Either go to the console of the PowerFlow system or use SSH to access the server.

2. Log in as isadmin with the appropriate password.

3. Type the following at the command line:

iscli -u -c -f <path_and_name_of_configuration_file>.py -H <hostname_

or_IP_address_of_PowerFlow> -P <port_number_of_http_on_PowerFlow> -U

<user_name> -p <password>

where:

l <path_and_name_of_configuration_file> is the full pathname for the step.

l <hostname_or_IP_address_of_PowerFlow> is the hostname or IP address of the
PowerFlow system.

l <port_number_of_http_on_PowerFlow> is the port number to access the PowerFlow
system. The default value is 443.

l <user_name> is the user name you use to log in to the PowerFlow system.

l <password> is the password you use to log in to the PowerFlow system.

Uploading a Configuration Object Using the API

PowerFlow includes an API. When you install the PowerFlow system, the API is available.

To upload a configuration with the API:

POST /configurations

{

<contents of the .json file for the configuration>

}

The API returns one of the following:

Uploading the Configuration Object to PowerFlow

View Logs for an Application

l 200. Configuration successfully updated or added.

l 400. Name or data parameter is missing.

l 500. Internal error. Database connection might be lost.

View Logs for an Application

After running an application, you can view its log information. To view the log information for an application:

1. In PowerFlow, run an application.

2. Using an API tool like Postman or cURL, use the APIGET /applications/{appName}/logs:

GET <URL_for_PowerFlow/api/v1/applications/<application_name>/logs

3. You should see something like this:

{

"app_name": "example_integration",

"app_vars": {},

"href": "/api/v1/tasks/isapp-af7d3824-c147-4d44-b72a-

72d9eae2ce9f",

"id": "isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",

"start_time": 1527429570,

"state": "SUCCESS",

"steps": [

{

"href": "/api/v1/tasks/2df5e7d5-c680-4d9d-860c-e1ceccd1b189",

"id": "2df5e7d5-c680-4d9d-860c-e1ceccd1b189",

"name": "First EM7 Query",

"state": "SUCCESS",

"traceback": null

},

56

57

{

"href": "/api/v1/tasks/49e1212b-b512-4fa7-b099-ea6b27acf128",

"49e1212b-b512-4fa7-b099-ea6b27acf128",

"name": "second EM7 Query",

"state": "SUCCESS",

"traceback": null

}

],

"triggered_by": [

{

"application_id": "isapp-af7d3824-c147-4d44-b72a-72d9eae2ce9f",

"triggered_by": "USER"

}

]

}

4. Notice the bolded lines that start with href and id. You can use these lines to view the logs for the
application.

5. To use the href value to get details about an application, use an API tool like Postman or cURL and use the
APIGET /applications/{appName}:

GET <URL_for_PowerFlow>/<href_value>

where <href_value> is the href value you can copy from the log file. The href value is another version
of the application name.

NOTE: To view logs for subsequent runs of the application, you can include the href specified in the last_
run field.

6. To use the task id value to views details about an application, use an API tool like Postman or cURL and use
the APIGET /tasks/{task_ID}:

View Logs for an Application

View Logs for an Application

GET <URL_for_PowerFlow>/<task_id>

where <task_id> is the ID value you can copy from the log file for the application. The task ID specifies
the latest execution of the application.

58

Chapter

4
Creating a SyncPack

Overview

This chapter describes how to package your PowerFlow applications, steps, configuration objects, and utilities
into a SyncPack.

This chapter covers the following topics:

What is a SyncPack? 60

Generating the SyncPack Structure 60

Building a SyncPack 63

Extending an Existing SyncPack 64

Uploading a SyncPack with the PowerFlow User Interface 69

Activating and Installing a SyncPack 70

59

60

What is a SyncPack?

A SyncPack is a Python .whl file that contains PowerFlow applications, steps, configuration objects, and utilities
that can be used in PowerFlow. SyncPacks are versioned and can define dependencies on other SyncPacks or on
external Python packages.

When applications from a SyncPack are executed, they run within a Python Virtual Environment that contains the
SyncPack itself and its dependencies.

Generating the SyncPack Structure

ScienceLogic uses a Cookiecutter repository for generating the standard SyncPack structure. This structure
includes all necessary files and the default directory structure that is generated based on your response to the
prompts.

For more information about Cookiecutter, see https://cookiecutter.readthedocs.io/en/latest/.

The GitHub repository for the Cookiecutter project can be found at https://github.com/ScienceLogic/is_
syncpack_cookiecutter.

To use Cookiecutter to generate the SyncPack structure:

1. On a system with Python 3.6 or later installed, run the following commands to install Cookiecutter (use a
virtual environment if possible):

pip install cookiecutter

cookiecutter https://github.com/ScienceLogic/is_syncpack_

cookiecutter.git

IMPORTANT: To use Cookiecutter, you will need to install Visual Studio Code (VSCode) or PyCharm.
You will also need to install Docker.

2. Log in to the SL container registry:

docker login registry.scilo.tools

TIP: You can find the credentials for this step by logging in to the Harbor user interface, clicking your
user name in the top right, and selecting User Profile. From the User Profile dialog, copy the
username and CLI secret (key) you will need to authenticate with when running the docker
login command.

What is a SyncPack?

https://cookiecutter.readthedocs.io/en/latest/
https://github.com/ScienceLogic/is_syncpack_cookiecutter
https://github.com/ScienceLogic/is_syncpack_cookiecutter

Generating the SyncPack Structure

3. Create a root directory where you can start building the SyncPack. For example: /home/username/pf_
syncpacks_workspace.

4. In the root directory from step 3, run the Cookiecutter tool to create a SyncPack directory structure.

TIP: For more information about the requirements for the Cookiecutter tool, see the Syncpack Cookie
Cutter Readme file.

