
Using SL1 Publisher
SL1 version 10.1.0 Beta

Table of Contents

Introduction to SL1 Publisher 4
What is Publisher? 5
How Does Publisher Work? 5
Data Channels 5
Output Adapter 6

Tools Included with Publisher 6
Prerequisites for Using Publisher 6
Workflow for Using Publisher 7

Enabling SL1 Publisher 8
Enabling Publisher 9
Enabling Publisher During a New SL1 Installation 9
Enabling Publisher on an Existing SL1 System 9

Enabling Collector Pipeline 10
Verifying the Installation 10

Publisher API 12
About the Publisher API 13
Accessing the Publisher API 13
Finding the IP Address of the Publisher API 13
Using the Publisher API Interface 14

Managing Publisher Subscriptions 16
What is a Subscription? 17
Subscription Parameters 17
Supported Data Channels 17
Supported Output Adapters 17

Configuring Communication with Kafka 18
Plaintext Communication with Kafka 18
SSL Communication with Kafka 18
What is SSL? 18
Certificate Files 19
Configuring Kafka Two-Factor Authentication for Subscriptions 19

Creating a Subscription 19
Retrieving Subscriptions 20
Retrieving All Subscriptions 20
Retrieving a Single Subscription 21

Updating a Single Subscription 22
Understanding Subscription Updates 23

Deleting a Single Subscription 24
Managing Publisher Data Channels 25
What is a Data Channel? 26
Retrieving All Data Channels 26
Retrieving a Single Data Channel 26
Updating a Data Channel 27

Viewing Publisher Health 29
What Does the Health Endpoint Report? 30
Retrieving Liveness Status 30
Retrieving Readiness Status 30

sl-pubsub Library 32
Installing the sl-pubsub Library 33
Accessing the sl-pubsub Library Documentation 33

Troubleshooting Publisher 35

Why does my Publisher pod keep crashing or restarting? 36
Why is Publisher failing to send data even though it is not crashing? 36
When trying to change the name or ID or a data type, it does not work 37
When navigating to the URL shown in the Kubernetes ingress, a Not Found error occurs 37
When entering a POST or PUT request, a "Browser (or proxy) sent a request that this server could not
understand" error occurs 37

Chapter

1
Introduction to SL1 Publisher

Overview

This chapter describes Publisher.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

What is Publisher? 5

How Does Publisher Work? 5

Tools Included with Publisher 6

Prerequisites for Using Publisher 6

Workflow for Using Publisher 7

What is Publisher?

Publisher is a service that retrieves near real-time availability and interface performance data from SL1 Data
Collectors or the SL1 Agent and delivers the data through an output adapter to a third-party destination for long-
term data storage, analysis, or reporting. For example, Publisher can send data to Kafka topics as a helm chart (a
collection of files describing a related set of Kubernetes resources).

Publisher supports the concept of subscriptions, which allow you to specify what data you want and how you want it
presented.

Publisher includes its own API to allow interaction with the service. You can optionally download a library of Python
functions (sl-pubsub) from the ScienceLogic repository for managing the data received by Publisher.

Publisher is an opt-in service that you can enable in the SL1 Extended architecture. Publisher runs on the
Management Node. The client software runs on customer hardware.

How Does Publisher Work?

Publisher listens to a list of data channels in SL1 to determine if new data is available.

If new data is available, Publisher creates a binary bundle and sends the bundle to an output adapter.

To receive Publisher data, you can create one or more subscriptions. Each subscription defines the data channels
from which you want to receive data and the output adapter to which you want to send the data. For more
information, seeManaging Publisher Subscriptions.

Optionally, you can use the sl-pubsub library to unpack the binary data bundles on your third-party system. For
more information, see sl-pubsub Library.

Data Channels

A data channel streams data. The name of the data channel describes the type of data that it streams.

Publisher supports the following data channels:

Name ID Description

availability 1 Publisher stream for availability data
from SL1

interface 3 Publisher stream for interface data
from SL1

When you define a subscription, you supply the name of one or more data channels for the data_types key in the
JSON file. For more information, seeManaging Data Channels.

