
Report Development
Skylar One version 12.5.1

Table of Contents

Introduction 1

What is a Custom Report? 2

Report Input Forms 2

Gluecode 3

Report Output Templates 3

The Report Management Page 3

Creating a Report Template 4

Creating Queries for the Row Count Estimate Field 5

Types of Variables 7

Sample Input Filter Array 8

Query Example 1 9

Query Example 2 9

Best Practices 10

Running & Scheduling Reports 11

Quick Reports 11

Generating a Quick Report 12

Filling Out Input Forms 13

Scheduled Reports 14

Creating a Report Job 14

Running a Report Job 17

Scheduling a Report Job 18

Viewing Upcoming and Archived Scheduled Report Jobs 18

Input Forms 20

What is an Input Form? 21

Creating an Input Form 21

Adding and Configuring Input Form Components 22

Editing an Input Form 24

Deleting an Input Form 24

Static Layout Components 24

Text 24

Paragraph 24

Vertical Box 25

Horizontal Box 25

Field Set 25

Form Input Components 26

Checkbox 26

Dropdown Select 26

Hidden 27

Multiple Checkboxes 27

Multiple Select 28

Multiple Select with Category 29

Radio Buttons 30

Text Area 30

Text Field 31

Data Components 32

Concatenate 32

Correlate Lists 32

Filter List 33

Find In List 33

Formula 34

Predefined List 35

Select From List 36

Server Function 36

SQL Query 37

String Format 37

Switch Source 38

Custom Report Components 38

Developing Gluecode 40

What is Gluecode? 41

Processing Input Form Options 41

Available Resources 42

Output 42

Output Templates and Output Directives 42

Using the $output Array 43

Using the $em7_report object 52

Database Methods 55

autofetch_all 57

autofetch_all_assoc 61

autofetch_column 69

autofetch_column_multival 72

autofetch_columns 74

autofetch_row 77

autofetch_value 78

expunge_call 79

The Data Engine 80

What is the Data Engine? 81

Instantiating a Data Engine Object 81

Dynamic Application Data 82

Data Associated with Collection Labels 82

Availability Data 83

Web Content Monitoring Policy Data 83

Port Monitoring Policy Data 84

System Process Monitoring Policy Data 84

SOAP/XML Transaction Monitoring Policy Data 84

Domain Name Monitoring Policy Data 85

Email Round-Trip Monitoring Policy Data 85

Windows Service Monitoring Policy Data 85

File System Utilization Data 85

Interface Data - Percentage Utilization 86

Interface Data - Octets, Errors, and Discards 86

Bandwidth Billing Policy Data 86

IT Service Data - Health, Availability, and Risk 87

IT Service Data - Metrics 87

Time Range Methods 87

Normalized Data Methods 89

Return Normalized Data for a Specified Normalization Period 89

Return a Specified Number of Data Points of Normalized Data 90

Return a Specified Type of Normalized Data (Average, Minimum, Maximum, Standard
Deviation, Sum) 90

Dynamic Application Methods 91

Return Information about a Dynamic Application 91

Return Information about a Presentation Object 92

Return Information about Indexes 93

Counter Processing Methods 94

Report Builder Methods 95

Other Methods 96

Data Retrieval Methods 96

Raw Data 96

Normalized Data 97

Data Series Object Retrieval Methods 97

Debugging Reports 99

Controlling Log Settings 100

Setting UI Developer Log Levels 100

Setting UI/REST MySQL Query Log Levels 101

Configuring Advanced Log Settings 101

Writing to the Log File 101

Report Output 103

What is an Output Template? 104

Output Methods 104

Array Binding Directives 105

Conditional Directives 106

Style Directives 106

Image and Chart Directives 106

Uploading Customized Report Output Templates 107

Output Styles and Media 108

Using Theme Logos 109

Adding Global Styles 110

Report Output Media 111

Simple Tabular Report 112

Report Elements 113

Creating the Report Input Form 114

Creating the Report Output Template 115

Creating the Gluecode 119

Extracting Input Values 120

Processing Inputs and Building a WHERE Clause 120

Querying the Database 122

Populating the $output Array 125

Using $em7_report to Output Results 125

Populating the Date 126

Creating the Report Template 127

Full Code Listing for the $output Version 128

Full Code Listing for the $em7_report Version 130

Chapter

1
Introduction

Overview

In the Management section of the Reports page (Reports page > Management), you can edit and create
custom reports. The reports you create will appear in the list of Quick Reports when running a quick report
or Report Definitions when creating a report job. You can edit an existing report to change the input
options and the output of the report.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

What is a Custom Report? 2

Report Input Forms 2

Gluecode 3

Report Output Templates 3

The Report Management Page 3

Creating a Report Template 4

1

2

What is a Custom Report?

A custom report in Skylar One provides you with a collection of data from one or more tables in the Skylar
One database. This information is populated and generated in different user-defined formats. You can
select from default custom reports provided by ScienceLogic, edit these default reports, or create your
own reports. You can also schedule reports, view a list of archived reports, and email reports to other
users.

Custom reports include Quick Reports, which are custom report templates in Skylar One. Quick Reports
are also called "ad hoc reports". You can access Quick Reports on the Reports page, in the Run Report
category (Reports > Run Report).

A report includes three components:

l An input form where you select the options and data you want to include in the report.

l An .ods output template that specifies the format of the generated report.

l Gluecode, the code that specifies how to handle your input, which data to retrieve, and any
processing that needs to be performed on the data.

Skylar One includes predefined reports, with defined forms, output templates, and the gluecode. These
predefined reports can be modified, and you can create your own custom reports.

Report Input Forms

An input form defines the user interface for a report. The user interface for a report allows the user to
select options and data to include in the report. The Report Input Forms page (Reports > Management >
Report Input Forms) displays a list of the input forms in your Skylar One system. You can edit these input
forms for your business needs, or you can create your own input forms for your reports.

An input form includes one or more components. You can include the following types of input components
in an input form:

l Static Layout Component. Provides containers for laying out the user interface, labels, and text
boxes. For example, you can use these components to keep fields together in a horizontal group.

l Form Input Component. Allows the user to specify inputs when generating an instance of the report.
For example, checkboxes and drop-down fields.

l Data Component. Allows you to include dynamic elements in the user interface for a report. These
dynamic elements can retrieve data from the database and alter input items based on criteria,
including formulas and switch statements. For example, if you select the checkbox Select individual
devices, the Devices by Organization field displays a list of devices. This behavior is defined with
Data Components.

l Custom Report Components. Allows you to define a common combination of input elements and
then use that combination of input elements in multiple report input forms, without having to construct
each combination of input elements in each input form. For example, the Organization Selector (a
default Custom Report Component included with Skylar One) provides options to select either the All
Organization checkbox or to select from the list of Organizations.

What is a Custom Report?

Gluecode

Gluecode

Gluecode is PHP code that is executed by the report engine when the report is generated. The gluecode
must:

l Process the inputs from the Input Form.

l Make queries to the database or use other methods to gather the required data.

l Format the data so it can be populated into the Output Template.