5. The Cookiecutter tool will ask you for the following information:

l author. Name of the person or organization that created this SyncPack.

l url_project. URL of the repository where this SyncPack is hosted. You can use a placeholder or fake
URL in this field if you do not currently plan to push code to a live PowerFlow system.

l syncpack_name. Developer name of the SyncPack, without spaces. For example: test_syncpack.

l syncpack_friendly_name. Friendly name of the SyncPack, which will display in the PowerFlow user
interface. For example: Test SyncPack.

l syncpack_description. Short description of the SyncPack, which will display in the PowerFlow user
interface and in the readme file.

l version. Number of the SyncPack version.

l requires_minimum_pf_version. The minimum version of the PowerFlow platform required for this
SyncPack.

l dev_container_source. Use "SL External" if you are not a ScienceLogic employee.

After you complete this process, Cookiecutter creates a new directory in your current working directory named
with the syncpack_name you specified, above. For more information about the contents of the new directory,
see SyncPack Structure.

To continue the process of creating the SyncPack, see Building a SyncPack.

SyncPack Structure

After you use Cookiecutter to generate the SyncPack structure, you can access the following files and folders in
the folder created by the previous process.

l MANIFEST.in. Allows the Python .whl file to contain non-Python files.

l README.md. The readme file for this SyncPack, pre-populated with basic information.

l setup.py. Python setup file for building the SyncPack. You should not need to modify this file.

l docker. This directory contains the following Docker information:

o docker-compose.yml. Docker Compose file that uses the above container.

o Dockerfile. Sample Dockerfile that can be used for building and testing the SyncPack in a
continuous integration and continuous delivery (CI/CD) environment.

61

https://github.com/ScienceLogic/is_syncpack_cookiecutter#using-cookiecutter-for-your-project
https://github.com/ScienceLogic/is_syncpack_cookiecutter#using-cookiecutter-for-your-project

62

l test_syncpack. This directory contains all SyncPack content, including the following:

o __init__.py. Python init file.

o apps. This directory contains SyncPack application .json files.

o configs. This directory contains SyncPack configuration object .json files.

o meta.json. This file defines the SyncPack properties.

o steps. This directory contains SyncPack Step Python files.

o util. This directory contains Python classes or modules that can be used by multiple steps in the
SyncPack.

o tox.ini. Basic tox configuration for running unit tests.

SyncPack Properties

Themeta.json file contains all configurable properties for a SyncPack. This file is where you define the name,
friendly name, version, description, default schedules, tags, and supported PowerFlow version of the SyncPack.

requires_dist is where you define the Python packages on which this SyncPack depends. For example, if you
would like to use a step from the "Base Steps" SyncPack and also use Amazon's boto library, you would use the
following:

"requires_dist": ["boto", "base_steps_syncpack"],

Example Code: meta.json

{

"name": "test_syncpack",

"version": "0.0.1",

"summary":"Testing Syncpack",

"description":"PF Syncpack for testing",

"author":"John Smith",

"home_page":"https://example.com/test_syncpack",

"requires_dist":[],

"schedules": [

{

"application_id": "dummy_app",

Generating the SyncPack Structure

Building a SyncPack

"entry_id": "dummy app",

"params": {},

"schedule": {

"schedule_info": {

"run_every": 3600

},

"schedule_type": "frequency"

}

}

],

"tags":["test_syncpack"],

"critical": [],

"requires_is_version": ">=2.0.0"

}

Building a SyncPack

After you complete your SyncPack structure and place your applications, steps, and configuration objects in the
right directories, you can build the SyncPack .whl file (wheel).

You can build a SyncPack with Python3 or with the iscli utility that comes with PowerFlow.

NOTE: Not included is how to build a SyncPack automatically with CI/CD platforms.

Building a SyncPack with Python3

To build the SyncPack wheel with Python3, run the following command from the top-level SyncPack directory:

python3 setup.py sdist bdist_wheel

63

64

This command creates build and dist folders within your SyncPack directory. In the dist folder, you will now have
a Python wheel that you can upload to PowerFlow.

Building a SyncPack with the iscli Utility

If you build your SyncPack with the iscli utility, the utility builds and uploads the SyncPack to PowerFlow in one
step.

To build and upload your SyncPack with the iscli utility, run the following command:

iscli -H <IP_PowerFlow_host> -U <PowerFlow_user> -p <PowerFlow_password> -

ukf </path/to/SyncPack/Directory>

where </path/to/SyncPack/Directory> is the SyncPack root that contains the setup.py file.

Extending an Existing SyncPack

Because the content that is included in a SyncPack cannot be overwritten inside PowerFlow, you will need to
extend existing SyncPacks with your own SyncPack to add customizations.

Restrictions

l The names for applications, steps, and configuration objects must be unique within your entire PowerFlow
platform. For example, you cannot add a custom step named "GetREST", because that step is already
included in the "Base Steps" SyncPack. You will need to change the name of your custom step.

l Your new SyncPack must include the SyncPack that you are extending in the requires_dist list in your
meta.json. This ensures that your SyncPack will have access to the applications and steps of the parent
SyncPack in its execution environment.

l After you install the SyncPack, its environment will never be modified, even if the parent SyncPacks are
updated. If you wish to include changes from the parent SyncPack, you will need to re-install your
customized SyncPack.

Advanced Method: Extracting and Updating an Existing SyncPack

This method of modifying a SyncPack includes the following steps:

1. Download an existing SyncPack from a PowerFlow system

2. Modify the contents of the SyncPack and save as a new SyncPack

3. Re-upload and install the new SyncPack.

Although this advanced method involves more manual steps, this method is recommended over the basic method
described in later sections.

To extract and update an existing SyncPack:

Extending an Existing SyncPack

Extending an Existing SyncPack

1. Identify the SyncPack that you want to extend and download it from the PowerFlow system or download it
from ScienceLogic Support site at https://support.sciencelogic.com/s/powerpacks.

TIP: You can download any SyncPack on a PF system from the devpi interface:
https://10.2.11.232:3141/isadmin/syncpacks.

