
Using SL1 Publisher
SL1 version 12.2.0

Table of Contents

Introduction to SL1 Publisher 3
What is Publisher? 4
How Does Publisher Work? 4
Prerequisites for Using Publisher 4
Workflow for Using Publisher 5
Enabling the Collector Pipeline 5
Configuring Proxy Support for Collector Pipeline 6
GET /sladmin/v1.0/streamerpush/proxy 7
Example Request 7
curl 7
HTTPie 7

Example Response 7
POST /sladmin/v1.0/streamerpush/proxy 7
Required Parameters: 8
Optional Parameters: 8
Example Request 8
curl 8

Example Response 8
POST /sladmin/v1.0/streamerpush/proxy/toggle 8
Example Request to Turn Off Proxy 9
curl 9

Example Response: 9
Example Request to Turn On Proxy 9
curl 9

Example Response: 9
Creating the Publisher Custom Resource Definitions 10
Adding Supported Data Models 11
Supported Data Models 11
Required Fields for Data Model File 11
Template for Data Model File 11
Example 12

Applying the Data Model File 12
Adding a Subscription 13
Required Fields for Subscription File 13
Template for Subscription File 13
Example 14

Applying the Subscription File 14
Configuring an Authenticated Connection for Subscriptions 14

Certificate Files 14
Subscription Example 15

Consuming Messages from a Publisher Subscription 16
Configuring Your System to Consume Messages from a Publisher Subscription 16
Installing the sl-schema-registry Library 17
Using a Kafka Python Library to Read Subscription Messages 17
Example Script 17

Troubleshooting Publisher 20
Why do my Publisher pods keep crashing or restarting? 21
Why is Publisher failing to send data even though it is not crashing? 21
Why is my subscription hanging or not being deleted properly? 21

Chapter

1
Introduction to SL1 Publisher

Overview

This chapter describes SL1 Publisher.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

For more information about the Publisher service, watch the video at
https://www.youtube.com/watch?v=GETLLVjc1zY.

This chapter covers the following topics:

What is Publisher? 4

How Does Publisher Work? 4

Prerequisites for Using Publisher 4

Workflow for Using Publisher 5

Enabling the Collector Pipeline 5

Configuring Proxy Support for Collector Pipeline 6

https://www.youtube.com/watch?v=GETLLVjc1zY

What is Publisher?

Publisher is a service that retrieves near real-time availability and interface performance data from SL1 Data
Collectors or the SL1 Agent and delivers the data to a third-party destination for long-term data storage, analysis,
or reporting. For example, Publisher can send data to Kafka topics.

Publisher supports the concept of data models, which specify where you want to retrieve ingested data from, and
subscriptions, which allow you to specify what data to push and where to send it.

A library of Python functions (sl-schema-registry) is provided in the ScienceLogic Support Site for deserializing
messages sent to Kafka topics by Publisher.

Publisher is installed and enabled by default in the SL1 Extended Architecture, however you must configure
Publisher before it will send your data to a destination. Client software, such as Kafka, must be configured on
your own hardware.

How Does Publisher Work?

Publisher ingests data specified by the data models and publishes this data to your Kafka topics as specified in
your subscriptions. The Publisher service listens for Custom Resource Definitions (CRDs) that you establish in
YAML files, discussed below.

Publisher requires the following two types of YAML files to collect and push data:

l DataModel. Specifies where in the ingestion pipelines to extract data from.

l Subscription. Specifies which Data Models to publish and the endpoint to which to publish the data.

You must create and apply these files using the examples shown in the next chapter.

If new data is available from the data model, Publisher creates a binary bundle and sends the bundle as specified
in the subscription.

When your data is published to your Kafka topics, you can use the sl-schema-registry library to unpack the binary
data bundles on your third-party system.

Prerequisites for Using Publisher

Before you can use Publisher, you must do the following:

l Deploy SL1 version 10.2.0 and the SL1 Extended Architecture.

l Enable the Collector Pipeline. For more information, see Enabling the Collector Pipeline.

l Ensure you have SSH or console access to the Management Node so you can access Docker and
Kubernetes.

l Install sl-schema-registry on the system where you will unpack and consume the messages sent to
your Kafka topic by Publisher. For more information, see Installing the sl-schema-registry Library.

https://support.sciencelogic.com/s/

Workflow for Using Publisher

The following steps represent the general workflow for implementing Publisher.

