
Using Skylar One Publisher
Skylar One version 12.5.1

Table of Contents

Introduction to Skylar One Publisher 4

What is Publisher? 5

How Does Publisher Work? 5

Prerequisites for Using Publisher 5

Workflow for Using Publisher 6

Enabling the Collector Pipeline 6

Configuring Proxy Support for Collector Pipeline 7

GET /sladmin/v1.0/streamerpush/proxy 8

Example Request 8

curl 8

HTTPie 8

Example Response 8

POST /sladmin/v1.0/streamerpush/proxy 9

Required Parameters: 9

Optional Parameters: 9

Example Request 9

curl 9

Example Response 9

POST /sladmin/v1.0/streamerpush/proxy/toggle 9

Example Request to Turn Off Proxy 10

curl 10

Example Response: 10

Example Request to Turn On Proxy 10

curl 10

Example Response: 10

Creating the Publisher Custom Resource Definitions 11

Adding Supported Data Models 12

Supported Data Models 12

Required Fields for Data Model File 12

Template for Data Model File 12

Example 13

Applying the Data Model File 13

Adding a Subscription 14

Required Fields for Subscription File 14

Template for Subscription File 14

Example 15

Applying the Subscription File 15

Configuring an Authenticated Connection for Subscriptions 15

Certificate Files 15

Subscription Example 16

Consuming Messages from a Publisher Subscription 18

Configuring Your System to Consume Messages from a Publisher Subscription 18

Installing the sl-schema-registry Library 19

Using a Kafka Python Library to Read Subscription Messages 19

Example Script 19

Troubleshooting Publisher 22

Why do my Publisher pods keep crashing or restarting? 23

Why is Publisher failing to send data even though it is not crashing? 23

Why is my subscription hanging or not being deleted properly? 23

Chapter

1
Introduction to Skylar One Publisher

Overview

This chapter describes Skylar One (formerly SL1) Publisher.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

What is Publisher? 5

How Does Publisher Work? 5

Prerequisites for Using Publisher 5

Workflow for Using Publisher 6

Enabling the Collector Pipeline 6

Configuring Proxy Support for Collector Pipeline 7

4

5

What is Publisher?

Publisher is a service that retrieves near real-time availability and interface performance data from Skylar
One Data Collectors or the Skylar One agent and delivers the data to a third-party destination for long-
term data storage, analysis, or reporting. For example, Publisher can send data to Kafka topics.

Publisher supports the concept of data models, which specify where you want to retrieve ingested data
from, and subscriptions, which allow you to specify what data to push and where to send it.

A library of Python functions (sl-schema-registry) is provided in the ScienceLogic Support Site for
deserializing messages sent to Kafka topics by Publisher.

Publisher is installed and enabled by default in the Skylar One Extended Architecture, however you must
configure Publisher before it will send your data to a destination. Client software, such as Kafka, must be
configured on your own hardware.

How Does Publisher Work?

Publisher ingests data specified by the data models and publishes this data to your Kafka topics as
specified in your subscriptions. The Publisher service listens for Custom Resource Definitions (CRDs)
that you establish in YAML files, discussed below.

Publisher requires the following two types of YAML files to collect and push data:

l DataModel. Specifies where in the ingestion pipelines to extract data from.

l Subscription. Specifies which Data Models to publish and the endpoint to which to publish the data.

You must create and apply these files using the examples shown in the next chapter.

If new data is available from the data model, Publisher creates a binary bundle and sends the bundle as
specified in the subscription.

When your data is published to your Kafka topics, you can use the sl-schema-registry library to unpack the
binary data bundles on your third-party system.

Prerequisites for Using Publisher

Before you can use Publisher, you must do the following:

l Deploy Skylar One version 10.2.0 and the Skylar One Extended Architecture.

l Enable the Collector Pipeline. For more information, see Enabling the Collector Pipeline.

l Ensure you have SSH or console access to the Management Node so you can access Docker and
Kubernetes.

l Install sl-schema-registry on the system where you will unpack and consume the messages
sent to your Kafka topic by Publisher. For more information, see Installing the sl-schema-registry
Library.