2. You can access the contents of the .whl file for the SyncPack by unzipping the .whl file. Run the following
command to unzip the contents into the current working directory:

unzip <syncpack_whl_file>

where <syncpack_whl_file> is the name of the .whl file.

For example:

unzip base_steps_syncpack-1.0.0-py3-none-any.whl

3. Update the SyncPack directory name to make it easier to recognize than the default version of the
SyncPack you are modifying.

4. Update the following elements in themeta.json file:

l Change the SyncPack name to match the updated directory name chosen in step 3.

l Update the requires_dist parameter to include the original SyncPack which is being extending.
This ensures the modified SyncPack can use the existing code as necessary.
For example, if you are modifying base_steps_syncpack version 1.0, add the following to the
requires_dist parameter:

"requires_dist":["base_steps_syncpack==1.0"]

5. Delete the contents of the directories for the applications and steps that you are not going to be
customizing. As a best practice, start with a single application or step and add required steps or
applications as necessary.

6. Modify the existing applications and steps as needed:

l Be sure to change the file name of the Python file containing the step you are editing, as well as the
name of the class contained in the file. The name of the Python file and the class name should match.

l Be sure to change the file name of the application configuration file in the apps directory, or
PowerFlow will reject the installation. Additionally, update the friendly_name parameter within the
application JSON file.

l Make the code changes you need to make to customize the applications and steps. If additional
Python packages are required, be sure to add them to the required_dist list mentioned in step
4.

7. Run the following command to build the SyncPack with the new name and version contained in the
meta.json file:

python3 setup.py bdist_wheel

65

https://support.sciencelogic.com/s/powerpacks

66

8. To upload the SyncPack using the iscli tool, run the following command:
iscli -ukf <new_syncpack_whl_file>

where <new_syncpack_whl_file> is the name from the .whl file created from the previous step.

TIP: To forcefully overwrite an existing version of this SyncPack, use the following command: iscli
-ukFf <new_syncpack_whl_file>

9. To upload the SyncPack using the PowerFlow user interface, go to the SyncPacks page, click [Import
SyncPack], and select the .whl file.

Basic Method: Modifying Individual Steps and Applications

This basic method of modifying a SyncPack is less involved than the advanced method, and it is effective for
making quick, minor changes to a SyncPack. This approach is limited, however, because the custom steps will
not run inside a SyncPack.

Modifying Application Definit ions

To change the API endpoint or query used in an existing PowerFlow application:

1. Download the existing application contents from PowerFlow by copying the content of this URL from your
browser:
<URL_for_PowerFlow>/api/v1/applications/<application_name>
where<application_name> is the name of the application that you want to edit.

TIP: To locate the<application_name> for a PowerFlow application, do aGET
/api/v1/applications and use the "id" value for the application in the results.

2. Create a JSON file on your local system and give it a unique name for the new application. The name of this
file cannot match the name of the existing application file.

3. Copy the contents of the result of step 1 into the new JSON file.

4. In the JSON code, change the friendly_name, author, description, and version as required.

5. Make any other changes to the application as needed, such as changing step names, adding new steps,
and adding or changing parameters.

6. Upload the new json file as a new application to the PowerFlow system using the iscli tool:
iscli -uaf <my_new_app_name.json> -H <host>

Modifying a Step

You have two methods for modifying a step:

Extending an Existing SyncPack

Extending an Existing SyncPack

1. Change the code in a step itself.

2. Extend the step class and execute your own code before or after the existing step.

To change the logic performed within a step:

1. Download the existing application contents from PowerFlow by copying the content of this URL from your
browser:
<URL_for_PowerFlow>/api/v1/steps/<step_name>
where<step_name> is the name of the step that you want to edit.

TIP: To locate the<step_name> for a PowerFlow application, do aGET /api/v1/steps and use the
"id" value for the step in the results.

2. Create a Python file on your local system and give it a unique name for the new step. The name of this file
cannot match the name of the existing step file.

3. Copy the contents of the result of step 1 into the new Python file.

TIP: echo -e can help with the newlines and make the indents correct when writing to a file.

4. In the step file, change the class name to match the name of the step file (without a .py extension).

5. In the __init__() section of the code, change the friendly_name, description , and version
as required.

6. Make any other changes to the step as desired.

To "extend" the behavior of an existing step by performing work before or after the existing logic:

1. Create a new step and give it a unique name.

2. Instead of importing and extending BaseStep, import and extend the step class you would like to modify.
For example:

from base_steps_syncpack.steps.QueryGQL import QueryGQL

class OptionalQueryGQL(QueryGQL):

3. Complete the __init__() as normal, but make sure to call init of the super class to include all of its
parameters. For example:

super(OptionalQueryGQL, self).__init__()

67

68

4. Create your additional logic in the execute() function. This logic can be performed either before or after
you call the execute of the parent step. For example:

super(OptionalQueryGQL, self).execute()

NOTE: If you would like to perform additional logic after the execute of the parent step runs, you can
access the data from that step via self.get_current_saved_data().

5. Upload the new Python file to the PowerFlow system using the iscli tool:
iscli -usf <new_step.py> -H <host>

Example Code: Full Extended Step

from base_steps_syncpack.steps.QueryGQL import QueryGQL

from ipaascore import parameter_types

from ipaascommon.ipaas_utils import str_to_bool

class OptionalQueryGQL(QueryGQL):

def __init__(self):

super(OptionalQueryGQL, self).__init__()

self.friendly_name = "Optional QueryGQL Call"

self.description = "Optionally Runs GQL call."

self.version = "1.0.0"

self.new_step_parameter(

name="enable",

description="Should this step run.",

default_value=True,

required=False,

param_type=parameter_types.BoolParameterToggle()

)

def execute(self):

Extending an Existing SyncPack

Uploading a SyncPack with the PowerFlow User Interface

enabled = str_to_bool(self.get_parameter("enable", None))

if enabled:

super(OptionalQueryGQL, self).execute()

else:

self.logger.flow(

"Step is Disabled. Returning empty dict."