Output Adapter

An output adapter defines information about the destination of the data from Publisher.

Publisher supports the following output adapters:

Name Required Parameter(s) Description

Line printer None Publisher will send data to standard
output (stdout). This is helpful for
debugging.

ScienceLogic does not recommend
this output adapter for general use.

File writer filename. The name of the
destination file where you want to
send the data.

Publisher will send data to the
specified file. This is helpful for
debugging.

ScienceLogic does not recommend
this output adapter for general use.

Kafka adapter topic. String. The name of the Kafka
topic.

server. String with IP address and
port number. The host name:port
number of the Kafka server.

Publisher will send data to the
specified Kafka topic/server pair.

You can specify multiple topics and
servers using spaces.

When you define a subscription:

l You supply the name of each output adapter in the output_name key in a JSON file.

l You supply parameters for that output adapter in the output_config key in a JSON file.

Tools Included with Publisher

l API. Publisher includes an API for defining subscriptions and managing subscriptions. A Swagger user
interface is provided for ease of use.

l Metrics. Publisher communicates with a Prometheus pod to store metrics about Publisher.

Prerequisites for Using Publisher

Before you can use Publisher, you must do the following:

l Deploy SL1 10.1.0 and the SL1 Extended Architecture. You can deploy Publisher when you deploy SL1
10.1.0 and the SL1 Extended Architecture or you can enable and deploy Publisher on an existing SL1
Extended Architecture system. For more information, see Enabling Publisher.

l Enable the Collector Pipeline. For more information, see Enabling the Collector Pipeline.

l Ensure you have SSH or console access to the Management Node so you can access Docker and Kubernetes

Optionally, you can install the following:

l sl-pubsub Library. A library of Python functions that enable you to unpack the binary bundles sent by
Publisher into JSON messages on your third-party system.

NOTE: The sl-pubsub library requires Python 3.

Workflow for Using Publisher

The following steps represent the general workflow for implementing Publisher. A pre-configuration checklist is
available in the next section.

Step Description References

1. Enable
Publisher.

Enable Publisher during initial SL1 Extended deployment or on an
existing SL1 Extended architecture by running deploy again.

Enabling SL1
Publisher

2. Enable the
Collector
Pipeline.

Collector Pipeline is required for Publisher. Enabling the
Collector
Pipeline

3. Access the
Publisher API.

The Publisher API is a Swagger UI that lets you manage
subscriptions,

Accessing the
Publisher API

4. (Optional)
Define
SSL certificates
for Kafka.

If you use two-factor authentication to communicate with your Kafka
installation, set up the certificates for use by Publisher.

Configuring
Kafka SSL
Communication

5. Define
subscriptions.

Define subscriptions using the Publisher API. Creating
Publisher
Subscriptions

6. (Optional)
Install the sl-
pubsub library.

Download and install the sl-pubsub library from the ScienceLogic
Customer Portal. The documentation for sl-pubsub is contained in
the downloadable .zip file.

Installing the sl-
pubsub Library

7. Use the sl-
pubsub library
to unpack the
binary data
bundles sent
from SL1.

See sl-pubsub documentation, included in the sl-pubsub .zip file. —

Chapter

2
Enabling SL1 Publisher

Overview

This chapter describes how to enable Publisher on an SL1 Extended Architecture.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Enabling Publisher 9

Enabling Collector Pipeline 10

Verifying the Installation 10

Enabling Publisher

Publisher is an opt-in service that is included with the SL1 Extended architecture but is not enabled by default.
When Publisher is enabled, you will see two Kubernetes pods in your SL1 stack:

l publisher-<hash>

l publisher-api-<hash>

NOTE: Kubernetes automatically assigns the hash for the Publisher services.

Enabling Publisher During a New SL1 Installat ion

For new installations, you can enable Publisher during deployment.

For details on installing the SL1 Extended Architecture and enabling Publisher during install, see the Installation
manual.