What is Publisher?

https://support.sciencelogic.com/s/

Workflow for Using Publisher

Workflow for Using Publisher

The following steps represent the general workflow for implementing Publisher.

Step Description References

1. Enable the Collector
Pipeline.

Collector Pipeline is required for Publisher. Enabling the
Collector
Pipeline

2. Define data models. Define data models in YAML files. Adding
Supported
Data Models

3. Define subscriptions. Define subscriptions in YAML files. Adding a
Subscription

4. Install the sl-schema-registry
library.

Download the sl-schema-registry from the ScienceLogic
Support Site and install it on the system where you will
consume the messages sent from Publisher. The
documentation for the library is contained in the .zip file
with the library.

Installing the
sl-schema-
registry
Library

5. Use the sl-schema-registry
library to unpack the binary data
bundles sent from Skylar One.

See the sl-schema-registry library documentation,
included in the .zip file.

—

Enabling the Collector Pipeline

Collector Pipeline is a platform feature that allows horizontal scaling (adding more Data Collectors and
Agent installations) without data loss or performance loss.

Collector Pipeline also supports Publisher and Anomaly Detection.

Currently, Collector Pipeline supports availability data, network interface data, and data from Performance
Dynamic Applications. Skylar One will add more data types in future releases.

NOTE: If you want to use Anomaly Detection, enable Collector Pipeline with data from Performance
Dynamic Applications.

NOTE: Collector Pipeline requires the use of port 443 from the Collector to the Streamer service.

To enable Collector Pipeline for availability data, network interface data, and anomaly detection:

1. Either go to the console of the Database Server or use SSH to access the Database Server. Open a
shell session on the server. Log in with the system password you defined in the ISO menu.

2. To view information about the command, enter the following at the shell prompt:

6

https://support.sciencelogic.com/s/
https://support.sciencelogic.com/s/

7

/opt/em7/backend/set_cpl.py -help

3. To enable Collector Pipeline for availability data, network interface data, and anomaly detection,
enter the following at the shell prompt:

/opt/em7/backend/set_cpl.py -d availability ENABLE

/opt/em7/backend/set_cpl.py -d interface ENABLE

/opt/em7/backend/set_cpl.py -d da_perf ENABLE

4. To disable Collector Pipeline for availability data, network interface data, and anomaly detection,
enter the following at the shell prompt:

/opt/em7/backend/set_cpl.py -d availability DISABLE

/opt/em7/backend/set_cpl.py -d interface DISABLE

/opt/em7/backend/set_cpl.py -d da_perf DISABLE

Configuring Proxy Support for Collector Pipeline

Collector Pipeline uses the following underlying services:

l Streamer Push (streamer-push), which is a service that "pushes" collected data to the Compute
Node cluster. In Skylar One 12.5.0 and later, Streamer Push runs persistently and directly on Skylar
One Data Collectors; in earlier versions of Skylar One, it is a Docker container that runs on Data
Collectors.

l The sl-perf-streamer services, which process the incoming data from the Data Collector over HTTPS
and then route it to the appropriate downstream services.

As a Skylar One administrator using Collector Pipeline, I need to be able to configure a proxy when there
is no direct line-of-sight between a Data Collector and the Compute Node cluster. This proxy allows
Streamer Push and Streamer to communicate.

To enable this proxy configuration, Skylar One includes three new endpoints associated with the Web
Configuration Tool (sladmin).

You can send requests to the API endpoints from any server that has line-of-sight to the Data Collector for
which you are configuring a proxy. The requests are sent to the Data Collector for which you want to
create a proxy.

If you want to configure a proxy for all Data Collectors in a Collector Group, you must send these requests
to each Data Collector in the Collector Group. Each Data Collector in a Collector Group can use the same
proxy or each Data Collector in a Collector Group can also use a different proxy from other Data
Collectors in that Collector Group.