)

self.save_data_for_next_step(dict())

Uploading a SyncPack with the PowerFlow User Interface

After you create your SyncPack wheel, you can upload it to PowerFlow. You can upload this SyncPack to
PowerFlow using the PowerFlow user interface or with the iscli utility.

Uploading a SyncPack with the User Interface

To import a SyncPack in the PowerFlow user interface:

1. On the SyncPacks page () of the PowerFlow user interface, click [Import SyncPack]. The Import
SyncPack page appears.

2. Click [Browse] and select the .whl file for the SyncPack you want to install. You can also drag and drop a
.whl file to the Import SyncPack page.

3. Click [Import]. PowerFlow registers and uploads the SyncPack. The SyncPack is added to the SyncPacks
page.

4. You will need to activate and install the SyncPack in PowerFlow. For more information, see Activating and
Installing a SyncPack.

NOTE: You cannot edit the content package in a SyncPack published by ScienceLogic. You must make a
copy of a ScienceLogic SyncPack and save your changes to the new SyncPack to prevent overwriting
any information in the original SyncPack when upgrading.

Uploading a SyncPack with the iscli Utility

To upload a SyncPack with the iscli utility:

1. Using a tool like secure copy (SCP), copy the SyncPack from your local computer to your PowerFlow host.

69

#Import_Install_SyncPack
#Import_Install_SyncPack

70

2. Start an SSH session with your PowerFlow host.

3. Run the following command:

iscli -ukf /path/to/test_syncpack-0.0.1-py2.py3-none-any.whl

NOTE: If you have already uploaded this SyncPack to your PowerFlow system and you want to re-
upload with the same version, add the -F flag to the above command.

4. You can now activate the SyncPack in PowerFlow. See the following topic for more information.

Activating and Installing a SyncPack

After you upload a SyncPack to PowerFlow, you need to activate and install the SyncPack to access its
applications, steps, and configuration objects.

For the "Activate & Install Syncpacks" application, the retry_max parameter for the "Activate Syncpack" and
"Install Syncpack" steps is set to 3 by default. The time between those retries is calculated randomly based on the
number of retries. These settings prevent the steps from colliding with each other when the steps are run in a
environment with a large number of syncpack_steprunners that are trying to install a SyncPack at the same time in
their respective volumes.

WARNING: As a best practice, you should only edit the retry_max parameter and avoid editing any of the
other retry parameters. Only advanced users who understand how the retries work and their
side effects when they are not set correctly should change the other retry parameters. For more
information, see Defining Retry Options for a Step.

Activating and Installing a SyncPack with the User Interface

To activate and install a SyncPack in the PowerFlow user interface:

1. On the SyncPacks page of the PowerFlow user interface, click the [Actions] button () for the SyncPack

you want to install and select Activate & Install. The Activate & Install SyncPackmodal appears.

NOTE: If you try to activate and install a SyncPack that is already activated and installed, you can
choose to "force" installation across all the nodes in the PowerFlow system.

TIP: If you do not see the PowerPack that you want to install, click the Filter icon () on the SyncPacks
page and select Toggle Inactive SyncPacks to see a list of the imported PowerPacks.

Activating and Installing a SyncPack

Activating and Installing a SyncPack

2. Click [Yes] to confirm the activation and installation. When the SyncPack is activated, the SyncPacks page
displays a green check mark icon () for that SyncPack. If the activation or installation failed, then a red

exclamation mark icon () appears.

3. For more information about the activation and installation process, click the check mark icon () or the

exclamation mark icon () in the Activated column for that SyncPack. For a successful installation, the

"Activate & Install SyncPack" application appears, and you can view the Step Log for the steps. For a failed
installation, the Error Logs window appears.

4. If you have other versions of the same SyncPack on your PowerFlow system, you can click the [Actions]
button () for that SyncPack and select Change active version to activate a different version other than the

version that is currently running.

Activating and Installing with the iscli Utility

To activate and install an uploaded SyncPack using the iscli utility, run the following command:

iscli -AIkn <syncpack_name> -V <syncpack version>

where <syncpack_name> is the name from themeta.json file, and <syncpack_version> is the version
number of the SyncPack.

For example:

iscli -AIkn test_syncpack -V 0.0.1

NOTE: To force a re-activation of the SyncPack, add -F to the above command.

71

Chapter

5
ipaascore.BaseStep class

Overview

This chapter describes functions included in the ipaascore.BaseStep class. The ipaascore.BaseStep class is a
Python class that is included with PowerFlow, and it contains multiple predefined functions that you can use when
you are writing or editing a step.

This chapter covers the following topics:

get_app_variable 73

get_available_previous_step_input_positions 75

get_data_from_step_by_name 76

get_data_from_step_by_order 77

get_name 78

get_parameter 79

get_parameter_from_previous_step 81

join_previous_step_data 82

new_step_parameter 84

save_data_for_next_step 86

validate_parameter_values 87

72

73

get_app_variable

Description

Retrieve the value of an application variable.

Syntax

get_app_variable("<variable_name>")

Parameters

<variable_name>. The name of the application variable that you want to retrieve the value for.

Return

The value of the application variable.

Example

Suppose we defined this application variable in the application:

"app_variables": [

{

"name": "sl1_hostname",

"description": "The SL1 hostname to participate in the sync",

"sample_value": "10.2.253.115",

"default_value": null,

"required": true,

"value": 10.64.68.25

},

]

Suppose this application calls the step "sync_SL1_data".

In the step "sync_SL1_data", we could use the following function to resolve the value of "sl1hostname":

get_app_variable

get_app_variable

hostname = self.get_app_variable("sl1_hostname")

The value of hostname would be "10.64.68.25".

74

75

get_available_previous_step_input_positions

Description

Retrieves the list of steps in the application, along with the position of the step (the order that the step was run in
the application). Position "0" (zero) is reserved for the current step's arguments.