Enabling Publisher on an Exist ing SL1 System

You can enable Publisher on an existing SL1 Extended Architecture by editing the silx-inv.yml file and running
deploy again, as described in this section.

To enable Publisher on an existing SL1 Extended Management Node:

1. Either go to the console of the Management Node or use SSH to access the Management Node. Open a
shell session on the server. Log in with the system password.

2. At the shell prompt, navigate to your deploy directory, as follows:
cd sl1x-deploy

3. Edit the file sl1x-inv.yml, as follows:
vi sl1x-inv.yml

CAUTION:Do not remove colons when editing this file.

4. In the all: vars: section of the file, set install_publisher to true.
install_publisher: true

5. Save and exit the file.

6. Run the deploy script.
docker-compose -f docker-compose.internal.yml run --rm deploy shell

7. (Optional) If you want to view the Publisher configuration, you can cat the publisher-values.yml file. For
example:
cat output-files/publisher-values.yml

Enabling Collector Pipeline

Collector Pipeline is a platform feature that allows horizontal scaling (adding more Data Collectors and Agent
installations) without data loss or performance loss.

Collector Pipeline also support the new beta feature, Publisher and the new beta feature, Anomaly Detection.

Currently, Collector Pipeline supports availability data, interface data, and data from Performance Dynamic
Applications. SL1 will add more data types in future releases.

NOTE: If you want to use Anomaly Detection, enable Collector Pipeline with data from Performance Dynamic
Applications.

To enable Collector Pipeline for availability data, interface data, and anomaly detection:

1. Either go to the console of the Database Server or use SSH to access the Database Server. Open a shell
session on the server. Log in with the system password you defined in the ISO menu.

2. To view information about the command, enter the following at the shell prompt:

/opt/em7/backend/set_cpl.py -help

3. To enable Collector Pipeline for availability data, interface data, and anomaly detection, enter the following
at the shell prompt:

/opt/em7/backend/set_cpl.py -d availability ENABLE

/opt/em7/backend/set_cpl.py -d interface ENABLE

/opt/em7/backend/set_cpl.py -d da_perf ENABLE

4. To disable Collector Pipeline for availability data, interface data, and anomaly detection, enter the following
at the shell prompt:

/opt/em7/backend/set_cpl.py -d availability DISABLE

/opt/em7/backend/set_cpl.py -d interface DISABLE

/opt/em7/backend/set_cpl.py -d da_perf DISABLE

Verifying the Installation

To verify the installations:

1. Either go to the console of the Management Node or use SSH to access the Management Node. Open a
shell session on the server. Log in with the System Password you defined in the ISO menu.

2. At the shell prompt, navigate to your deploy directory, as follows:
cd sl1x-deploy

3. To verify the Publisher pod is up and running, run the following command:
kubectl get pods | grep publisher

The command should return two pods:

l publisher-<hash>

l publisher-api-<hash>

The pods will report "1/1 Ready" when they are operational.

3. To verify the publisher-api service is up:
kubectl get services | grep publisher

4. To verify the publisher-api endpoint is up:
kubectl get endpoint | grep publisher

5. To verify the publisher-api ingress is up:
kubectl get ingress | grep publisher

Chapter

3
Publisher API

Overview

This chapter describes how to access and interact with the Publisher API through the user interface.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

About the Publisher API 13

Accessing the Publisher API 13

About the Publisher API

The Publisher API provides a user interface to the available endpoints (subscriptions, channels, and health) using
Swagger. You can click on each endpoint to see the available actions for that endpoint.

Accessing the Publisher API

Finding the IP Address of the Publisher API

To find the IP address of the Publisher API:

1. Either go to the console of the Management Node or use SSH to access the Management Node.

2. Open a shell session on the server.

3. Change to the deployment directory. For example:
cd sl1x-deploy/

4. Run the following command:
docker-compose -f docker-compose.internal.yml run --rm deploy shell

5. At the command prompt, enter the following:
$ kubectl get ingress | grep publisher

The command outputs a Kubernetes ingress called publisher-api-ingress.