Configuring Proxy Support for Collector Pipeline

Configuring Proxy Support for Collector Pipeline

NOTE: Collector Pipeline requires the use of port 443 from the Data Collector to the Streamer
service.

The following sections describe how to use each API endpoint.

GET / sladmin/v1.0/ streamerpush/proxy

Returns the current proxy configuration info as a JSON file.

Example Request

curl

Make this request from a server that has line-of-sight to the Skylar One Data Collector.

curl --user em7admin:<PASSWORD> -k "http://<IP_ADDRESS>:7700/sladmin/v1.0/streamerpush/proxy"
-H "accept: application/json"

where:

l <PASSWORD> is the password for the em7admin user.

l <IP_ADDRESS> is the IP address of the Data Collector for which you want to create a proxy.

HTTPie

Make this request from a server that has line-of-sight to the Skylar One Data Collector.

http --verify=no -a em7admin GET http://<IP_ADDRESS>:7700/sladmin/v1.0/streamerpush/proxy

where:

l IP_ADDRESS is the IP address of the Data Collector for which you want to create a proxy.

Example Response

{

"proxy_port": 3128,

"proxy_url": "http://10.2.16.242",

"last_updated": "2021-09-09T12:50:28",

"use_proxy": true,

"proxy_username": "test_user"

}

8

9

POST / sladmin/v1.0/ streamerpush/proxy

Allows users to define the proxy parameters.

NOTE: After you use this POST header, the use_proxy parameter is set to TRUE automatically.

Required Parameters:

l proxy_url. The URL of your proxy server

l proxy_port. The port on your proxy server.

Optional Parameters:

l proxy_username. If the proxy server requires authentication, enter your username.

l proxy_password. If the proxy server require authentication, enter the password.

Example Request

curl

Make this request from a server that has line-of-sight to the Skylar One Data Collector.

curl --user em7admin:<PASSWORD> -k -X POST -d "proxy_

url=http://google.com&proxy_port=3128" "http://<IP_

ADDRESS>:7700/sladmin/v1.0/streamerpush/proxy" -H "accept:

application/json"

where:

l <PASSWORD> is the password for the em7admin user.

l proxy_url is http://google.com.

l proxy_port is 3128.

l <IP_ADDRESS> is the IP address of the Data Collector for which you want to create a proxy.

Example Response

{

"success": "Configured Streamer Push Proxy: http://10.2.16.242 Port 3128 User test_user"

}

POST / sladmin/v1.0/ streamerpush/proxy/ toggle

Allows users to toggle proxy on/off without changing the current configuration.

Configuring Proxy Support for Collector Pipeline

Configuring Proxy Support for Collector Pipeline

The toggle endpoint accepts values for true (1, True, true) or false (0, False, false).

This endpoint is useful for testing proxy configuration to ensure it is working correctly.

Example Request to Turn Off Proxy

curl

Make this request from a server that has line-of-sight to the Skylar One Data Collector.

curl --user em7admin:<PASSWORD> -k -X POST -d "use_proxy=false"

"http://<IP_ADDRESS>:7700/sladmin/v1.0/streamerpush/proxy/toggle" -H

"accept: application/json"

where:

l <PASSWORD> is the password for the em7admin user.

l <IP_ADDRESS> is the IP address of the Data Collector for which you want to create a proxy.

Example Response:

{

"success": "Updated Streamer Push to use_proxy: False"

}

Example Request to Turn On Proxy

curl

Make this request from a server that has line-of-sight to the Skylar One Data Collector.

curl --user em7admin:<PASSWORD> -k -X POST -d "use_proxy=true"

"http://<IP_ADDRESS>:7700/sladmin/v1.0/streamerpush/proxy/toggle" -H

"accept: application/json"

where:

l <PASSWORD> is the password for the em7admin user.

l <IP_ADDRESS> is the IP address of the Data Collector for which you want to create a proxy.