Syntax

get_available_previous_step_input_positions()

Return

Returns a list of tuples. Each tuple includes a step name and the step's position.

get_available_previous_step_input_positions

get_data_from_step_by_name

get_data_from_step_by_name

Description

Retrieves data saved from a previous step.

IMPORTANT: To retrieve data from a previous step:

1. That previous step must save the data with the save_data_for_next_step function.

2. The PowerFlow application must specify that the data from the previous step should be passed to the
current step using the output_to parameter.

NOTE: Although the get_data_from_step_by_name function is simple to use, it does not allow you to write
a generic, reusable step, because the step name will be hard-coded in the function. The join_
previous_step_data or get_data_from_step_by_order functions allow you to create a more
generic, reusable step.

Syntax

get_data_from_step_by_name('<step_name>')

Parameters

<step_name>. The name of a previous step in the application.

Return

The data that was saved by the previous step.

Example

The following is an example of the get_data_from_step_by_name function:

em7_data = self.get_data_from_step_by_name('FetchDevicesFromEM7')

snow_data = self.get_data_from_step_by_name('FetchDevicesFromSnow')

76

77

get_data_from_step_by_order

Description

This function retrieves data from a step based on the position of the step in the application.

IMPORTANT: To retrieve data from a previous step:

1. That previous step must save the data with the save_data_for_next_step function.

2. The PowerFlow application must specify that the data from the previous step should be passed to the
current step using the output_to parameter.

Syntax

get_data_from_step_by_order(<position>)

Parameters

<position>. The position of the step (order that the step was run) in the PowerFlowapplication. Position values
start at 0 (zero) .

Return

The data that was saved by the previous step.

Exception

DataNotAvailableException

Example

l Suppose your application has four steps: stepA, stepB, stepC, and stepD

l Suppose stepA was run first (position 0) and includes the parameter output_to:[stepD]

l Suppose stepB was run second (position 1) and includes the parameter output_to:[stepD]

l Suppose stepC was run third (position 2) and includes the parameter output_to:[stepD]

l Suppose stepD was run fourth

If the current step is stepD, and stepD needs the data from stepC, you could use the following:

data_from_stepC = self.get_data_from_step_by_order(2)

get_data_from_step_by_order

get_name

get_name

Description

Returns the name of the current step.

Syntax

get_name()

Return

The name of the current step.

78

79

get_parameter

Description

Retrieves a parameter value.

Syntax

get_parameter("<param_name>", <lookup_data>=None)

Parameters

l <param_name>. The name of the parameter that you want to retrieve the value for.

l <lookup_data>. An optional dictionary that can provide a reference for additional variable substitutions.

Return

Value of the requested parameter.

Example

For example, suppose we defined this parameter in the step named "GETgoogle":

self.new_step_parameter(name=prefix_url, description="used with relative_

url to create the full URL.",sample_value="http://10.2.11.253", default_

value=None, required=True)

Suppose in the application that calls "GETgoogle.com", we specified:

"steps": [

{

"file": "GetREST",

"name": "GETgoogle",

"output_to": ["next_step"],

"prefix_url": "http://google.com"

}

],

get_parameter

get_parameter

Suppose we use the get_parameter function in the step "GETgoogle" to retrieve the value of the "prefix_
url" parameter:

build_url_1 = self.get_parameter("prefix_url")

The value of build_url_1 would be "http://google.com".

80

81

get_parameter_from_previous_step

Description

Retrieves a parameter value from a previous step.

Syntax

get_parameter_from_previous_step(<parameter_name>, <step_name>)

Parameters

<parameter_name>. The name of the parameter that you want to retrieve the value for.

<step_name>. The name of the step from which you want to retrieve a parameter value.

Return

The value of the parameter.

get_parameter_from_previous_step

join_previous_step_data

join_previous_step_data

Description

This function retrieves data from one or more previous steps in the application. If you are expecting similar data
from multiple steps, or expecting data from only a single step, the join_previous_step_data function is the best
choice.

The join_previous_step_data function gathers all data from all steps that included the save_data_for_next_
step function and also include the output_to parameter in the application. By default, this function returns the
joined set of all data that is passed to the current step. You can also specify a list of previous steps from which to
join data.

The retrieved data must be of the same type. The data is then combined into a list or a dictionary. If the data types
are not the same, then the function will raise an exception.

IMPORTANT: To retrieve data from a previous step:

1. That previous step must save the data with the save_data_for_next_step function.

2. The PowerFlow application must specify that the data from the previous step should be passed to the
current step using the output_to parameter.

Syntax

join_previous_step_data(<step_name>)

Parameters

<step_name>. An optional argument that specifies the steps. For example, if you wanted to join only the data
from stepA and stepD, you could specify the following:

self.join_previous_step_data(["stepA", "stepD"]),

Return

Combined data structure, either a list or a dictionary, of all the retrieved step data.

82

83

Example

The following is an example of the join_previous_step_data function in the "SavetoCache" step (included in
each PowerFlow system):

def execute(self):

data_from = self.get_parameter(DATA_FROM_PARAM, {})

if data_from:

data_to_cache = self.join_previous_step_data(data_from)

else:

data_to_cache = self.join_previous_step_data()

...

join_previous_step_data

new_step_parameter

new_step_parameter

Description

Defines an input parameter for the step. The PowerFlow application will examine the parameters and enforce the
parameters when the step is run. For example, if you specify a parameter as required, and the user does not
specify the required parameter when calling the step, PowerFlow will display an error message and will not
execute the step.

Syntax

self.new_step_parameter(

name=<parameter_name>,

description="<description>",

sample_value="<sample_value>",

default_value=<default_value>,

required=<True/False>,

param_type=parameter_types.<Number/String/Boolean>Parameter(),

)

Parameters

l name. The name of the parameter. This value will be used to create a name:value tuple in the PowerFlow
application file (in JSON).

l description. A description of the step parameter.

l sample_value. A sample value of the required data type or schema.

l default_value. If no value is specified for this parameter, use the default value. Can be any Python data
structure. To prevent a default value, specify None.

l required. Specifies whether this parameter is required by the step. The possible values are True or
False.

l param_type. Specifies the type of parameter. Options include Number, String, Boolean. This setting is
optional.