You can add and edit gluecode on the Report Management page (Reports > Management > Report
Manager).

Report Output Templates

An Output Template is an Open Office Spreadsheet file (.ods file) that defines the formatting and table
structure for the generated report. When developing a report, you can includes output directives in the
report template to tell the report engine which data from the gluecode to include in the report and where to
place each output in the final report.

Each default custom report has an associated output template that can be edited. You can also create
your own output template and upload it to the Report Output Templates page (Reports > Management >
Report Output Templates).

CAUTION: When creating or editing a report output template, do not use spaces in the template
name.

The Report Management Page

The Report Management page (Reports page > Management > Report Manager) lists all custom reports
that have been created or installed on your Skylar One system.

The Report Management page displays the following columns:

TIP: To sort the list of reports, click on a column heading. The list will be sorted by the column value,
in ascending order. To sort the list by descending order, click the column heading again.

l Report Title. The title of the report.

l Version. The version number of the report.

l Author. The author of the report.

l ID. The numeric ID assigned to the report by this Skylar One system.

3

4

l PowerPack. Indicates whether the report is included in a PowerPack.

l Last Edited By. The user that last edited or installed this report.

l Last Edited On. The date and time that this report was last edited or installed.

Creating a Report Template

If you are developing a new report, you must create a report template. A report template allows you to
define all the parts of a report. A report template specifies identifying information about a report, and the
Report Input Form, Report Output Template, and gluecode that will be used to generate instances of a
report.

To create a report template:

1. Go to the Report Management page (Reports > Management > Report Manager).

2. Click the [Create] button. The Report Template Editor page appears.

3. Complete the following fields:

l Template Name. Type a name for the report. Do not use spaces in the template name. This
name will appear in the left NavBar on the Reports page and in drop-down lists that display
reports.

l Version. Type a version number for the report. ScienceLogic recommends changing the
version number every time you edit a report.

l Author. Type the name of the person or company that developed the report. This field is
automatically populated with the first and last name from your user account.

l Delivery Method. This option allows you to limit the options that are available when a user
schedules this report. Select the methods by which scheduled instances of this report can be
delivered.

l Input Form. Select the input form for the report. For information about input forms, see the
Input Forms section.

l Output Template. Select the output template for the report. For information about output
templates, see the Report Output section.

l Description. Type a description of the report. This field is optional.

l Category. Select one or more categories for the report. Categories are used to arrange the list
of reports in the left NavBar and in drop-down lists that display reports. This field is optional.

l Key Words. Add a comma-separated list of keywords that describe the report. This field is
optional.

l Report Count Query. This query populates the Row Count Estimate field for the report, and
this query executes in the background with each input filter change made by the report user.
The Row Count Estimate field informs users before they generate reports that are so large
that Skylar One cannot create them successfully. The query can include variables for the fields
that a user selects in the report (Input Forms). The variables can be scalars or lists. As the user
selects or de-selects Inputs, such as selecting Devices, then de-selecting Devices and
selecting Assets instead, the query is re-run, and a new value appears in the Row Count
Estimate field.

Creating a Report Template

Creating a Report Template

l Name. If the report requires multiple possible queries based on the inputs that the user
selects, type a name for each query, such as "devices" and "assets". Based on the input
selected by the user, one of the two queries will be used to get the row count estimate. If the
report requires only a single query, type "default" in this field. Click the [Add Row] button to
add additional queries. Do not use double quotes (") or the back slash character (\) in this field.

l Query. Add an SQL query that returns the total possible number of data rows in the report
using the inputs selected buy the user. The query includes variables for fields that a user
selects from the Input Form. The query can include variables for scalar values (single values)
and variables for list values (multiple values). For more information about the SQL query for
this field, see Creating Queries for the Row Count Estimate Field. Do not use double quotes (")
or the back slash character (\) in this field.

NOTE: The goal of the SQL query in the Query field is to provide an estimate of the
returned rows, but the query should be as lightweight as possible. Do not re-use
the SQL query that populates the report.

l [Add Row]. Click this button to add another row containing the name and query code for an
additional query for this template. You can add up to eight queries. Click the red cancel icon (
) to remove a query that you previously added.

NOTE: To disable the Row Count Estimate feature, de-select the Report Size
Estimation option on the Behavior Settings page (System > Settings >
Behavior). This feature is enabled by default. If you disable this feature, Skylar
One retains the queries you created in the Query field, but Skylar One will not run
those queries when you create reports.

l Query/Template Binding Code. Enter the gluecode for the report. For information about how
to write gluecode, see the Developing Gluecode section.

4. Select the [Save] button.

Creating Queries for the Row Count Estimate Field

When you create or edit a report, you can include one or more SQL queries that enables Skylar One to
estimate the number of rows in the report before generating the report. You add the queries to the Query
field on the Report Template Editor page (Reports > Management > Report Manager > create/edit). The
result of the additional query or queries appears in the Row Count Estimate field.

NOTE: The query author will need to understand Skylar One databases and SQL.

The queries for the Row Count Estimate field use variables that are replaced with the report input values
selected by the report user. You can use any of the variables that are available in the existing reports on
the Report Input Forms page (Reports > Management > Report Input Forms).

5

6

TIP: To help you build a query for a new report, locate a report with similar features to the report you
want to create, and use that report and its variables as a template for the new query.

To locate the variables for your report query:

1. Go to the Report Input Forms page (Reports > Management > Report Input Forms) and click the
wrench icon () for the report that contains the variables you want to use in your query. In this
example, we are using the "Device-At-A-Glance" report. The Report Form Editor page appears.

2. In the Form Structure section, click the wrench icon () for the form that you want to use with your
query. An Editing Entity Selector modal page appears.

3. Make a note of the name used in the Input name field and close the modal page. This is the name
of the query that is used by Skylar One when it calls an AJAX request to update the Row Count
Estimate field.

4. Review any other forms from the Form Structure section as needed.

5. Go to the list of reports (Reports > Run Report) and navigate to the report that contains the
variables that you want to use in your query, such as the "Device-At-A-Glance" report.

6. In your browser, press [F12] to open the Web Developer console panel and click the [Network]
tab:

7. In the File column of the Web Developer console panel, select index.em7?exec=get_report_
estimate. This is the name of the AJAX call used by Skylar One.

Creating a Report Template

Creating a Report Template

8. Click the [Response] tab. Based on what button or field you have selected in the report, this tab
displays the input filter array used in the AJAX call. For a complete example of an input filter array,
see the Sample Input Filter Array, below.

TIP: If you click a different option in the report form in the Skylar One user interface, another
index.em7?exec=get_report_estimate line appears for that option. A new input filter array
for that option appears on the [Response] tab.

9. You can use the variables from the input filter array on the [Responses] tab to build your query. For
more information, see the two Query Examples, below.

10. After you create your query or queries, go to the Report Management page (Reports >
Management > Report Manager) and click the wrench icon () for the report template you are
editing, or click [Create] to create a new report template if needed.