Example Response:

{

"success": "Updated Streamer Push to use_proxy: True"

}

10

Chapter

2
Creating the Publisher Custom Resource

Definitions

Overview

This chapter describes how to create the Custom Resource Definitions (CRD) for the data models and
subscriptions to which Publisher listens during operation. These CRDs are YAML files that you must
create and apply before using Publisher.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Adding Supported Data Models 12

Adding a Subscription 14

Configuring an Authenticated Connection for Subscriptions 15

11

12

Adding Supported Data Models

To publish data from the data streams, you must create a YAML file for each data stream you want to
publish. The supported data models, as well as the format for the YAML files, are covered in this section.

Supported Data Models

Currently, Publisher supports two data streams, specified in a subscription as dataModels:

l Availability. Publisher stream for availability data from Skylar One (formerly SL1).

l Interface. Publisher stream for interface performance data from Skylar One.

l Dynamic Application Performance. Publisher stream for Dynamic Application performance data
from Skylar One.

Required Fields for Data Model File

The following fields must be specified in your Data Model YAML file:

l name. Specifies the unique name of the data model (for example, "availability"). Subscriptions will
specify the data model to listen for, by name.

l address. Specifies the Kafka topic from which to extract data.

l config. This section lets you define Kafka connection options for the source and the sink.

o source. Specifies the configuration for the Kafka topic being consumed. This is the Kafka
Broker containing the topic defined by the address field.

o sink. Specifies the configuration for the Kafka topic to which you will publish the data. This is
the internal Kafka Broker containing the topics for subscriptions created by Publisher.

Template for Data Model File

To add a Data Model, create one in YAML using the DataModel CRD. This is a template for creating the
file:

apiVersion: publisher.sl1.io/v1alpha1

kind: DataModel

metadata:

name: <data model name>

spec:

address: <kafka "url" to receive schema registry models from. ex:

kafka://broker-address:port/topic_name>

config:

sink: # Any needed Kafka Client config for publishing messages

<kafka_config_variable>: <config value>

Adding Supported Data Models

Adding Supported Data Models

source: # Any needed Kafka Client config for consuming messages

<kafka_config_variable>: <config value>

Example

The following example shows a YAML file for publishing availability data:

apiVersion: publisher.sl1.io/v1alpha1

kind: DataModel

metadata:

name: availability

spec:

address: kafka://kafka.kafka.svc.cluster.local:9092/avail.data

This example shows a YAML file for publishing interface data and adding a configuration when reading
from the source topic:

apiVersion: publisher.sl1.io/v1alpha1

kind: DataModel

metadata:

name: interface

spec:

address: kafka://kafka.kafka.svc.cluster.local:9092/interface.data

config:

source:

retry_backoff_ms: 100

This example shows a YAML file for publishing Dynamic Application performance data:

apiVersion: publisher.sl1.io/v1alpha1

kind: DataModel

metadata:

name: dynamic-app

spec:

address: kafka://kafka.kafka.s-

vc.cluster.local:9092/da.prod.perf.pres.data

Applying the Data Model File

After creating the Data Model YAML file, you must apply it.

To apply the Data Model file:

13

14

1. Either go to the console of the Management Node or use SSH to access the Management Node.
Open a shell session on the server. Log in with the system password.

2. At the shell prompt, enter the following command, substituting the name of your Data Model file:

kubectl apply -f <data_model_file>

Adding a Subscription

To subscribe to data from the data streams, you must create a Subscription YAML file. You can subscribe
to any of the supported data models you have created (see Adding Supported Data Models). The format
for the YAML file is covered in this section.

Required Fields for Subscription File

The following fields must be specified in your Subscription YAML file:

l dataModels. Contains a list of data models from which to retrieve data, by name.

l address. Defines the Kafka Broker and Topic to which to publish the data.

l config. This section lets you define Kafka connection options for the source and the sink.

o source. Specifies the Kafka Topic being consumed. This is the internal Kafka Broker
containing the topic subscriptions created by Publisher.

o sink. Specifies the Kafka Topic to which you will publish the data. This is the external Kafka
Broker defined by the address field.