6. Note the URL for the publisher-api in the HOSTS section of the output. The actual URL for the publisher-api
will be <URL returned by kubectl>/api/v1.

Using the Publisher API Interface

To access the Publisher API in a web browser:

1. Open a browser and enter the following URL:

<URL returned by kubectl>/api/v1

The browser will display a Swagger page for the Publisher API.

2. Click on the endpoint you are interested in to see all available actions. For example, if we click the
"subscriptions" endpoint, it expands to show the following available actions:

3. Click an action to modify or execute it. In the example below, we clickedGET /subscriptions. This action
will retrieve a list of all available subscriptions. For more information about this action, see Retrieving All
Subscriptions.

For more information about the API endpoints, refer to the following sections:

l Managing Publisher Subscriptions

l Managing Data Channels

l Viewing Publisher Health

Chapter

4
Managing Publisher Subscriptions

Overview

This chapter describes how to create and manage subscriptions for Publisher using the subscriptions endpoint.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

What is a Subscription? 17

Configuring Communication with Kafka 18

Creating a Subscription 19

Retrieving Subscriptions 20

Updating a Single Subscription 22

Deleting a Single Subscription 24

What is a Subscription?

Publisher listens to a list of data channels in SL1 to determine if new data is available and sends it to a destination
based on its active subscriptions. A subscription is an object that specifies how and where to send the data. To
receive Publisher data, you can create one or more subscriptions.

Subscript ion Parameters

A subscription is defined by the following fields:

l name. Specifies a name for the subscription.

l enabled. Specifies whether the subscription is active (enabled) or inactive (disabled).

l output_name. Specifies the type of subscription destination (for example, kafka).

l cafile, certfile, keyfile. Fields used in Kafka with two-factor authentication to specify the keyfile. For more
information, see SSL Communication with Kafka.

l output_config. A JSON structure containing output configuration options.

l data_types. List of all the data_types this subscription to which this subscription should listen.

Supported Data Channels

Currently, Publisher supports two data channels, specified in the subscription as data_types:

l Availability. Publisher stream for availability data from SL1.

l Interface. Publisher stream for interface performance data from SL1.

Supported Output Adapters

Publisher sends the data to an output adapter, specified in the subscription as output_name. The following
output adapters are supported:

l Line printer. Publisher will send data to standard output (stdout). No additional configuration is required
when sending to the line printer. This option is helpful for debugging.

JSON declaration:

"output_config" : {}

l File writer. Publisher will send data to the specified file. This option is helpful for debugging.

Example JSON declaration:

"output_config" : {
"filename" : /some_location/some_directory/some_file

}

l Kafka adapter. Publisher will send data to the specified kafka topic/server pair.

Configuring Communication with Kafka

To enable communication with Kafka, you can either use plaintext or SSL. This section describes the parameters
you must set in the "output_config" section of the subscription to enable this communication.

Plaintext Communicat ion with Kafka

Publisher accepts all configuration types for Kafka and passes them through to the third-party Kafka library included
in SL1. When "output_name" is set to "kafka", a minimum of two fields are expected: a topics key and a
servers key.

Example JSON declaration for Kafka plaintext configuration:

"output_config" : {
"topics": "testTopic",
"servers": "KafkaServer:9092"

}

Note the following:

l You can specify more than one topic by using a space to separate topics in a list.

l You can specify more than one server by using a space to separate servers in a list.

l If you do not specify a host in the servers field, Publisher will default to localhost.

l If you do not specify a port in the servers field, Publisher will default to port 9092.

For more information about available configurations, see the Kafka documentation at https://kafka-
python.readthedocs.io/en/master/index.html.

SSL Communicat ion with Kafka

Publisher can communicate with Kafka over SSL when you configure two-factor authentication.

What is SSL?

SSL is an acronym for Secure Sockets Layer. SSL is a protocol for securely transmitting data via the internet. SSL
uses a private key to encrypt data to be transferred over the Internet connection. Usually, URLs that include "HTTPS"
are using SSL for security.