Step Description References

1. Enable the Collector Pipeline. Collector Pipeline is required for Publisher. Enabling the
Collector
Pipeline

2. Define data models. Define data models in YAML files. Adding
Supported
Data Models

3. Define subscriptions. Define subscriptions in YAML files. Adding a
Subscription

4. Install the sl-schema-registry
library.

Download the sl-schema-registry from the ScienceLogic
Support Site and install it on the system where you will
consume the messages sent from Publisher. The
documentation for the library is contained in the .zip file with
the library.

Installing the
sl-schema-
registry
Library

5. Use the sl-schema-registry
library to unpack the binary data
bundles sent from SL1.

See the sl-schema-registry library documentation, included in
the .zip file.

—

Enabling the Collector Pipeline

Collector Pipeline is a platform feature that allows horizontal scaling (adding more Data Collectors and Agent
installations) without data loss or performance loss.

Collector Pipeline also supports Publisher and Anomaly Detection.

Currently, Collector Pipeline supports availability data, network interface data, and data from Performance
Dynamic Applications. SL1 will add more data types in future releases.

NOTE: If you want to use Anomaly Detection, enable Collector Pipeline with data from Performance
Dynamic Applications.

NOTE: Collector Pipeline requires the use of port 443 from the Collector to the Streamer service.

To enable Collector Pipeline for availability data, network interface data, and anomaly detection:

1. Either go to the console of the Database Server or use SSH to access the Database Server. Open a shell
session on the server. Log in with the system password you defined in the ISO menu.

2. To view information about the command, enter the following at the shell prompt:

https://support.sciencelogic.com/s/
https://support.sciencelogic.com/s/

/opt/em7/backend/set_cpl.py -help

3. To enable Collector Pipeline for availability data, network interface data, and anomaly detection, enter the
following at the shell prompt:

/opt/em7/backend/set_cpl.py -d availability ENABLE

/opt/em7/backend/set_cpl.py -d interface ENABLE

/opt/em7/backend/set_cpl.py -d da_perf ENABLE

4. To disable Collector Pipeline for availability data, network interface data, and anomaly detection, enter the
following at the shell prompt:

/opt/em7/backend/set_cpl.py -d availability DISABLE

/opt/em7/backend/set_cpl.py -d interface DISABLE

/opt/em7/backend/set_cpl.py -d da_perf DISABLE

Configuring Proxy Support for Collector Pipeline

Collector Pipeline uses two underlying services:

l Streamer Push is a Docker container that runs on the Data Collector. This service "pushes" collected data to
the Compute Node cluster.

l Streamer is a Docker container that runs on the Compute Node cluster . This service processes incoming
data from the Data Collector.

As an SL1 administrator using Collector Pipeline, I need to be able to configure a proxy when there is no direct
line-of-sight between a Data Collector and the Compute Node cluster. This proxy allows Streamer Push and
Streamer to communicate.

To enable this proxy configuration, SL1 includes three new endpoints associated with the Web Configuration Tool
(sladmin).

You can send requests to the API endpoints from any server that has line-of-sight to the Data Collector for which
you are configuring a proxy. The requests are sent to the Data Collector for which you want to create a proxy.

If you want to configure a proxy for all Data Collectors in a Collector Group, you must send these requests to
each Data Collector in the Collector Group. Each Data Collector in a Collector Group can use the same proxy
or each Data Collector in a Collector Group can also use a different proxy from other Data Collectors in that
Collector Group.

NOTE: Collector Pipeline requires the use of port 443 from the Collector to the Streamer service.

The following sections describe how to use each API endpoint.

GET /sladmin/v1.0/streamerpush/proxy

Returns the current proxy configuration info as a JSON file.

Example Request

curl

Make this request from a server that has line-of-sight to the SL1 Data Collector.

curl --user em7admin:<PASSWORD> -k "http://<IP_
ADDRESS>:7700/sladmin/v1.0/streamerpush/proxy" -H "accept: application/json"

where:

l <PASSWORD> is the password for the em7admin user.

l <IP_ADDRESS> is the IP address of the Data Collector for which you want to create a proxy.

HTTPie

Make this request from a server that has line-of-sight to the SL1 Data Collector.

http --verify=no -a em7admin GET http://<IP_
ADDRESS>:7700/sladmin/v1.0/streamerpush/proxy

where:

l IP_ADDRESS is the IP address of the Data Collector for which you want to create a proxy.

Example Response

{

"proxy_port": 3128,

"proxy_url": "http://10.2.16.242",

"last_updated": "2021-09-09T12:50:28",

"use_proxy": true,

"proxy_username": "test_user"

}

POST /sladmin/v1.0/streamerpush/proxy

Allows users to define the proxy parameters.