11. On the Report Template Editor page, add the query to the Query field in the Report Count Query
section.

NOTE: If you include multiple queries in a report, they are stored as a serialized object in the
database, and the user-selected values from the input form replace the variables in the in the
main query. As each input selection is made or changes, Skylar One calls an AJAX request to
update the count.

Types of Variables

You can use the following types of variables in the query:

1. Scalar. These variables will be replaced by a single value, such as Report Span Start value
and Report Span End value. Scalar variables should be defined between two "#" symbols, such as
#is_admin#.
Scalar variables can be used in a query such as collection_date >= #span.start_ts#. span.start_ts
can have a single value, and it will be replaced by the timestamp value.

2. List. These variables will be replaced by multiple selected values, such as a list of organizations
replaced inside an “IN” clause. Another example is the Device Groups selector, where users can
select multiple device groups. List variables should be defined between two "@" symbols, such as
@dev_ids@. List variables can be used in a query, such as did IN @dev_ids@. dev_ids can have
multiple values to check against Device IDs, and it will be replaced by multiple values.

NOTE: dev_ids and is_admin are Skylar One report variables that you can use in report queries as
needed.

Scalar and list variables names are based on input filter names. For example, if you want to use start_ts
and end_ts values from the span Input Filters, the variable in the query should be formatted as
#span.start_ts# and #span.end_ts# for scalar variables, or @span.start_ts@ and@span.end_ts@ for
list variables.

7

8

Sample Input Filter Array

The following code is an example of an input filter array used in the AJAX call to generate a report:

Array

(

[items] => Array

(

[select_type] => device

[all_items] => 0

[parents] => Array

(

)

[use_item_ids] => 0

[child_ids] => Array

(

)

)

[span] => Array

(

[interval] => 30

[begin] => 0

[beginyear] => 2020

[beginmonth] => 4

[beginday] => 1

[duration] => 1

[start_ts] => 1585699200

[isDST] => 0

[userTZ] => 19800

[end_ts] => 1588291200

[begindesc] => Apr 2020

[spandesc] => 1 month

[hours_included] => 1

[workday_start] => 8

[workday_end] => 18

[timezone_offset] => 0

)

Creating a Report Template

Creating a Report Template

)

Query Example 1

In this example #is_admin# is a scalar variable that will be replaced by a Boolean value 0 or 1. Also,
@dev_ids@ is a list variable that will be replaced by one or multiple device IDs, based on the selections
made by the user.

SELECT count(dev.id) FROM master_biz.organizations org

JOIN master_dev.legend_device dev ON (org.roa_id = dev.roa_id AND (#is_

admin# OR))

JOIN master.definitions_dev_classes devclass ON dev.class_

type=devclass.class_type

JOIN master.definitions_dev_cats cats ON devclass.family=cats.Fid

LEFT JOIN master_dev.device_hardware hw ON dev.id=hw.did AND hw.comp_

type=1

WHERE (#items_all_items# OR (dev.roa_id in AND

(NOT #items_use_item_ids# OR dev.id in @dev_ids@)))

AND (#dg_all_device_groups# OR dev.id in @dev_ids@)

AND (#cats_all_cats# OR cats.Fid IN)

Query Example 2

SELECT count(log.log_id) FROM master_biz.organizations_log log

JOIN master_biz.organizations org ON (log.roa_id = org.roa_id AND (#is_

admin# OR))

WHERE log.date_edit >= FROM_UNIXTIME(#span_start_ts#)

AND log.date_edit < FROM_UNIXTIME(#span_end_ts#)

AND (#org_all_orgs# OR org.roa_id IN)

AND (#source_all_sources# OR log.source IN)

9

10

AND (log.message like #in_message_text#)

Best Practices

l The value that appears in the Row Count Estimate field is not an exact prediction, but an estimate.
As a result, you should focus on getting the upper range of the report size instead of the exact count.

l To write a report size estimate query, you will need a good understanding of reports and how report
input filters work in reports. This includes identifying the filters that do not impact the row count, such
as Separated by Device Group, because using those filters in the query will not have any impact on
the row count estimate.

l Identify the filters according to their replacement logic, such as scalars or lists.

l In general, JOIN commands perform better than sub-queries when you need to collect data from
more than one table.

l To disable the Row Count Estimate feature, de-select the Report Size Estimation option on the
Behavior Settings page (System > Settings > Behavior). This feature is enabled by default.

Creating a Report Template

Quick Reports

Chapter

2
Running & Scheduling Reports

Overview

This chapter briefly describes the user interface for generating reports in Skylar One. For additional
information about the default reports that are included in Skylar One and managing scheduled reports,
see the Reports manual.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Quick Reports 11

Scheduled Reports 14

Quick Reports

The Run Quick Report page (Reports > Run Report) allows you to select and manually generate a
custom report. You can choose the report to generate from the list of default custom reports in Skylar One
(formerly SL1).

This list includes the default custom reports provided by ScienceLogic and any reports developed by you
or another user in the Skylar One system. Quick Reports allow you to quickly generate a spreadsheet or
graphical report using the information you wish to view.

11

12

Generating a Quick Report

In the user interface for a report, users of type Administrator can view options and devices for all
organizations. Users of type User can view only options and devices for organizations of which they are a
member.

You can specify how many days Skylar One will retain data from reports by going to the Data Retention
Settings page (System > Settings > Data Retention) and adjusting the Ad-hoc and Scheduled Reports
field. Possible values are 0 - 365, in days. If you use the default value of 0, Skylar One will remove files
older than 30 days from the populated directory: /opt/em7/gui/ap/www/em7/libs/od_
templates/populated.

TIP: If you want to adjust the default timeout of 1800 seconds (30 minutes) for running a report,
navigate to the Run Quick Report page (Reports > Run Report) for that report and click the [Edit]
button. On the Report Template Editor modal page, update the Timeout value and click [Save].

NOTE: Quick Reports run on the current appliance (the appliance on which the report user is logged
into) in a distributed Skylar One stack.

WARNING: Skylar One might not be able to generate reports that contain extremely large amounts of
data. The amount of data that Skylar One can process when generating a report is
constrained by the configured memory limits of Skylar One. The upper limit of data is
dependent on the number of rows, number of columns, and the size of each field. Each
report will have different data limits. For example, the Interface Usage report is limited to
10,000 interfaces. For reports of a similar size, ScienceLogic recommends you test to
ensure that the report generates correctly with the number of data points you require. If
the report does not generate correctly, you will need to generate multiple smaller reports.
You can use the Row Count Estimate field next to the [Generate] button to get an
estimate of the number of rows that will appear in the report before Skylar One generates
it.

To generate a report on the Run Quick Report page:

1. Go to Run Quick Report page (Reports > Run Report).

2. Expand the appropriate category, such as Asset Management or Devices, and select the report you
want to run.

Quick Reports are listed by category. If a Quick Report is not associated with a category, that Quick
Report appears under the "Others" category. To assign or change a category for a Quick Report,
edit the Category field in the Report Template Editor page (Reports > Management > Report
Manager > create/edit).

Quick Reports

Quick Reports

3. Update the fields on the input form to specify the options and data to include in the report. For more
information, see Filling Out Input Forms.