84

85

Example

The following is an example from the "Cache Save" step from the "Base Steps" SyncPack:

self.new_step_parameter(

name=SAVE_KEY,

description="The key for which to save this data with",

sample_value="keyA",

default_value=None,

required=True,

param_type=parameter_types.StringParameterShort(),

)

new_step_parameter

save_data_for_next_step

save_data_for_next_step

Description

This function saves an object (usually a variable) and makes the data available to another step. The object must
be of a data type that can be pickled by Python. For more information about pickle, see
https://docs.python.org/3/library/pickle.html.

Syntax

save_data_for_next_step(<data_to_save>)

Parameters

<data_to_save>. A variable that contains the data.

NOTE: The <data_to_save> object must be of a data type that can be pickled by Python: None, True
and False, integers, long integers, floating point numbers, complex numbers, normal strings,
unicode strings, tuples, lists, set, and dictionaries.

Example

The following is an example of the save_data_for_next_step function:

save_data = {'key': 'value'}

self.save_data_for_next_step(save_data)

The application must then specify that the data from the current step should be passed to one or more subsequent
step, using the output_to parameter. For more information, see Transferring Data Between Steps.

86

https://docs.python.org/3/library/pickle.html

87

validate_parameter_values

Description

Validates the parameter values provided for an application. For example, the validate_parameter_value
function will raise an error if the user failed to provide a required parameter.

Syntax

validate_parameter_values()

validate_parameter_values

Chapter

6
Reference: Tools for SL1 PowerFlow

Overview

PowerFlow includes the following developer tools to help you manage content:

l iscli. PowerFlow includes a command line tool called iscli. When you install PowerFlow, iscli is
automatically installed. The iscli tool allows you to upload PowerFlow applications, steps, and
configurations.

l PowerFlow API. PowerFlow includes an API. When you install PowerFlow, the API is available.

In addition, you can contact your ScienceLogic Customer Success Manager (CSM) to get access to the following
tool, which is not included in a PowerFlow system:

l PowerFlow SyncPack Cookiecutter. Provides a template that you can use to create SyncPacks in a
repeatable manner. For more information seeGenerating the SyncPack Structure.

This chapter covers the following topics:

iscli 89

PowerFlow API 91

88

89

iscli

PowerFlow includes a command line tool called iscli. When you install PowerFlow, iscli is automatically installed.
The iscli tool allows you to upload PowerFlow applications, steps, and configurations.

To access the iscli tool:

1. Either go to the console of the PowerFlow system or use SSH to access the server.

2. Log in as isadmin with the appropriate password.

3. Type the following at the command line:
iscli -h

Syntax

To upload a step:

iscli -u -s -f <path_and_name_of_step_file>.py -H <hostname_or_IP_address_

of_powerflow> -P <port_number_of_http_on_powerflow> -U <user_name> -p

password

where

l <path_and_name_of_step_file> is the full pathname for the step.

l <hostname_or_IP_address_of_powerflow> is the hostname or IP address of PowerFlow.

l <port_number_of_http_on_powerflow> is the port number to access PowerFlow. The default
value is 443.

l <user_name> is the user name you use to log in to PowerFlow.

l password is the password you use to log in to PowerFlow.

To upload an application:

iscli -u -a -f <path_and_name_of_application_file>.py -H <hostname_or_IP_

address_of_powerflow> -P <port_number_of_http_on_powerflow> -U <user_name>

-p password

where:

l <path_and_name_of_application_file> is the full pathname for the application.

l <hostname_or_IP_address_of_powerflow> is the hostname or IP address of PowerFlow.

l <port_number_of_http_on_powerflow> is the port number to access PowerFlow. The default
value is 443.

iscli

iscli

l <user_name> is the user name you use to log in to PowerFlow.

l password is the password you use to log in to PowerFlow.

To upload a configuration object:

iscli -u -c -f <path_and_name_of_configuration_file>.py -H <hostname_

or_IP_address_of_PowerFlow> -P <port_number_of_http_on_PowerFlow> -U

<user_name> -p <password>

where:

l <path_and_name_of_configuration_file> is the full pathname for the step.

l <hostname_or_IP_address_of_PowerFlow> is the hostname or IP address of the PowerFlow
system.

l <port_number_of_http_on_PowerFlow> is the port number to access the PowerFlow system. The
default value is 443.

l <user_name> is the user name you use to log in to the PowerFlow system.

l <password> is the password you use to log in to the PowerFlow system.

List of Arguments

The following is a list of arguments you can use in the iscli tool:

l -h or --help. Help message.

l -H or --host. Hostname of content store. If left blank, default from config is used.

l -P or --port. Port of content store. If left blank, default from config is used.

l -U or --username. Username used to access content store. If left blank, default is used.

l -p or --password. Password used to access content store. If left blank, default is used.

l -u or --upload. Upload data to content store. Requires -f tag and a version to be used.

l -f or --fileLocation. File path of SyncPacks, PowerFlow applications, steps, and configuration objects to
upload. Note that while you can bulk upload applications, steps, and configuration objects, you cannot
bulk upload SyncPacks.

l -c or --configuration.

l -a or --application. Use the iscli tool to interact with an application.

l -s or --step. Use the iscli tool to interact with a step.

l -i or --insecure. Upload with an insecure (http) connection.

l -k or --syncpack. Use the iscli tool to interact with a SyncPack.

l -A or --activate. Activate a SyncPack. Requires -n, -v tag. -F is optional to force the activation and the tag
-I to install the SyncPack.

l -I or --install. Install a SyncPack. Requires -n, -v tag. -F is optional to force the installation.

l -n or --name. Name of the SyncPack that will be activated.