Template for Subscription File

To add a Subscription, create one in YAML using the Subscription CRD. This is a template for creating the
file:

apiVersion: publisher.sl1.io/v1alpha1

kind: Subscription

metadata:

name: <subscription name>

spec:

address: <destination; possible values: kafka://broker_address/topic_

name >

dataModels:

- <datamodels to listen for>

- <possible are the names of the dataModels>

config:

sink: # Any needed Kafka Client config for publishing messages

kafka_config_variable: <config value>

Adding a Subscription

Configuring an Authenticated Connection for Subscriptions

source: # Any needed Kafka Client config for consuming messages

kafka_config_variable: <config value>

Example

This example shows a YAML file for subscribing to availability and interface data:

apiVersion: publisher.sl1.io/v1alpha1

kind: Subscription

metadata:

name: data-lake

spec:

address: kafka://192.10.14.37:9092/sl1_sub_topic

dataModels:

- availability

- interface

Applying the Subscription File

After creating the Subscription YAML file, you must apply it.

To apply the Subscription file:

1. Either go to the console of the Management Node or use SSH to access the Management Node.
Open a shell session on the server. Log in with the system password.

2. At the shell prompt, enter the following command, substituting the name of your Subscription file:

kubectl apply -f <subscription_file>

Configuring an Authenticated Connection for
Subscriptions

This section describes how to configure authentication for your subscriptions. Currently, Skylar One
supports the use of two-way SSL authentication, where both the server and the client authenticate each
other's certificates. This certification is also known as mutual authentication, and it is commonly referred
to as "two-way SSL".

Certificate Files

To configure Publisher for two-way SSL communication with Kafka, you need at least three certificate
files:

15

16

l cafile. A Certificate Authority (CA) file used in certificate verification. This corresponds to the ssl_
cafile parameter in Kafka.

l certfile. A client certificate file (.pem format) and any files needed to verify the certificate's
authenticity. This corresponds to the ssl_certfile parameter in Kafka.

l keyfile. Client private key. This corresponds to the ssl_keyfile parameter in Kafka.

Publisher ingests the certificate files as Base64 encoded file contents. Prior to moving to the next step,
use a command such as the following to encode and output the contents of each file. You will copy and
paste these contents in the next procedure.

cat <file_path>/<file_name> | base64 -w 0

NOTE: Publisher does not support the use of newline in any of the certificate files. The command
above encodes the file without newlines, making it one continuous string.

Subscription Example

The following code block contains an example of a subscription configured to connect to a Kafka server
through an SSL connection:

apiVersion: publisher.sl1.io/v1alpha1

kind: Subscription

metadata:

name: <subscription_name>

spec:

address: kafka://<kafka_address>:<kafka:port>/<dest_topic>

dataModels:

- <desired datamodels>

config:

sink:

security_protocol: "SSL"

ssl_check_hostname: false

ssl_cafile: "LS0t…tLS0K"

ssl_certfile: "LS0t…Qo="

ssl_keyfile: "Qm…LS0K"

The fields ssl_cafile, ssl_certfile, and ssl_keyfile are Base64 encoded strings of the
respective files.

For example, if we have a file called CARoot.pem that stores our Certificate Authority root certificate, we
can convert that into a Base64 encoded string (such as, LS0t...tLSOK shown in the example
subscription above) and use that Base64 encoded string in the ssl_cafile field in the sink
configuration for our subscription.

Configuring an Authenticated Connection for Subscriptions

Configuring an Authenticated Connection for Subscriptions

NOTE: The ssl_check_hostname parameter might need to be set to true, depending on how the
destination Kafka server and its respective certificates are configured.

17

Configuring Your System to Consume Messages from a Publisher Subscription

Chapter

3
Consuming Messages from a Publisher

Subscription

Overview

This chapter describes how to read the messages sent from Skylar One (formerly SL1) Publisher through
a subscription to a Kafka topic.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Configuring Your System to Consume Messages from a Publisher Subscription 18

Configuring Your System to Consume Messages from
a Publisher Subscription

After you create a subscription in Skylar One Publisher, you will want to verify the messages are being
sent. The easiest way to ensure that messages are being sent is to check the logs for the subscription's
pods and to verify that they report messages numbering greater than 0.