As you update the fields for this report, the Row Count Estimate field next to the [Generate] button
is updated to provide an estimate of the number of rows that will appear in this report. You can use
this field to manage the size of the generated report by adding or removing items from the report as
needed. To disable the Row Count Estimate feature, de-select the Report Size Estimation option
on the Behavior Settings page (System > Settings > Behavior). This feature is enabled by default.
For more information about how to edit the settings for this field, see Creating a Report Template.

NOTE: The following reports utilize the Row Count Estimate field: Device-At-A-Glance,
Device Availability, Device Top Metrics, Device Top Utilization, Device Utilization,
Interface In Use, Interface Top Metrics, Monitored Element, and PowerPack
Information.

4. In the Output Format drop-down at the bottom of the page, select a format in which to generate the
report. You can choose from Open Document Format (ODF) Spreadsheet (.ods), Microsoft Excel
Spreadsheet (.xlsx), Adobe Acrobat Document (.pdf), or a Web Page (.html).

5. Click the [Generate] button. The Report Generation pop-up window appears with a message that a
link to your report will be displayed when the report is created. The link will also be sent to the
mailbox of the current user.

NOTE: You can opt to not receive an email with a link to a report by going to the Account
Preferences page (Preferences > Account > Preferences) and selecting No in the Ad-
hoc Report Email Preference field.

6. After the report is created, the Report Generation window displays a link to the report and icons
that you can click to download the report in various formats.

7. Save the report in the format you prefer and close the pop-up windows.

Filling Out Input Forms

After you select the report to run, you must specify the input options. The input form lets you select the
options and data to include in the report.

These options vary by report. However, the following input options appear for multiple default custom
reports in Skylar One and are available for use in custom reports:

l Organizations. Select the organizations that you want to include data for in the report. You can
select all organizations, individual organizations, or a grouping of organizations. Organizations
contain other entities, like users, devices, assets, and policies.

l Select By. You can select the specific entities you want to include data for in the report. These
options include selecting by Org/Device, selecting by Org/Asset, and selecting by ESX Server/VM,
among others.

13

14

l Report Span. Some reports provide input options that specify the time span that the data on the
report should cover. These options include Daily, Weekly, or Monthly.

l Device Categories. Select the device categories of the devices you want to include in the report.
You can select all device categories, individual device categories, or a grouping of device categories.

l Optional Columns. Provides a list of additional, optional information to include in the report.

TIP: As you update the fields for this report, the Row Count Estimate field next to the [Generate]
button is updated to provide an estimate of the number of rows that will appear in this report. You
can use this field to manage the size of the generated report by adding or removing items from the
report as needed.

Scheduled Reports

You can schedule a custom report to be automatically generated by the Skylar One system at a specific
time, either once or on a recurring schedule. Scheduled reports can be automatically emailed to users,
external contacts, or vendors.

Creating a Report Job

You can define a report job in the Report Jobs page (Reports > Create Report > Report Jobs). From this
page, you can create a report job, run the report job, edit the report job, or delete the report job.

To create a report job:

1. Go to the Report Jobs page (Reports > Create Report > Report Jobs.

2. Click the [Create] button. The Report Job Editor page appears.

3. The Report Job Editor page contains fields where you can select the parameters of the report job.
The fields are:

l Job Title. Specify a title of up to 220 characters for the report job.

l Run as User. Specify the type of user to run the report as. When a scheduled report uses this
report job, the report generates as if the Run As User was running the report. This field is
useful when a system administrator, who can access all entities in all organizations, is
configuring a report job for a regular user, who is allowed to access only entities aligned with
the regular user's organizations. Two access hooks affect the behavior of the Run As User
field:

o Run As Org User. If this Access Hook is included in an Access Key that is aligned with
your account, the Run As User field will contain a list of users with the same primary
organization as your own. You can select one of these users to align with the generated
report.

Scheduled Reports

Scheduled Reports

o Run As Any User. If this Access Hook is included in an Access Key that is aligned with
your account, you will be able to schedule report jobs as any user. The Run As User
field will contain a list of all users. You can select one of these users to align with the
generated report.

NOTE: If your user account does not include either of these Access Hooks, you
can schedule report jobs only as yourself. The Run As User field will not
appear in the Report Job Editor page. For more information on
organization restrictions, see the Access Permissions manual .

l Report Definition. Select a report from the list of all reports defined in the Report
Management page. Only report definitions to which you are allowed access will appear in this
field. When you select the report, the Report Options section for that specific report appears at
the bottom of the Report Job Editor page.

NOTE: Report definitions are listed by category. If a report definition is not associated
with a category, that report definition appears under the "Other" category. To
assign or change a category for a report definition, edit the Category field in the
Report Template Editor page (Reports > Management > Report Manager >
create/edit).

l Report Appliance. Select the appliance on which to run the report, if more than one appliance
is available. By default the current appliance is selected. If you select "Active Database",
Skylar One locates the active database server at run time and will execute the report on that
database server.

l Job Recipients. Specifies the recipients for the report. Clicking in this field displays the Add
Recipients modal page, where you can select users, external contacts, and vendor contacts to
include in the Job Recipients field. To learn how to add job recipients to the report job, see
Step 4, below.

l Job Type. Specifies how the generated report will be delivered. Choices are:

o Email & Archive. Report is emailed to the specified email address (in the Email To field)
and also archived on the server.

o Archive. Report is stored on the server.

15

16

l Delivery Method. Specifies the method of delivery and the output format (if applicable) for the
report. Choices are:

o Inline (HTML). The generated report will be sent to the selected users in the body of an
Email.

o Attachment. The generated report will be sent to the selected users as an attachment to
an Email. To select this option, select one of the output formats in the Attachment
section of the drop-down list.

o Link to EM7. The generated report will be made available via a direct URL. The link will
be sent to the selected users in an email. To select this option, select one of the output
formats in the Link to EM7 section of the drop-down list.

For the Attachment and Link to EM7 options, the following output formats are available:

o Adobe Acrobat Document (.pdf)

o Web page (.html)

o Microsoft Excel 2007+ Spreadsheet (.xlsx)

o Open Document Format (ODF) Spreadsheet (.ods)

NOTE: The options that can be selected in the Delivery Method field are defined
in the Delivery Method field in the Report Template Editor page for the
selected report.

l Report Options. The interface for the selected report appears in this pane. Select the options
you want included in the automatically generated report. These options are limited by the
Access Keys aligned with your account and the organization memberships aligned with your
account.

4. You can add recipients to a report in the Add Recipients modal page. The Add Recipients modal
page allows you to select users, external contacts, and vendor contacts to include in the "To" field of
the Job recipients field.

5. The options in the Add Recipients modal page are:

l Recipient Types. Displays checkboxes for EM7 User, External Contact, and Vendor. If a
checkbox is selected, the users in the selected contact group will appear in the Matched
Recipients field.

l Search For. Select All recipients, Organization, Product, or Ticket Queue. The Matched
Recipients field will display only users in the specified group.

l Search. Enter the name of the user, external contact, or vendor you are searching for.

l Matched Recipients. Displays the possible recipients based on the criteria you specified in the
Recipient Types and/or Search For and/or Search fields.