NOTE: After you use this POST header, the use_proxy parameter is set to TRUE automatically.

Required Parameters:

l proxy_url. The URL of your proxy server

l proxy_port. The port on your proxy server.

Optional Parameters:

l proxy_username. If the proxy server requires authentication, enter your username.

l proxy_password. If the proxy server require authentication, enter the password.

Example Request

curl

Make this request from a server that has line-of-sight to the SL1 Data Collector.

curl --user em7admin:<PASSWORD> -k -X POST -d "proxy_

url=http://google.com&proxy_port=3128" "http://<IP_

ADDRESS>:7700/sladmin/v1.0/streamerpush/proxy" -H "accept:

application/json"

where:

l <PASSWORD> is the password for the em7admin user.

l proxy_url is http://google.com.

l proxy_port is 3128.

l <IP_ADDRESS> is the IP address of the Data Collector for which you want to create a proxy.

Example Response

{
"success": "Configured Streamer Push Proxy: http://10.2.16.242 Port 3128

User test_user"
}

POST /sladmin/v1.0/streamerpush/proxy/toggle

Allows users to toggle proxy on/off without changing the current configuration.

The toggle endpoint accepts values for true (1, True, true) or false (0, False, false).

This endpoint is useful for testing proxy configuration to ensure it is working correctly.

Example Request to Turn Off Proxy

curl

Make this request from a server that has line-of-sight to the SL1 Data Collector.

curl --user em7admin:<PASSWORD> -k -X POST -d "use_proxy=false"

"http://<IP_ADDRESS>:7700/sladmin/v1.0/streamerpush/proxy/toggle" -H

"accept: application/json"

where:

l <PASSWORD> is the password for the em7admin user.

l <IP_ADDRESS> is the IP address of the Data Collector for which you want to create a proxy.

Example Response:

{
"success": "Updated Streamer Push to use_proxy: False"

}

Example Request to Turn On Proxy

curl

Make this request from a server that has line-of-sight to the SL1 Data Collector.

curl --user em7admin:<PASSWORD> -k -X POST -d "use_proxy=true"

"http://<IP_ADDRESS>:7700/sladmin/v1.0/streamerpush/proxy/toggle" -H

"accept: application/json"

where:

l <PASSWORD> is the password for the em7admin user.

l <IP_ADDRESS> is the IP address of the Data Collector for which you want to create a proxy.

Example Response:

{
"success": "Updated Streamer Push to use_proxy: True"

}

Chapter

2
Creating the Publisher Custom Resource

Definitions

Overview

This chapter describes how to create the Custom Resource Definitions (CRD) for the data models and
subscriptions to which Publisher listens during operation. These CRDs are YAML files that you must create and
apply before using Publisher.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Adding Supported Data Models 11

Adding a Subscription 13

Configuring an Authenticated Connection for Subscriptions 14

Adding Supported Data Models

To publish data from the data streams, you must create a YAML file for each data stream you want to publish. The
supported data models, as well as the format for the YAML files, are covered in this section.

Supported Data Models

Currently, Publisher supports two data streams, specified in a subscription as dataModels:

l Availability. Publisher stream for availability data from SL1.

l Interface. Publisher stream for interface performance data from SL1.

l Dynamic Application Performance. Publisher stream for Dynamic Application performance data from
SL1.

Required Fields for Data Model File

The following fields must be specified in your Data Model YAML file:

l name. Specifies the unique name of the data model (for example, "availability"). Subscriptions will specify
the data model to listen for, by name.

l address. Specifies the Kafka topic from which to extract data.

l config. This section lets you define Kafka connection options for the source and the sink.

o source. Specifies the configuration for the Kafka topic being consumed. This is the Kafka Broker
containing the topic defined by the address field.

o sink. Specifies the configuration for the Kafka topic to which you will publish the data. This is the
internal Kafka Broker containing the topics for subscriptions created by Publisher.