After you verify that messages are being sent, you can then read the messages from the destination Kafka
topic. Two things are required to read the messages:

18

19

l A Kafka Python library that allows you to connect and consume content from a Kafka topic

l The sl-schema-registry library provided by ScienceLogic

The messages sent from Skylar One Publisher to the Kafka topic are encoded by the sl-schema-registry
library, so you need to install this library to unpack and decode the messages.

Installing the sl-schema-registry Library

The sl-schema-registry library is provided as a wheel (.whl file) available from the ScienceLogic Support
Site.

To install the sl-schema-registry library on your third-party system:

1. Log on to the ScienceLogic Support Site and download the sl_schema_registry_whl_and_docs.zip
file, which contains the library, as well as the documentation.

2. Copy the compressed file to the third-party system where you will unpack the binary data bundles
sent by Publisher.

3. Unzip the compressed file to access the wheel and documentation files.

4. (Option 1) To deploy in a standard environment, enter the following at the command prompt:

pip3 install sl_schema_registry-1.5.13-py2.py3-none-any.whl

4. (Option 2) To deploy in a virtual environment, if you have virtualenvwrapper installed, enter the
following at the command prompt:

mkvirtualenv sl_schema_registry

(sl_schema_registry) pip3 install sl_schema_registry-1.5.13-

py2.py3-none-any.whl

5. The installation process will complete, and the license will be displayed.

Using a Kafka Python Library to Read Subscription Messages

You can use any Python library that is Python 3.6 or higher to read the messages sent to the Kafka topic.
The example below uses the kafka-python library found here: https://pypi.org/project/kafka-python/

Example Script

The following is a sample script that you can use to read and print messages from a Kafka topic using the
kafka-python library and the sl-schema-registry library. This script takes messages from the topic you
specify on the Kafka server you specify, converts them to JSON, and prints the resulting JSON messages.

Configuring Your System to Consume Messages from a Publisher Subscription

https://support.sciencelogic.com/s/
https://support.sciencelogic.com/s/
https://support.sciencelogic.com/s/
https://pypi.org/project/kafka-python/

Configuring Your System to Consume Messages from a Publisher Subscription

To run this example script, save it to a file (for example, kafka_consumer.py), and change the topic
and kafka_servers variables to a valid topic and server in your environment. Run the script as you
would run any Python 3 code on that appliance (for example, python3.6 kafka_consumer.py).

import datetime

import json

from json import JSONEncoder

from contextlib import closing

from kafka import KafkaConsumer

from sl_schema_registry import registry, objectgraph

class DateTimeEncoder(JSONEncoder):

"""

Handles decoding dates and datetimes into a JSON compatible format.

"""

def default(self, obj):

if isinstance(obj, (datetime.date, datetime.datetime)):

return obj.isoformat()

return None

def get_messages(topic, kafka_servers):

"""

Generator that yields JSON-formated messages from the a Kafka Topic.

"""

with closing(KafkaConsumer(topic, bootstrap_servers=kafka_servers)) as

consumer:

for message in consumer:

env = registry.loads(message.value)

json_msg = json.dumps(env, cls=DateTimeEncoder)

yield json_msg

Establish the Schema Registry to output in Python Dictionaries and

Lists, which are

the most compatible with JSON.

objectgraph.set_auto_registration_hook(registry)

20

21

if __name__ == "__main__":

topic = "destination-topic" # destination topic where the subscription

is populating

kafka_servers = ["kafka:9092"] # kafka server address where the des-

tination topic can be consumed from

for json_msg in get_messages(topic, kafka_servers):

print(json_msg) # place operational logic here

Configuring Your System to Consume Messages from a Publisher Subscription

Chapter

4
Troubleshooting Publisher

Overview

This chapter describes some common problems you might encounter while using Publisher, as well as
troubleshooting solutions.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Why do my Publisher pods keep crashing or restarting? 23

Why is Publisher failing to send data even though it is not crashing? 23

Why is my subscription hanging or not being deleted properly? 23

22

23

Why do my Publisher pods keep crashing or
restarting?