6. To add a user, external contact, or vendor as a job recipient, select its checkbox. To select all users
displayed in the Matched Recipients field, select the checkbox next to the Action heading.

Scheduled Reports

Scheduled Reports

7. Click the [Add/Remove] button to add the selected users. To remove users as job recipients, de-
select users by removing the check mark and then clicking the [Add/Remove] button.

8. On the Report Jobs page, click the [Save] button. The new report job will appear in the list of report
jobs in the Report Jobs page.

Running a Report Job

After you save a report job, it will appear in the Report Jobs page. You can run the report job immediately
from this page.

You can specify how many days Skylar One will retain data from reports by going to the Data Retention
Settings page (System > Settings > Data Retention) and adjusting the Ad-hoc and Scheduled Reports
field. Possible values are 0 - 365, in days. If you use the default value of 0, Skylar One will remove files
older than 30 days from the populated directory: /opt/em7/gui/ap/www/em7/libs/od_
templates/populated.

TIP: If you want to adjust the default timeout of 1800 seconds (30 minutes) for running a report,
navigate to the Run Report page for that report and click the [Edit] button. On the
Report Template Editor modal page, update the Timeout value and click [Save].

TIP: You might find it helpful to immediately run the report job to test the parameters you selected and
verify that the report is delivered correctly.

WARNING: To avoid potential "504 Gateway Timeout" errors, ScienceLogic recommends that you
only run a report job with a schedule, instead of using the lightning bolt icon () to run the
report job on an ad-hoc basis. ScienceLogic recommends you run the report from the list
of reports in the Run Report entry on the Reports page.

To run a report job:

17

18

1. Go to the Report Jobs page (Reports > Create Report > Report Jobs.

2. Find the report job you want to run and click its lightning bolt icon (). The Report Generation pop-
up window appears with a message that a link to your report will be displayed when the report is
created. The link will also be sent to the mailbox of the current user.

WARNING: To avoid potential timeout errors, ScienceLogic recommends that you use this
option sparingly.

NOTE: You can opt to not receive an email with a link to a report by going to the Account
Preferences page (Preferences > Account > Preferences) and selecting No in the Ad-
hoc Report Email Preference field.

3. After the report is created, the Report Generation window displays a link to the report and icons
that you can click to download the report in various formats.

Scheduling a Report Job

After a report job has been created, you can schedule the report to run automatically on the report
Schedule Manager page (Reports > Create Report > Scheduler). Scheduled reports are automatically
generated by Skylar One once, at a specified time, or at specified regular intervals. You can select the day
and time the report job runs or the recurrence of the report job, if necessary, and save these parameters to
view, edit, enable or disable, or delete later.

NOTE: You can also view and manage all scheduled processes from the Schedule Manager page
(Registry > Schedules > Schedule Manager). For more information, see the System
Administration manual.

Viewing Upcoming and Archived Scheduled Report Jobs

The Scheduled Report Jobs page (Report > Create Report > Scheduled Job / Report Archive) displays a
list of all upcoming instances of scheduled report jobs. For example, if you schedule a PowerPack
Information report to run once a day, the Scheduled Report Jobs page will display the PowerPack
Information scheduled report job and its current status. This page automatically refreshes at a set interval;
the default interval is 10 seconds.

NOTE: In the silo.conf file, the auto_page_refresh setting under [ADHOC_REPORT_IN_BATCH]
defines the interval at which this page refreshes, as well as other settings for ad hoc batch
reports. For more information about updating the silo.conf file, see the System Administration
manual.

Scheduled Reports

Scheduled Reports

From the Scheduled Report Jobs page, you can also access the Scheduled Report Archive page by
clicking the [Archived Job] button in the top right corner of the page. (You can click the [Scheduled Job]
button to return to the Scheduled Report Jobs page.) The Scheduled Report Archive page displays a list
of all past report jobs. For example, if you schedule a Device Availability report to run once every hour, the
Scheduled Report Archive page will display each of the Device Availability reports that have already run.

19

Chapter

3
Input Forms

Overview

This chapter describes how to create and manage input forms to use in custom reports in Skylar One.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

20

21

What is an Input Form?

An input form defines the user interface for a report. The user interface for a report allows the user to
select options and data to include in the report. The Report Input Forms page (Reports > Management >
Report Input Forms) displays a list of the input forms in your Skylar One system. You can edit these input
forms for your business needs, or you can create your own input forms for your reports.

An input form includes one or more components. You can include the following types of input components
in an input form:

l Static Layout Component. Provides containers for laying out the user interface, labels, and text
boxes. For example, you can use these components to keep fields together in a horizontal group.

l Form Input Component. Allows the user to specify inputs when generating an instance of the report.
For example, checkboxes and drop-down fields.

l Data Component. Allows you to include dynamic elements in the user interface for a report. These
dynamic elements can retrieve data from the database and alter input items based on criteria,
including formulas and switch statements. For example, if you select the checkbox Select individual
devices, the Devices by Organization field displays a list of devices. This behavior is defined with
Data Components.

l Custom Report Components. Allows you to define a common combination of input elements and
then use that combination of input elements in multiple report input forms, without having to construct
each combination of input elements in each input form. For example, the Organization Selector (a
default Custom Report Component included with Skylar One) provides options to select either the All
Organization checkbox or to select from the list of Organizations.

Creating an Input Form

To create an input form:

1. On the Report Input Forms page (Reports > Management > Report Input Forms), click the [Create]
button. The Report Form Editor page appears.

2. Complete the following fields:

l Form Name. Type a name for the input form.

l Form Type. Your choices are:

o Report. Select this option if this input form is a complete user interface for a report. If you
select this option, the input form will appear in the Input Form drop-down list in the
Report Template Editor page.

o Component. Select this option if this input form is a set of components that you want to
re-use on multiple reports. If you select this option, the input form will appear in the
Available Components pane in the Report Form Editor page.

l Version. Enter a version number for the input form. ScienceLogic recommends changing the
version number every time you edit a report form.

What is an Input Form?

Adding and Configuring Input Form Components

l Author. Enter the name of the person or company that developed the report form. This field is
automatically populated with the first and last name from your user account.

3. Click [Save]. You can now add components to the input form.

Adding and Configuring Input Form Components

An input form includes one or more components. You can include the following types of input components
in an input form:

l Static Layout Components . Provide containers for laying out the user interface, labels, and text
boxes.

l Form Input Components. Provide typical HTTP input-form functionality and allows the user to
specify inputs when generating an instance of the report. You must define report gluecode to process
the values passed by Form Input Components.

l Data Components. Allow you to include dynamic elements in report interfaces. Data Components
can retrieve data from the database, alter input items based on various criteria, include formulas,
switch statements, and other flexible tools.

l Custom Report Components. Allow you to define a common combination of input elements and
then use that combination of input elements in multiple reports (without having to define the
combination of input elements each time you use it).