Template for Data Model File

To add a Data Model, create one in YAML using the DataModel CRD. This is a template for creating the file:

apiVersion: publisher.sl1.io/v1alpha1

kind: DataModel

metadata:

name: <data model name>

spec:

address: <kafka "url" to receive schema registry models from. ex:

kafka://broker-address:port/topic_name>

config:

sink: # Any needed Kafka Client config for publishing messages

<kafka_config_variable>: <config value>

source: # Any needed Kafka Client config for consuming messages

<kafka_config_variable>: <config value>

Example

The following example shows a YAML file for publishing availability data:

apiVersion: publisher.sl1.io/v1alpha1

kind: DataModel

metadata:

name: availability

spec:

address: kafka://kafka.kafka.svc.cluster.local:9092/avail.data

This example shows a YAML file for publishing interface data and adding a configuration when reading from the
source topic:

apiVersion: publisher.sl1.io/v1alpha1

kind: DataModel

metadata:

name: interface

spec:

address: kafka://kafka.kafka.svc.cluster.local:9092/interface.data

config:

source:

retry_backoff_ms: 100

This example shows a YAML file for publishing Dynamic Application performance data:

apiVersion: publisher.sl1.io/v1alpha1

kind: DataModel

metadata:

name: dynamic-app

spec:

address: kafka://kafka.kafka.s-

vc.cluster.local:9092/da.prod.perf.pres.data

Applying the Data Model File

After creating the Data Model YAML file, you must apply it.

To apply the Data Model file:

1. Either go to the console of the Management Node or use SSH to access the Management Node. Open a
shell session on the server. Log in with the system password.

2. At the shell prompt, enter the following command, substituting the name of your Data Model file:
kubectl apply -f <data_model_file>

Adding a Subscription

To subscribe to data from the data streams, you must create a Subscription YAML file. You can subscribe to any
of the supported data models you have created (see Adding Supported Data Models). The format for the YAML
file is covered in this section.

Required Fields for Subscription File

The following fields must be specified in your Subscription YAML file:

l dataModels. Contains a list of data models from which to retrieve data, by name.

l address. Defines the Kafka Broker and Topic to which to publish the data.

l config. This section lets you define Kafka connection options for the source and the sink.

o source. Specifies the Kafka Topic being consumed. This is the internal Kafka Broker containing the
topic subscriptions created by Publisher.

o sink. Specifies the Kafka Topic to which you will publish the data. This is the external Kafka Broker
defined by the address field.

Template for Subscription File

To add a Subscription, create one in YAML using the Subscription CRD. This is a template for creating the file:

apiVersion: publisher.sl1.io/v1alpha1

kind: Subscription

metadata:

name: <subscription name>

spec:

address: <destination; possible values: kafka://broker_address/topic_

name >

dataModels:

- <datamodels to listen for>

- <possible are the names of the dataModels>

config:

sink: # Any needed Kafka Client config for publishing messages

kafka_config_variable: <config value>

source: # Any needed Kafka Client config for consuming messages

kafka_config_variable: <config value>

Example

This example shows a YAML file for subscribing to availability and interface data:

apiVersion: publisher.sl1.io/v1alpha1

kind: Subscription

metadata:

name: data-lake

spec:

address: kafka://192.10.14.37:9092/sl1_sub_topic

dataModels:

- availability

- interface

Applying the Subscription File

After creating the Subscription YAML file, you must apply it.

To apply the Subscription file:

1. Either go to the console of the Management Node or use SSH to access the Management Node. Open a
shell session on the server. Log in with the system password.

2. At the shell prompt, enter the following command, substituting the name of your Subscription file:
kubectl apply -f <subscription_file>

Configuring an Authenticated Connection for Subscriptions

This section describes how to configure authentication for your subscriptions. Currently, SL1 supports the use of
two-way SSL authentication, where both the server and the client authenticate each other's certificates. This
certification is also known as mutual authentication, and it is commonly referred to as "two-way SSL".

Certi f icate Files

To configure Publisher for two-way SSL communication with Kafka, you need at least three certificate files:

l cafile. A Certificate Authority (CA) file used in certificate verification. This corresponds to the ssl_cafile
parameter in Kafka.

l certfile. A client certificate file (.pem format) and any files needed to verify the certificate's authenticity. This
corresponds to the ssl_certfile parameter in Kafka.

l keyfile. Client private key. This corresponds to the ssl_keyfile parameter in Kafka.

Publisher ingests the certificate files as Base64 encoded file contents. Prior to moving to the next step, use a
command such as the following to encode and output the contents of each file. You will copy and paste these
contents in the next procedure.

cat <file_path>/<file_name> | base64 -w 0

NOTE: Publisher does not support the use of newline in any of the certificate files. The command above
encodes the file without newlines, making it one continuous string.