90

91

l -V or --version. Version of the SyncPack that will be activated.

l -F or --force. Force a SyncPack activation or installation.

l -O or --overwrite. Specify if non-SyncPack content will be overwritten.

l -l or --license. Use the CLI to license your IS system.

l -e or --email. Licensing: Customer Email.

l -C or --customer. Licensing: Customer Name.

l -o or --output. Licensing: Path to output license file.

You will use the following commands most often:

l Upload an application file. iscli –uaf <application-file>

l Upload a configuration file. iscli –ucf <configuration-file>

l Upload a step file. iscli –usf <step-file>

PowerFlow API

PowerFlow includes an API. When you install PowerFlow, the API is available.

Viewing API Documentation

To view the full documentation for the PowerFlow API:

1. From the PowerFlow system, copy the /opt/iservices/scripts/swagger.yml file to your local computer.

2. Open a browser session and go to editor.swagger.io.

3. In the Swagger Editor, open the Filemenu, select Import File, and import the file swagger.yml. The right
pane in the Swagger Editor displays the API documentation.

Available Endpoints

POST

/api/v1/apikeys/. Add a new API key.

/api/v1/applications. Add a new application or overwrite an existing application.

/api/v1/applications/{appName}/run. Run a single application by name with saved or provided
configurations.

/api/v1/applications/run. Run a single application by name.

/api/v1/configurations. Add a new configuration or overwrite an existing configuration.

/api/v1/roles/owner. Add a new owner assigned a specific role.

/api/v1/schedule. Add a new scheduled PowerFlow application.

PowerFlow API

http://editor.swagger.io/

PowerFlow API

/api/v1/status. Runs the "PowerFlow Control Tower HealthCheck" application to generate health status data.

/api/v1/steps. Add a new step or overwrite an existing step.

/api/v1/steps/run. Run a single step by name.

/api/v1/syncpacks/{syncpackName}/install. Install a specific SyncPack version by name.

/api/v1/tasks/{taskId}/replay. Replay a specific PowerFlow application. Replayed applications run with the
same application variables, configuration, and queue as the originally executed application.

/api/v1/tasks/{taskId}/revoke. Terminate a specific task or application. By default, this command will not
terminate the current running task.

/api/v1/tasks/{appId}/revoke. Terminate all tasks associated with a specific application.

/api/v1/me/widgets/{widget_id}. Creates a new widget or updates a existing widget used on the PowerFlow
Control Tower page.

GET

/api/v1/about. Retrieve version information about the packages used by this PowerFlow system, including the
version of PowerFlow.

/api/v1/apikeys. Retrieve all available API keys saved in the PowerFlow system.

/api/v1/apikeys/{api_key}. Get details of a single API key.

/api/v1/applications. Retrieve a list of all available applications on this PowerFlow system.

/api/v1/applications/{appName}. Retrieve a specific application.

/api/v1/applications/{appName}/logs. Retrieve the logs for the specified application.

/api/v1/cache/{cache_id}. Retrieve a specific cache to gather information about the user interface and the
PowerFlow applications.

/api/v1/cache/{cache_key}. Retrieve cache documents, but only if this cache document was explicitly saved to
be exposed to the API. You will need to save the cache document using the latest version of the "SaveToCache"
step in the Base Steps SyncPack. This step has a step parameter called "read_from_api" that lets you decide
whether the cache document can be requested from the API.

/api/v1/configurations. Retrieve a list of all configurations on this PowerFlow system.

/api/v1/configurations/{configName}. Retrieve a specific configuration.

/api/v1/license?type=platform. Retrieve license data for this PowerFlow system.

/api/v1/reports. Retrieve a list of paginated reports.

/api/v1/reports/{reportId}. Retrieve a specific report by ID.

/api/v1/roles. Retrieve a list of available roles on this PowerFlow system.

92

93

/api/v1/roles/owner. Retrieve a list of roles assigned to owners on this PowerFlow system.

/api/v1/roles/owner/{owner}. Retrieve the role assigned to a specific owner.

/api/v1/sessions. Retrieve a list of sessions for this PowerFlow system.

/api/v1/sessions/status. Retrieve the Session Management status for this PowerFlow system.

/api/v1/sessions/username/{username}. Retrieve the session IDs for a specific user.

/api/v1/sessions/{session_id}. Retrieve a specific session from Session Management for this PowerFlow
system.

/api/v1/schedule. Retrieve a list of all scheduled applications on this PowerFlow system.

/api/v1/status. Retrieve all the health status cache documents without running the "PowerFlow Control Tower
HealthCheck" application.

/api/v1/status?all=true. Retrieve all health metrics for PowerFlow services and merge all the health status
cache documents to return only one JSON response.

/api/v1/status/{service}. Retrieve all health metrics for a specific PowerFlow service, including the following
services: contentapi, couchbase, dexserver, iservices_syncpack_steprunner, iservices_syncpacks_
steprunner, pfctl_output, rabbitmq, redis, steprunner.

Starting with PowerFlow version 2.6.0, you can run a GET api/v1/status operation that returns all the health
status cache documents without running the HealthCheck application.
/api/v1/steps. Retrieve a list of all steps on this PowerFlow system.

/api/v1/steps/{stepName}. Retrieve a specific step.

/api/v1/syncpacks. Retrieve a list of all SyncPacks on this PowerFlow system.

/api/v1/syncpacks/{synpackName}. Retrieve the full details about a specific SyncPack.

/api/v1/syncpacks?only_installed=true. Retrieve a list of only the installed SyncPacks on this system.

/api/v1/syncpacks?only_activated=true. Retrieve a list of only the activated SyncPacks on this system.

/api/v1/tasks/{taskId}. Retrieve a specific task.

/api/v1/webhooks. Retrieve all available webhooks saved in the PowerFlow system.

/api/v1/me/widgets. Returns a list of all installed widgets used on the PowerFlow Control Tower page.

/api/v1/me/widgets/{widget_id}. Returns a specific widget using the specified widget ID.

DELETE

/api/v1/apikeys/{api_key}. Delete an API key.

/api/v1/applications/{appName}. Delete a PowerFlow application by name.