The following panes and buttons appear in the Report Form Editor page:

l Form Structure. This pane displays a hierarchical list view of the components that have been added
to the input form. In this pane, you can edit, remove, and rearrange the components that have been
added to the input form.

l Form Preview. This pane displays the components that have been added to the input form as they
will display in the report's user interface. If you have configured components to interact with each
other, e.g. a checkbox that controls the enabled/disabled state of a multi-select, you can test the
behavior of the components by interacting with them in this pane. For an example of how to use the
Form Preview pane, see the Simple Tabular Report example.

l Available Components. This pane displays a list of all available component types.

The following buttons appear in the Report Form Editor page:

l Data. By default, the Report Form Editor page does not display data source components in the
Form Structure or the Available Components. Select the [Data] button to toggle the display of data
source components.

l Wrench icon (). Select this icon to edit a component.

l Delete icon (). Select this icon to remove a component from the input form.

l Save. Select this button to save your changes to the input form.

l Save As. Select this button to save your changes to the input form as a new input form.

22

23

NOTE: The Report Form Editor does not automatically save when you add, remove, or edit a
component. You must select the [Save] button in the Report Form Editor to save your
changes.

To add or edit a component to an input form:

1. To add a new component, either double click on the component name in the Available Components
pane or Click and drag the component from the Available Components pane to the Form Structure
pane.

2. To edit an existing component, select the wrench icon () for that component in the Form Structure
pane. The Edit Component modal page is displayed.

3. To remove a component from an input form, select the delete icon () for the component in the Form
Structure pane.

4. Enter a value in each field in the Edit Component modal page. The fields in this page are different for
each type of component. The following sections describe each type of input component:

l Static Layout Components

l Form Input Components

l Data Components

l Custom Report Components

5. Select the [Save] button in the Edit Component modal page. The Edit Component modal page
closes.

6. Select the [Save] button in the Report Form Editor page.

The components in an input form can be arranged hierarchically in the Form Structure pane. The order of
the components in the Form Structure pane determines the order the components will be displayed on
the input form. To move a component, click and drag the component in the Form Structure pane. When
you start dragging a component, a set of dashed lines indicate where the component will be placed if you
release the mouse button.

Some components can be arranged as children of other components. The following components can be
"parents":

l Some layout components, including the Vertical Box, Horizontal Box, and Field Set.

The child components will be arranged inside the parent in the input form. To add a child
component to a layout component, click and drag the child component to the Drag
components here section below the parent in the Form Structure pane.

l Form input components and data source components that can reference data source components.

Arranging data source components as children of other components does not affect the
configuration or function of either component; however, arranging data source components in
a logical hierarchy improves the legibility of the Form Structure pane. To make a data source
component a child of a form input component or data source component, click and drag the
child component to the Drag sources here section below the parent in the Form Structure
pane.

Adding and Configuring Input Form Components

Editing an Input Form

Editing an Input Form

To edit an input form:

1. Go to the Report Input Forms page (Reports > Management > Report Input Forms).

2. Click the wrench icon () for the input form you want to edit. The Report Form Editor page appears.

3. Make changes to the input form. For a description of the fields in the Report Form Editor page, see
the Creating an Input Form section. For a description of how to add, remove, and edit components on
an input form, see the Configuring Input Form Components section.

4. To save your changes, click [Save]. To save your changes as a new input form, click [Save As].

Deleting an Input Form

To delete an input form, perform the following steps:

NOTE: You cannot delete an input form that is associated with a report template.

1. Go to the Report Input Forms page (Reports > Management > Report Input Forms).

2. Select the checkbox for each input form you want to delete.

3. In the Select Action drop-down list, select Delete Input Forms.

4. Select the [Go] button.

Static Layout Components

Static Layout Components provide containers for laying out the user interface, labels, and text boxes.

Text

Displays static text on the input form. Text has the following options:

l Text. The text to display on the input form.

l Font Style. The style to apply to the displayed text. The options are normal, bold, italic, or bold italic.

Paragraph

An invisible container of other elements. Child elements are displayed on one line of text, appearing from
left to right in the order they appear in the Form Structure hierarchy. Paragraph has the following options:

24

25

l Width. The width of Paragraph in pixels. If you do not supply a value in this field, Skylar One will
automatically calculate the width of the Paragraph based on the size of the Paragraph child
components.

l Height. The height of Paragraph in pixels. If you do not supply a value in this field, Skylar One will
automatically calculate the height of the Paragraph component based on the size of the Paragraph
child components.

Vertical Box

An invisible container of other elements. Child elements are arranged vertically in the order they appear in
the Form Structure hierarchy. Vertical Box has the following options:

l Width. The width of the Vertical Box in pixels. If you do not supply a value in this field, Skylar One will
automatically calculate the width of the Vertical Box based on the size of the Vertical Box child
components.

l Height. The height of the Vertical Box in pixels. If you do not supply a value in this field, , Skylar One
will automatically calculate the height of the Vertical Box based on the size of the Vertical Box child
components.

Horizontal Box

An invisible container of other elements. Child elements are arranged horizontally in the order they appear
in the Form Structure hierarchy. Horizontal Box has the following options:

l Width. The width of the Horizontal Box in pixels. If you do not supply a value in this field, Skylar One
will automatically calculate the width of the Horizontal Box based on the size of the Horizontal Box
child components.

l Height. The height of the Horizontal Box in pixels. If you do not supply a value in this field, , Skylar
One will automatically calculate the height of the Horizontal Box based on the size of the Horizontal
Box child components.

Field Set

A container of other elements. The child elements are surrounded by a border with optional legend text
displayed at the top of the Field Set. By default, child elements are arranged vertically. To display child
elements horizontally, a Horizontal Box can be nested inside a Field Set. Field Set has the following
options:

l Legend Text. The text to display at the top of the Field Set.

l Width. The width of the Field Set in pixels. If you do not supply a value in this field, Skylar One will
automatically calculate the width of the Field Set based on the size of the Field Set child
components.

l Height. The height of the Field Set in pixels. If you do not supply a value in this field, Skylar One will
automatically calculate the height of the Field Set based on the size of the Field Set child
components.

Static Layout Components

Form Input Components

Form Input Components

Form Input Components provide typical HTTP input form functionality. All of the Form Input Components
allow the user to specify inputs when generating an instance of the report. The report gluecode should be
written to process the values passed by Form Input Components.

Checkbox

Allows the user to enable or disable an option. Checkbox passes a boolean value to the gluecode. If the
Checkbox is checked, the input value is "1" (one). If the Checkbox is unchecked, the input value is "0"
(zero). Checkbox has the following options:

l Input Name. The key in the $input array that points to the input value from the Checkbox.

l Label Text. The identifying text that will be displayed with the Checkbox on the Report Input Form
and in double quotes in the Form Structure pane.

l Width. The width of the Checkbox, including the Label Text, in pixels. If you do not supply a value in
this field, Skylar One automatically calculates the width of the Checkbox based on the size of the
Checkbox and Label Text.

l Height. The height of the Checkbox, including the Label Text, in pixels. If you do not supply a value
in this field, Skylar One automatically calculates the height of the Checkbox on the size of the
Checkbox and Label Text.

l Default State. Defines whether the Checkbox will be checked or unchecked by default. Default
State can be bound to a static value or a data component, form input component, or custom report
component. If the value of the bind is "1" (one), the Checkbox will be checked by default. If the value
of the bind is "0" (zero), the Checkbox will be unchecked by default.

l Input Disabled. Defines when the Checkbox will be active or disabled on the Input Form. Input
Disabled can be bound to a static value or a data component, form input component, or custom
report component. If the value of the bind is "1" (one), the Checkbox will be disabled. If the value of
the bind is "0" (zero), the Checkbox will be active. If Input Disabled is bound to a form input or
custom report component, the Checkbox can dynamically change (between active and disabled) as
the Input Form is filled out and the value of the bind changes.