Numerous reasons may exist that cause a pod to restart. The following is one possible issue and solution:

Issue. If a Publisher service is unable to connect to Kafka, it will not work.

Solution. Ensure connectivity between the service, the internal Kafka server, and the external Kafka
service, is possible.

Why is Publisher failing to send data even though it is
not crashing?

Issue. If you check the pod logs, and you see messages indicating that an exchange is not happening,
two likely scenarios could exist.

1. If the topic that is causing the error is a data type topic, such as "avail.data" or "interface.data", it
likely means that the Collector Pipeline is not set up yet, or is not set up as Publisher expects.
Investigate the Collector Pipeline, the exchanges it creates, and the data models associated with
them.

2. If the topic that is causing the error is "publisher.subscription.name", it is likely that something is
incorrect with the Kafka configuration or the Operator. Reviewing the logs of the Operator or the
Publisher service is recommended.

Why is my subscription hanging or not being deleted
properly?

Issue. When deleting a subscription, sometimes the "kubectl" command will hang and not return, or the
subscription object will fail to be deleted.

Solution. Correct the subscription metadata using the Kubernetes command line to address the problem,
as follows:

1. Either go to the console of the Management Node or use SSH to access the Management Node.
Open a shell session on the server. Log in with the system password.

2. Run the following command to enter the Docker container:

docker-compose -f docker-compose.external.yml run --rm deploy shell

3. Enter the following command:

kubectl patch sub/subscription-name -p '("metadata":{"finalizers":[]}}'
--type=merge

Why do my Publisher pods keep crashing or restarting?

© 2003 - 2025, ScienceLogic, Inc.

All rights reserved.

ScienceLogic™, the ScienceLogic logo, and ScienceLogic's product and service names are
trademarks or service marks of ScienceLogic, Inc. and its affiliates. Use of ScienceLogic's
trademarks or service marks without permission is prohibited.

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUTWARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS
DISCLAIM ALLWARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information herein, the information
provided in this document may contain inadvertent technical inaccuracies or typographical errors,
and ScienceLogic™ assumes no responsibility for the accuracy of the information. Information may
be changed or updated without notice. ScienceLogic™ may also make improvements and / or
changes in the products or services described herein at any time without notice.

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction to Skylar One Publisher
	What is Publisher?
	How Does Publisher Work?
	Prerequisites for Using Publisher
	Workflow for Using Publisher
	Enabling the Collector Pipeline
	Configuring Proxy Support for Collector Pipeline
	GET /sladmin/v1.0/streamerpush/proxy
	Example Request
	curl
	HTTPie

	Example Response

	POST /sladmin/v1.0/streamerpush/proxy
	Required Parameters:
	Optional Parameters:
	Example Request
	curl

	Example Response

	POST /sladmin/v1.0/streamerpush/proxy/toggle
	Example Request to Turn Off Proxy
	curl

	Example Response:
	Example Request to Turn On Proxy
	curl

	Example Response:

	Creating the Publisher Custom Resource Definitions
	Adding Supported Data Models
	Supported Data Models
	Required Fields for Data Model File
	Template for Data Model File
	Example

	Applying the Data Model File

	Adding a Subscription
	Required Fields for Subscription File
	Template for Subscription File
	Example

	Applying the Subscription File

	Configuring an Authenticated Connection for Subscriptions
	Certificate Files
	Subscription Example

	Consuming Messages from a Publisher Subscription
	Configuring Your System to Consume Messages from a Publisher Subscription
	Installing the sl-schema-registry Library
	Using a Kafka Python Library to Read Subscription Messages
	Example Script

	Troubleshooting Publisher
	Why do my Publisher pods keep crashing or restarting?
	Why is Publisher failing to send data even though it is not crashing?
	Why is my subscription hanging or not being deleted properly?