PowerFlow API

PowerFlow API

/api/v1/cache/{cache_id}. Delete a cache entry by name.

/api/v1/configurations/{configName}. Delete a configuration by name.

/api/v1/license?type=platform. Delete license data for this PowerFlow system.

/api/v1/me/widgets/{widget_id}. Delete the specified widget used on the PowerFlow Control Tower page.

/api/v1/roles/owner. Delete a specific owner role.

/api/v1/schedule. Delete a scheduled PowerFlow application by ID.

/api/v1/sessions. Delete a list of sessions for this PowerFlow system.

/api/v1/sessions?all=true. Delete all sessions for this PowerFlow system.

/api/v1/sessions/status. Delete the Session Management status for this PowerFlow system.

/api/v1/sessions/username/{username}. Delete the session IDs for a specific user.

/api/v1/sessions/{session_id}. Delete a specific session from Session Management for this PowerFlow system.

/api/v1/reports/{appName}. Delete a specific report by name.

/api/v1/reports/{reportId}. Delete a specific report by report ID.

/api/v1/steps/{stepName}. Delete a specific step by name.

/api/v1/syncpacks/{spName}. Delete a specific SyncPack by name.

94

© 2003 - 2023, ScienceLogic, Inc.

All rights reserved.

LIMITATIONOF LIABILITY AND GENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and ScienceLogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without notice.
ScienceLogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

ScienceLogic, the ScienceLogic logo, and EM7 are trademarks of ScienceLogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to ScienceLogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

l ScienceLogic™
l EM7™ and em7™
l Simplify IT™
l Dynamic Application™
l Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
ScienceLogic’s trademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of ScienceLogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com. For more information, see
https://sciencelogic.com/company/legal.

mailto:legal@sciencelogic.com
https://sciencelogic.com/company/legal

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction to SL1 PowerFlow for Developers
	What is SL1 PowerFlow?
	Tools Included with PowerFlow
	Prerequisites for Creating PowerFlow Steps and Applications

	Creating a Step
	What is a Step?
	Using Steps in a PowerFlow Application
	Using Input Parameters to Configure a Step
	Sharing Data Between Steps
	Types of Steps

	Workflow for Creating a Step
	Creating a Step from the Step Template
	Example Code: stepTemplate

	Including the Subclass and Required Methods
	Subclass
	Required Methods
	Example Code: Subclass and Required Methods

	Defining the Logic for the Step
	The init Method
	Defining the Step Name, Description, and Version
	Defining Parameters for the Step

	The execute Method

	Transferring Data Between Steps
	Saving Data for the Next Step
	Retrieving Data from a Previous Step
	get_data_from_step_by_name
	get_data_from_step_by_order
	join_previous_step_data

	Step Parameters
	Base Parameters Available in All Steps
	Defining a Parameter
	Retrieving Parameter Values
	Variable Substitution in Parameters

	Defining Logging for the Step
	Raising Exceptions
	Uploading Your Step
	Uploading a Step with iscli
	Uploading a Step with the API

	Validating Your Step
	Viewing Logs
	Default Steps

	Creating an SL1 PowerFlow Application
	What is a PowerFlow Application?
	Workflow for Creating an Application
	View the Template App PowerFlow Application
	Creating an Application from the Application Template
	Defining Required Fields for the Application
	Example Code: integration_template

	Creating the List of Steps and Step Parameters
	Specifying Values for name and file
	Specifying the Parameters

	Transferring Data Between Steps
	Defining Retry Options for a Step
	Defining Variables for an Application
	Uploading the Application to PowerFlow
	Uploading an Application with iscli
	Uploading an Application with the API

	Running the Application
	Running the Application with a Custom Queue
	Defining a Custom Queue
	Configuring an Application to Use a Custom Queue
	Configuring an Application to Always Use a Custom Queue
	Configuring an Application to Use a Custom Queue at Run Time

	Defining a Configuration Object
	Uploading the Configuration Object to PowerFlow
	Uploading a Configuration with iscli
	Uploading a Configuration Object Using the API

	View Logs for an Application

	Creating a SyncPack
	What is a SyncPack?
	Generating the SyncPack Structure
	SyncPack Structure
	SyncPack Properties
	Example Code: meta.json

	Building a SyncPack
	Building a SyncPack with Python3
	Building a SyncPack with the iscli Utility

	Extending an Existing SyncPack
	Restrictions
	Advanced Method: Extracting and Updating an Existing SyncPack
	Basic Method: Modifying Individual Steps and Applications
	Modifying Application Definitions
	Modifying a Step

	Example Code: Full Extended Step

	Uploading a SyncPack with the PowerFlow User Interface
	Uploading a SyncPack with the User Interface
	Uploading a SyncPack with the iscli Utility

	Activating and Installing a SyncPack
	Activating and Installing a SyncPack with the User Interface
	Activating and Installing with the iscli Utility

	ipaascore.BaseStep class
	get_app_variable
	Description
	Syntax
	Parameters
	Return
	Example

	get_available_previous_step_input_positions
	Description
	Syntax
	Return

	get_data_from_step_by_name
	Description
	Syntax
	Parameters
	Return
	Example

	get_data_from_step_by_order
	Description
	Syntax
	Parameters
	Return
	Exception
	Example

	get_name
	Description
	Syntax
	Return

	get_parameter
	Description
	Syntax
	Parameters
	Return
	Example

	get_parameter_from_previous_step
	Description
	Syntax
	Parameters
	Return

	join_previous_step_data
	Description
	Syntax
	Parameters
	Return
	Example

	new_step_parameter
	Description
	Syntax
	Parameters
	Example

	save_data_for_next_step
	Description
	Syntax
	Parameters
	Example

	validate_parameter_values
	Description
	Syntax

	Reference: Tools for SL1 PowerFlow
	iscli
	Syntax
	List of Arguments

	PowerFlow API
	Viewing API Documentation
	Available Endpoints
	POST
	GET
	DELETE