To implement SSL, an SSL certificate resides on the web server and is used to encrypt the data and to identify the
website. The SSL certificate contains information about the certificate holder, the domain for which the certificate
was issued, the name of the Certificate Authority who issued the certificate, and the root and the country in which
the certificate was issued.

There are two ways to acquire an SSL certificate:

l You can purchase a certificate from a vendor (called a "certificate authority"), such as VeriSign or GeoTrust.

l You can "self-sign" your own certificate. Using available tools (both open source and proprietary), you can
create and sign your own SSL certificate instead of purchasing from a certificate authority.

https://kafka-python.readthedocs.io/en/master/index.html
https://kafka-python.readthedocs.io/en/master/index.html

Certi fica te Fi les

To configure Publisher for SSL communication with Kafka, you need at least three certificate files:

l cafile. A Certificate Authority (CA) file used in certificate verification. This corresponds to the ssl_cafile
parameter in Kafka.

l certfile. A client certificate file (.pem format) and any files needed to verify the certificate's authenticity. This
corresponds to the ssl_certfile parameter in Kafka.

l keyfile. Client private key. This corresponds to the ssl_keyfile parameter in Kafka.

Publisher ingests the certificate files as base64-encoded file contents. Prior to moving to the next step, use a
command such as the following to encode and output the contents of each file. You will copy and paste these
contents in the next procedure.

cat <file_path>/<file_name> | base64 -w 0

NOTE: Publisher does not support the use of newline in any of the certificate files. The command above
encodes the file without newlines, making it one continuous string.

Configuring Kafka Two-Factor Authentication for Subscrip t ions

To enable two-factor authentication in a subscription, you must include:

l The declaration "auth_protocol": "two_way_auth" in the output_config section, and

l The filenames of the cafile, certfile, and keyfile must be included in the subscription.

For example:

"output_config" : {
"topics": "testTopic",
"servers": "testKafka:testPort",
"auth_protocol": "two_way_auth"
"security_protocol": "SSL",
"cafile": "<insert_file_contents>",
"certfile": "<insert_file_contents>",
"keyfile": "<insert_file_contents>"

}

Creating a Subscription

To create a subscription:

1. Navigate to the API URL. For example: 10.10.10.10/api/v1.

2. Click on POST /subscriptions in the subscriptions section.

3. Click [Try it out].

4. Fill in Payload with the desired subscription configuration. The following example shows a new subscription
called "test_subs", which is a subscription to the Kafka availability data channel.

5. Click [Execute].

6. Verify in the response that the subscription was created successfully. An example response for our new
subscription is shown below.

NOTE: The data type ID value is auto-generated and cannot be modified.

Retrieving Subscriptions

This section describes how to retrieve one or more subscriptions from the API.

Retrieving All Subscript ions

To retrieve all subscriptions:

1. Navigate to the API URL. For example: 10.10.10.10/api/v1.

2. Click onGET /subscriptions in the subscriptions section.

3. Click [Try it out].

4. Click [Execute].

5. View the subscriptions returned in the response.

Retrieving a Single Subscript ion

To retrieve a specific subscription by subscription ID:

1. Navigate to the API URL. For example: 10.10.10.10/api/v1.

2. Click onGET /subscriptions/{subscription_id} in the subscriptions section.

3. Click [Try it out].

4. Insert the subscription_id you want to view (for example, 1).

5. Click [Execute].

6. View the subscription returned in the response.

Updating a Single Subscription

To update a subscription:

1. Navigate to the API URL. For example: 10.10.10.10/api/v1.

2. Click on PUT /subscription/{subscription_id} in the subscriptions section.

3. Click [Try it out]

4. Insert the subscription_id you want to update (for example, 1).

5. Edit the fields you want to reconfigure. You do not need to edit each field, only the ones you want to update.

6. Click [Execute].

7. View the updated subscription returned in the response.

Understanding Subscript ion Updates

Updating a subscription applies your input to the adapter. For example, given the following subscription:

{ "id": 1,
"name": "string",
"enabled": true,
"output_name": "kafka",
"output_config": {
"topics": "testTopic",
"servers": "10.10.10.10" },
"data_types": ["availability"] }

And we apply the following in an update request to ID 1:

{
"output_config": {
"topics": "newTopic"}
}

The subscription then becomes:

{ "id": 1,
"name": "string",

"enabled": true,
"output_name": "kafka",
"output_config": {
"topics": "newTopic"},
"data_types": ["availability"] }

Notice that the servers field has disappeared. You can think of this as replacing the contents of a given field with
new contents.