Subscription Example

The following code block contains an example of a subscription configured to connect to a Kafka server through
an SSL connection:

apiVersion: publisher.sl1.io/v1alpha1

kind: Subscription

metadata:

name: <subscription_name>

spec:

address: kafka://<kafka_address>:<kafka:port>/<dest_topic>

dataModels:

- <desired datamodels>

config:

sink:

security_protocol: "SSL"

ssl_check_hostname: false

ssl_cafile: "LS0t…tLS0K"

ssl_certfile: "LS0t…Qo="

ssl_keyfile: "Qm…LS0K"

The fields ssl_cafile, ssl_certfile, and ssl_keyfile are Base64 encoded strings of the respective
files.

For example, if we have a file called CARoot.pem that stores our Certificate Authority root certificate, we can
convert that into a Base64 encoded string (such as, LS0t...tLSOK shown in the example subscription above)
and use that Base64 encoded string in the ssl_cafile field in the sink configuration for our subscription.

NOTE: The ssl_check_hostname parameter might need to be set to true, depending on how the
destination Kafka server and its respective certificates are configured.

Chapter

3
Consuming Messages from a Publisher

Subscription

Overview

This chapter describes how to read the messages sent from SL1 Publisher through a subscription to a Kafka topic.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Configuring Your System to Consume Messages from a Publisher Subscription 16

Configuring Your System to Consume Messages from a
Publisher Subscription

After you create a subscription in SL1 Publisher, you will want to verify the messages are being sent. The easiest
way to ensure that messages are being sent is to check the logs for the subscription's pods and to verify that they
report messages numbering greater than 0.

After you verify that messages are being sent, you can then read the messages from the destination Kafka topic.
Two things are required to read the messages:

l A Kafka Python library that allows you to connect and consume content from a Kafka topic

l The sl-schema-registry library provided by ScienceLogic

The messages sent from SL1 Publisher to the Kafka topic are encoded by the sl-schema-registry library, so you
need to install this library to unpack and decode the messages.

Installing the sl-schema-registry Library

The sl-schema-registry library is provided as a wheel (.whl file) available from the ScienceLogic Support Site.

To install the sl-schema-registry library on your third-party system:

1. Log on to the ScienceLogic Support Site and download the sl_schema_registry_whl_and_docs.zip file, which
contains the library, as well as the documentation.

2. Copy the compressed file to the third-party system where you will unpack the binary data bundles sent by
Publisher.

3. Unzip the compressed file to access the wheel and documentation files.

4. (Option 1) To deploy in a standard environment, enter the following at the command prompt:

pip3 install sl_schema_registry-1.5.13-py2.py3-none-any.whl

4. (Option 2) To deploy in a virtual environment, if you have virtualenvwrapper installed, enter the following at
the command prompt:

mkvirtualenv sl_schema_registry

(sl_schema_registry) pip3 install sl_schema_registry-1.5.13-

py2.py3-none-any.whl

5. The installation process will complete, and the license will be displayed.

Using a Kafka Python Library to Read Subscription Messages

You can use any Python library that is Python 3.6 or higher to read the messages sent to the Kafka topic. The
example below uses the kafka-python library found here: https://pypi.org/project/kafka-python/

Example Script

The following is a sample script that you can use to read and print messages from a Kafka topic using the
kafka-python library and the sl-schema-registry library. This script takes messages from the topic you specify
on the Kafka server you specify, converts them to JSON, and prints the resulting JSON messages.

To run this example script, save it to a file (for example, kafka_consumer.py), and change the topic and
kafka_servers variables to a valid topic and server in your environment. Run the script as you would run any
Python 3 code on that appliance (for example, python3.6 kafka_consumer.py).

https://support.sciencelogic.com/s/
https://support.sciencelogic.com/s/
https://pypi.org/project/kafka-python/

import datetime

import json

from json import JSONEncoder

from contextlib import closing

from kafka import KafkaConsumer

from sl_schema_registry import registry, objectgraph

class DateTimeEncoder(JSONEncoder):

"""

Handles decoding dates and datetimes into a JSON compatible format.

"""

def default(self, obj):

if isinstance(obj, (datetime.date, datetime.datetime)):

return obj.isoformat()

return None

def get_messages(topic, kafka_servers):

"""

Generator that yields JSON-formated messages from the a Kafka Topic.