Dropdown Select

Allows the user to select an option from a list. The value associated with a selected option is passed to the
gluecode. Each option in a Dropdown Select has a label, which is displayed to the user, and a value,
which is passed to the gluecode. Dropdown Select has the following options:

l Input name. The key in the $input array that points to the input value from the Dropdown Select.

l Label text. The identifying text that will be displayed with the Dropdown Select on the Report Input
Form, and in double quotes in the Form Structure pane.

26

27

l Width. The width of the Dropdown Select, including the Label Text, in pixels. If you do not supply a
value in this field, Skylar One automatically calculates the width of the Dropdown Select based on
the size of the Dropdown Select, Label Text, and Option Labels.

l Height. The height of the Dropdown Select, including the Label Text, in pixels. If you do not supply a
value in this field, Skylar One automatically calculates the height of the Dropdown Selectbased on
the size of the Dropdown Select and Label Text.

l Option Values. Defines a list of values to associate with the Option Labels in the Dropdown Select.
The value for the selected option will be passed to the gluecode. Option Values can be bound to a
static value or a data component, form input component, or custom report component.

l Option Labels. Defines a list of labels that will be displayed to the user in the Dropdown
Select.These labels map to the list of values from the Option Values field. Option Labels can be
bound to a static value or a data component, form input component, or custom report component.

l Default Selected Value. Defines the option in the Dropdown Select that will be selected by default.
Default Selected Value can be bound to a static value or a data component, form input component,
or custom report component.

l Input Disabled. Defines whether the Dropdown Select will be active or disabled on the Input Form.
Input Disabled can be bound to a static value or a data component, form input component, or custom
report component. If the value of the bind is "1" (one), the Dropdown Select will be disabled. If the
value of the bind is "0" (zero) , the Dropdown Select will be active. If Input Disabled is bound to a
form input component or custom report component, the Dropdown Select can dynamically change
(between active and disabled) as the Input Form is filled out and the value of the bind changes.

Hidden

Passes a value to the gluecode. The value is defined by the Value option and cannot be changed by the
user who generates the report. Hidden has the following options:

l Input name. The key in the $input array that points to the Hidden value.

l Label text. The identifying text that will be displayed in double quotes in the Form Structure pane.

l Width. A deprecated field. Values entered into this field have no effect.

l Height. A deprecated field. Values entered into this field have no effect.

l Value. Defines the value that will be passed to the gluecode. Value can be bound to a static value or
a data component, form input component, or custom report component.

Multiple Checkboxes

Presents a list of labeled checkboxes to the user, and allows the user to select multiple checkboxes. The
values associated with the selected checkboxes are passed as an array to the gluecode. Each option in a
Multiple Checkboxes has a label, which is displayed to the user, and a value, which is passed to the
gluecode. Multiple Checkboxes has the following options:

l Input name. The key in the $input array that points to the input values from the Multiple
Checkboxes.

l Label text. The identifying text that will be displayed with the Multiple Checkboxes on the Report
Input Form and in double quotes in the Form Structure pane.

Form Input Components

Form Input Components

l Width. The width of the Multiple Checkboxes, including the Label Text, in pixels. If you do not
supply a value in this field, Skylar One automatically calculates the width of the Multiple Checkboxes
based on the size of the Multiple Checkboxes, Label Text, and Option Labels.

l Height. The height of the Multiple Checkboxes, including the Label Text, in pixels. If you do not
supply a value in this field, Skylar One automatically calculates the height of the Multiple
Checkboxes based on the size of the Multiple Checkboxes and Label Text.

l Checkbox Values. Defines a list of values to associated with the Checkbox Labels in the Multiple
Checkboxes. These values map to the labels in the Checkbox Labels field.The values for the
selected checkboxes will be passed to the gluecode. Checkbox Values can be bound to a static
value or a data component, form input component, or custom report component.

l Checkbox Labels. Defines a list of labels that will be displayed to the user in Multiple Checkboxes.
These labels map to the values in the Checkbox Values field. Checkbox Labels can be bound to a
static value or a data component, form input component, or custom report component.

l Default Checked Values. Defines the checkboxes in the Multiple Checkboxes that will be selected
by default. Default Checked Values can be bound to a static value or a data component, form input
component, or custom report component.

l Input Disabled. Defines whether the Multiple Checkboxes will be active or disabled on the Input
Form. Input Disabled can be bound to a static value or a data component, form input component, or
custom report component. If the value of the bind is "1" (one), the Multiple Checkboxes will be
disabled. If the value of the bind is "0" (zero), the Multiple Checkboxes will be active. If Input
Disabled is bound to a form input or custom report component, the Multiple Checkboxes can
dynamically change (between active and disabled) as the Input Form is filled out and the value of the
bind changes.

Multiple Select

Allows the user to select multiple options from a list. The values associated with the selected options are
passed as an array to the gluecode. Each option in a Multiple Select has a label, which is displayed to the
user, and a value, which is passed to the gluecode. Multiple Select has the following options:

l Input name. The key in the $input array that points to the input values from the Multiple Select.

l Label text. The identifying text that will be displayed with the Multiple Select on the Report Input
Form, and in double quotes in the Form Structure pane.

l Width. The width of the Multiple Select, including the Label Text, in pixels. If you do not supply a
value in this field, Skylar One automatically calculates the width of the Multiple Select based on the
size of the Multiple Select, Label Text, and Option Labels.

l Height. The height of the Multiple Select, including the Label Text, in pixels. If you do not supply a
value in this field, Skylar One automatically calculates the height of the Multiple Select based on the
size of the Multiple Select and Label Text.

l Option Values. Defines a list of values associated with the options in the Multiple Select. These
values map to the labels in the Option Labels field. The values for the selected options will be
passed to the gluecode. Option Values can be bound to a static value or a data component, form
input component, or custom report component.

28

29

l Option Labels. Defines a list of labels that will be displayed to the user in the Multiple Select. These
labels map the values in the Option Values field. Option Labels can be bound to a static value or a
data component, form input component, or custom report component.

l Default Selected Values. Defines the options in the Multiple Select that will be selected by default.
Default Selected Values can be bound to a static value or a data component, form input component,
or custom report component.

l Input Disabled. Defines whether the Multiple Select will be active or disabled on the Input Form.
Input Disabled can be bound to a static value or a data component, form input component, or custom
report component. If the value of the bind is "1" (one), the Multiple Select will be disabled. If the value
of the bind is "0" (zero), the Multiple Select will be active. If Input Disabled is bound to a form input
component or custom report component, the Multiple Select can dynamically change (between
active and disabled) as the Input Form is filled out and the value of the bind changes.