NOTE: If you get no update or server response when you execute the PUT, check your JSON format for any
trailing commas or brackets that should not appear. Use a JSON validator, if necessary, to check your
format.

Deleting a Single Subscription

To delete a subscription:

1. Navigate to the API URL. For example: 10.10.10.10/api/v1.

2. Click on DELETE /subscription/{subscription_id} in the subscriptions section.

3. Insert the subscription_id of the subscription you want to delete.

4. Click [Execute].

5. View the deleted subscription returned in the response.

Chapter

5
Managing Publisher Data Channels

Overview

This chapter describes how to manage data channels with Publisher using the channels endpoint.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

What is a Data Channel? 26

Retrieving All Data Channels 26

Retrieving a Single Data Channel 26

Updating a Data Channel 27

What is a Data Channel?

Publisher listens to a list of data channels in SL1 to determine if new data is available and sends it to a destination
based on its active subscriptions.

Currently, Publisher supports two data channels, specified in the subscription as data_types:

l Availability. Publisher stream for availability data from SL1.

l Interface. Publisher stream for interface performance data from SL1.

Retrieving All Data Channels

This section describes how to retrieve the full list of data channels from the API.

To get information about all data channels:

1. Navigate to the API URL. For example: 10.10.10.10/api/v1.

2. Click onGET /channels in the channels section.

3. Click [Try it out].

4. Click [Execute].

5. View the data channels contained in the server response.

NOTE: The data type ID value is auto-generated and cannot be modified.

Retrieving a Single Data Channel

This section describes how to retrieve a given data channel from the API when you know the channel ID.

To retrieve a data channel with the channel ID:

1. Navigate to the API URL. For example: 10.10.10.10/api/v1.

2. Click onGET /channels/{channel_id} in the channels section.

3. Click [Try it out].

4. Insert the channel_id you want to view (for example, 1).

5. Click [Execute].

6. View the channel information returned in the server response.

Updating a Data Channel

This section describes how to retrieve a given data channel from the API when you know the channel ID. You
would use this procedure if you wanted to modify the name of the channel or to enable or disable the channel.

NOTE: The data type ID value is auto-generated and cannot be modified.

To update a data channel:

1. Navigate to the API URL. For example: 10.10.10.10/api/v1.

2. Click on PUT /channels/{channel_id} in the channels section.

3. Click [Try it out]

4. Insert the channel_id you want to update (for example, 1).

5. Edit the fields you want to reconfigure. You do not need to edit each field, only the ones you want to update.
In the following example, we will disable channel 1 by changing the "enabled" parameter to "false".

6. Click [Execute].

7. View the updated channel returned in the server response.

Chapter

6
Viewing Publisher Health

Overview

This chapter describes how to view Publisher health using the health endpoint.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

What Does the Health Endpoint Report? 30

Retrieving Liveness Status 30

Retrieving Readiness Status 30

What Does the Health Endpoint Report?

Publisher's health endpoint reports liveness and readiness. The reports are for informational purposes only and do
not provide direct interactivity with the Publisher services.

Retrieving Liveness Status

This section describes how to retrieve the Publisher liveness status from the API. The liveness tests ensures that
Publisher can receive requests. If the liveness status reports anything other than "Alive" in the server response,
contact ScienceLogic Customer Support.

To retrieve Publisher liveness status:

1. Navigate to the API URL. For example: 10.10.10.10/api/v1.

2. Click onGET /health/liveness in the health section.

3. Click [Try it out].

4. Click [Execute].

5. View the status contained in the server response.

Retrieving Readiness Status

This section describes how to retrieve Publisher readiness status. The readiness test ensures that Publisher is ready
and can reach all necessary services such as MariaDB and Kafka. If the readiness status reports anything other than
"Ready" in the server response, contact ScienceLogic Customer Support.