"""

with closing(KafkaConsumer(topic, bootstrap_servers=kafka_servers)) as

consumer:

for message in consumer:

env = registry.loads(message.value)

json_msg = json.dumps(env, cls=DateTimeEncoder)

yield json_msg

Establish the Schema Registry to output in Python Dictionaries and

Lists, which are

the most compatible with JSON.

objectgraph.set_auto_registration_hook(registry)

if __name__ == "__main__":

topic = "destination-topic" # destination topic where the subscription

is populating

kafka_servers = ["kafka:9092"] # kafka server address where the des-

tination topic can be consumed from

for json_msg in get_messages(topic, kafka_servers):

print(json_msg) # place operational logic here

Chapter

4
Troubleshooting Publisher

Overview

This chapter describes some common problems you might encounter while using Publisher, as well as
troubleshooting solutions.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Why do my Publisher pods keep crashing or restarting? 21

Why is Publisher failing to send data even though it is not crashing? 21

Why is my subscription hanging or not being deleted properly? 21

Why do my Publisher pods keep crashing or restarting?

Numerous reasons may exist that cause a pod to restart. The following is one possible issue and solution:

Issue. If a Publisher service is unable to connect to Kafka, it will not work.

Solution. Ensure connectivity between the service, the internal Kafka server, and the external Kafka service, is
possible.

Why is Publisher failing to send data even though it is not
crashing?

Issue. If you check the pod logs, and you see messages indicating that an exchange is not happening, two likely
scenarios could exist.

1. If the topic that is causing the error is a data type topic, such as "avail.data" or "interface.data", it likely
means that the Collector Pipeline is not set up yet, or is not set up as Publisher expects. Investigate the
Collector Pipeline, the exchanges it creates, and the data models associated with them.

2. If the topic that is causing the error is "publisher.subscription.name", it is likely that something is incorrect
with the Kafka configuration or the Operator. Reviewing the logs of the Operator or the Publisher service is
recommended.

Why is my subscription hanging or not being deleted
properly?

Issue. When deleting a subscription, sometimes the "kubectl" command will hang and not return, or the
subscription object will fail to be deleted.

Solution. Correct the subscription metadata using the Kubernetes command line to address the problem, as
follows:

1. Either go to the console of the Management Node or use SSH to access the Management Node. Open a
shell session on the server. Log in with the system password.

2. Run the following command to enter the Docker container:

docker-compose -f docker-compose.external.yml run --rm deploy shell

3. Enter the following command:

kubectl patch sub/subscription-name -p '("metadata":{"finalizers":[]}}'
--type=merge

© 2003 - 2024, ScienceLogic, Inc.

All rights reserved.

LIMITATIONOF LIABILITY AND GENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and ScienceLogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without notice.
ScienceLogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

ScienceLogic, the ScienceLogic logo, and EM7 are trademarks of ScienceLogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to ScienceLogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

l ScienceLogic™
l EM7™ and em7™
l Simplify IT™
l Dynamic Application™
l Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
ScienceLogic’s trademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of ScienceLogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com. For more information, see
https://sciencelogic.com/company/legal.

mailto:legal@sciencelogic.com
https://sciencelogic.com/company/legal

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction to SL1 Publisher
	What is Publisher?
	How Does Publisher Work?
	Prerequisites for Using Publisher
	Workflow for Using Publisher
	Enabling the Collector Pipeline
	Configuring Proxy Support for Collector Pipeline
	GET /sladmin/v1.0/streamerpush/proxy
	Example Request
	curl
	HTTPie

	Example Response

	POST /sladmin/v1.0/streamerpush/proxy
	Required Parameters:
	Optional Parameters:
	Example Request
	curl

	Example Response

	POST /sladmin/v1.0/streamerpush/proxy/toggle
	Example Request to Turn Off Proxy
	curl

	Example Response:
	Example Request to Turn On Proxy
	curl

	Example Response:

	Creating the Publisher Custom Resource Definitions
	Adding Supported Data Models
	Supported Data Models
	Required Fields for Data Model File
	Template for Data Model File
	Example

	Applying the Data Model File

	Adding a Subscription
	Required Fields for Subscription File
	Template for Subscription File
	Example

	Applying the Subscription File

	Configuring an Authenticated Connection for Subscriptions
	Certificate Files
	Subscription Example

	Consuming Messages from a Publisher Subscription
	Configuring Your System to Consume Messages from a Publisher Subscription
	Installing the sl-schema-registry Library
	Using a Kafka Python Library to Read Subscription Messages
	Example Script

	Troubleshooting Publisher
	Why do my Publisher pods keep crashing or restarting?
	Why is Publisher failing to send data even though it is not crashing?
	Why is my subscription hanging or not being deleted properly?