To retrieve a data channel with the channel ID:

1. Navigate to the API URL. For example: 10.10.10.10/api/v1.

2. Click onGET / in the channels section.

3. Click [Try it out].

4. Insert the channel_id you want to view (for example, 1).

5. Click [Execute].

6. View the channel information returned in the server response.

Chapter

7
sl-pubsub Library

Overview

This chapter describes the sl-pubsub library. After you have created subscriptions and Publisher is either reporting
the messages being sent and Kafka is receiving the binary data bundles, you can use the sl-pubsub library to
unpack the data bundles and receive useful messages from them.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Installing the sl-pubsub Library 33

Accessing the sl-pubsub Library Documentation 33

Installing the sl-pubsub Library

To install the sl-pubsub library on your third-party system:

1. Log on to the ScienceLogic Customer Portal and download the sl-pubsub_whl_and_docs.zip file, which
contains the sl-pubsub library, as well as the sl-pubsub library documentation.

2. Copy the compressed file to the third-party system where you will unpack the binary data bundles sent by
Publisher.

3. At the command line, enter the following command:

pip3 install sl_pubsub

If you have virtualenvwrapper installed, enter the following command instead:

mkvirtualenv sl_pubsub
(sl_pubsub) pip3 install sl_pubsub

4. The installation process will complete, and the license will be displayed.

Accessing the sl-pubsub Library Documentation

When you install the sl-pubsub library, the sl-pubsub_doc directory will install in the location where you extract the
files.

To view the sl-pubsub documentation:

1. Navigate to the sl-pubsub_doc directory.

2. Open the html sub-directory.

3. Open the index.html file. The documentation will open in your default browser.

Chapter

8
Troubleshooting Publisher

Overview

This chapter describes some common problems you might encounter while using Publisher, as well as
troubleshooting solutions.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Why doesmy Publisher pod keep crashing or restarting? 36

Why is Publisher failing to send data even though it is not crashing? 36

When trying to change the name or ID or a data type, it does not work 37

When navigating to the URL shown in the Kubernetes ingress, a Not Found error occurs 37

When entering a POST or PUT request, a "Browser (or proxy) sent a request that this server could not
understand" error occurs 37

Why does my Publisher pod keep crashing or restarting?

Numerous reasons may exist that cause a pod to restart. The following is a short list of possible issues and solutions:

Issue. If an sl1-mdb secret, service, or endpoint is not established, Publisher will not work. Publisher looks for each
of those specifically to connect to a MariaDB server.

Solution. These items should be created during deployment. Contact ScienceLogic Customer Support for
assistance.

Issue. You can connect but get a message saying the table is not created.

Solution. Check the mysql database and ensure that the Publisher database and its corresponding tables exist. If
the tables do not exist, contact ScienceLogic Customer Support.

Issue. The address Publisher is trying to reach is not reachable from the pod. This should not cause Publisher to
crash or restart, but rather Publisher will be unable to send data.

Solution. The problem could be in network connectivity or in your configuration. Contact ScienceLogic Customer
Support for assistance.

Why is Publisher failing to send data even though it is not
crashing?

Issue. If you check the logs of the pod and see this message, what has likely happened is that a misconfigured
subscription exists, and Publisher is constantly trying to reconnect.

::ERROR::sl_pubsub.utils.280:::Reached maximum (11) attempts

To view logs for a pod:

1. Either go to the console of the Management Node or use SSH to access the Management Node. Open a
shell session on the server. Log in with the system password.

2. Run the following command to enter the Docker container:

docker-compose -f docker-compose.external.yml run --rm deploy shell

3. Enter the following command:

kubectl get pods

4. Locate the pod for which you want to view logs.

5. Enter the following command for the pod you want to view.

kubectl logs -f pod_name

6. Review the logs.

Solution. Find the misconfigured subscription using the API, and fix the misconfiguration. Publisher might take
some time to pick up the change.

Checking the logs. If you check the pod logs, and you see messages indicating that an exchange is not
happening, two likely scenarios could exist.

1. If the queue that is causing the error is a data type queue, such as "avail.publisher" or "interface.publisher", it
likely means that the Connector Pipeline is not set up yet, or is not set up as Publisher expects. Investigate the
Connector Pipeline and the exchanges it creates.

2. If the queue that is causing the error is "publisher.process", it is likely that something is wrong with the
Publisher API, since this message means that the exchange was not created by the API. This could be due to
a timing issue, if Publisher started before the API. Investigating the Publisher API in general is recommended.

Issue. Another common error you might see in the logs is a subscription having "topic" or "server" rather than
"topics" or "servers". The error in the logs will indicate that "topics" is "None" or "servers" is "None".

Solution. Correct the subscription to use the proper term for topics or servers.

When trying to change the name or ID or a data type, it does
not work

Issue. Currently, SL1 does not support changing the name or ID of a data type. The only information you can
change is whether the data channel is enabled or disabled.

When navigating to the URL shown in the Kubernetes ingress,
a Not Found error occurs

Issue. The URL must include the /api/v1 parameter.

Solution. Go to https://<ip_address>/api/v1.

When entering a POST or PUT request, a "Browser (or proxy)
sent a request that this server could not understand" error
occurs

This issue might also return no errors but likewise produce no results.

Issue. The most likely reason for the issue is that the data set in the PUT request is not formatted correctly.

Solution. The PUT request accepts JSON-formatted data. Check for trailing commas, missing braces, and so on.

© 2003 - 2020, ScienceLogic, Inc.

All rights reserved.

LIMITATION OF LIABILITY ANDGENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and ScienceLogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without notice.
ScienceLogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

ScienceLogic, the ScienceLogic logo, and EM7 are trademarks of ScienceLogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to ScienceLogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

l ScienceLogic™
l EM7™ and em7™
l Simplify IT™
l Dynamic Application™
l Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
ScienceLogic’s trademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of ScienceLogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction to SL1 Publisher
	What is Publisher?
	How Does Publisher Work?
	Data Channels
	Output Adapter

	Tools Included with Publisher
	Prerequisites for Using Publisher
	Workflow for Using Publisher

	Enabling SL1 Publisher
	Enabling Publisher
	Enabling Publisher During a New SL1 Installation
	Enabling Publisher on an Existing SL1 System

	Enabling Collector Pipeline
	Verifying the Installation

	Publisher API
	About the Publisher API
	Accessing the Publisher API
	Finding the IP Address of the Publisher API
	Using the Publisher API Interface

	Managing Publisher Subscriptions
	What is a Subscription?
	Subscription Parameters
	Supported Data Channels
	Supported Output Adapters

	Configuring Communication with Kafka
	Plaintext Communication with Kafka
	SSL Communication with Kafka
	What is SSL?
	Certificate Files
	Configuring Kafka Two-Factor Authentication for Subscriptions

	Creating a Subscription
	Retrieving Subscriptions
	Retrieving All Subscriptions
	Retrieving a Single Subscription

	Updating a Single Subscription
	Understanding Subscription Updates

	Deleting a Single Subscription

	Managing Publisher Data Channels
	What is a Data Channel?
	Retrieving All Data Channels
	Retrieving a Single Data Channel
	Updating a Data Channel

	Viewing Publisher Health
	What Does the Health Endpoint Report?
	Retrieving Liveness Status
	Retrieving Readiness Status

	sl-pubsub Library
	Installing the sl-pubsub Library
	Accessing the sl-pubsub Library Documentation

	Troubleshooting Publisher
	Why does my Publisher pod keep crashing or restarting?
	Why is Publisher failing to send data even though it is not crashing?
	When trying to change the name or ID or a data type, it does not work
	When navigating to the URL shown in the Kubernetes ingress, a Not Found error...
	When entering a POST or PUT request, a Browser (or proxy) sent a request that...