Multiple Select with Category

Presents the user with a list of options divided into categories. The user can select multiple items from the
list, and can select whole categories of items by selecting the category name. The values associated with
the selected options are passed in an array to the gluecode. Each option in a Multiple Select with
Category has a label, which is displayed to the user, and a value, which is passed to the gluecode.
Multiple Select with Category has the following options:

l Input name. The key in the $input array that points to the input values from the Multiple Select with
Category.

l Label text. The identifying text that will be displayed with the Multiple Select with Category on the
Report Input Form and in double quotes in the Form Structure pane.

l Width. The width of the Multiple Select with Category, including the Label Text, in pixels. If you do
not supply a value in this field, Skylar One automatically calculates the width of the Multiple Select
with Category based on the size of the Multiple Select with Category, Label Text, and Option
Labels.

l Height. The height of the Multiple Select with Category, including the Label Text, in pixels. If you do
not supply a value in this field, Skylar One automatically calculates the height of the Multiple Select
with Category based on the size of the Multiple Select with Category and Label Text.

l Option Values. Defines a list of values to include in the Multiple Select with Category. These values
map to the labels in the Option Labels field. The values for the selected options will be passed to the
gluecode. Option Values can be bound to a static value or a data component, form input component,
or custom report component.

l Option Labels. Defines a list of labels that will be displayed to the user in the Multiple Select with
Category. These labels map to the values in the Option Values field. Option Labels can be bound to
a static value or a data component, form input component, or custom report component.

l Option Categories. Defines a list of categories for the Option Labels. Option Categories can be
bound to a static value or a data component, form input component, or custom report component.

l Default Selected Values. Defines the options in the Multiple Select with Category that will be
selected by default. Default Selected Values can be bound to a static value or a data component,
form input component, or custom report component.

Form Input Components

Form Input Components

l Input Disabled. Defines whether the Multiple Select with Category will be active or disabled on the
Input Form. Input Disabled can be bound to a static value or a data component, form input
component, or custom report component. If the value of the bind is "1" (one), the Multiple Select with
Category will be disabled. If the value of the bind is "0" (zero), the Multiple Select with Category will
be active. If Input Disabled is bound to a form input component or custom report component, the
Multiple Select with Category can dynamically change (between active and disabled) as the Input
Form is filled out and the value of the bind changes.

Radio Buttons

Presents a list of labeled buttons to the user, and allows the user to select only one. The value associated
with the selected option is passed to the gluecode. Each option in a Radio Buttons has a label, which is
displayed to the user, and a value, which is passed to the gluecode. Radio Buttons has the following
options:

l Input name. The key in the $input array that points to the input value from the Radio Buttons.

l Label text. The identifying text that will be displayed with the Radio Buttons on the Report Input
Form, and in double quotes in the Form Structure pane.

l Width. The width of the Radio Buttons, including the Label Text, in pixels. If you do not supply a
value in this field, Skylar One automatically calculates the width of the Radio Buttons based on the
size of the Radio Buttons, Label Text, and Radio Button Labels.

l Height. The height of the Radio Buttons, including the Label Text, in pixels. If you do not supply a
value in this field, Skylar One automatically calculates the height of the Radio Buttons based on the
size of the Radio Buttons and Label Text.

l Radio Button Values. Defines a list of values associated the buttons in the group of Radio Buttons.
The values map to the labels in the Radio Button Labels field. The value for the selected option will
be passed to the gluecode. Radio Button Values can be bound to a static value or a data
component, form input component, or custom report component.

l Radio Button Labels. Defines a list of labels that will be displayed to the user in the group of Radio
Buttons. These labels map to the values in the Radio Button Values field. Radio Button Labels can
be bound to a static value or a data component, form input component, or custom report component.

l Default Checked Value. Defines the button that will be checked by default. Default Checked Value
can be bound to a static value or a data component, form input component, or custom report
component.

l Input Disabled. Defines whether the Radio Buttons will be active or disabled on the Input Form.
Input Disabled can be bound to a static value or a data component, form input component, or custom
report component. If the value of the bind is "1" (one), the Radio Buttons will be disabled. If the value
of the bind is "0" (zero), the Radio Buttons will be active. If Input Disabled is bound to a form input
component or custom report component, the Radio Buttons can dynamically change (between
active and disabled) as the Input Form is filled out and the value of the bind changes.

Text Area

Allows the user to input text into a multiple-line field. Text Area passes the entered text as an input to the
gluecode.

30

31

l Input Name. The key in the $input array that points to the input value from the Text Area.

l Label text. The identifying text that will be displayed with the Text Area on the Report Input Form
and in double quotes in the Form Structure pane.

l Width. The width of the Text Area, including the Label Text, in pixels. If you do not supply a value in
this field, Skylar One automatically calculates the width of the Text Area.

l Height. The height of the Text Area, including the Label Text, in pixels. If you do not supply a value
in this field, Skylar One automatically calculates the height of the Text Area.

l Default Value. The default text that populates the Text Area when the Input Form is loaded.

l Input Validation. Defines whether the text entered in the Text Area is valid. Input Validation can be
bound to a static value or a data component, form input component, or custom report component. If
the value of the bind is "1" (one), the text entered in the Text Area will be used as the input value. If
the value of the bind is "0" (zero), the Default Value will be used as the input value. If the value of the
bind becomes "0" (zero) while a user is filling out the Report Input Form, Skylar One displays a pop-
up window that tells the user that they have entered an invalid value. A Formula data component is
commonly used as the bind for Input Validation. For example, the Formula might perform a regular
expression match against the value entered in the Text Area to limit the user to a certain format,
such as a string of numbers.

l Input Disabled. Defines whether the Text Area will be active or disabled on the Input Form. Input
Disabled can be bound to a static value or a data component, form input component, or custom
report component. If the value of the bind is "1" (one), the Text Area will be disabled. If the value of
the bind is "0" (zero), the Text Area will be active. If Input Disabled is bound to a form input
component or custom report component, the Text Area can dynamically change (between active and
disabled) as the Input Form is filled out and the value of the bind changes.

Text Field

Allows the user to input text in a one-line field. Text Field passes the entered text as an input to the
gluecode.

l Input name. The key in the $input array that points to the input value from the Text Field.

l Label text. The identifying text that will be displayed with the Text Field on the Report Input Form
and in double quotes in the Form Structure pane.

l Width. The width of the Text Field, including the Label Text, in pixels. If you do not supply a value in
this field, Skylar One automatically calculates the width of the Text Field.

l Height. The height of the Text Field, including the Label Text, in pixels. If you do not supply a value
in this field, Skylar One automatically calculates the height of the Text Field.

l Default Value. The default text that populates the Text Field when the Input Form is loaded.

Form Input Components

Data Components

l Input Validation. Defines whether the text entered in the Text Field is valid. Input Validation can be
bound to a static value or a data component, form input component, or custom report component. If
the value of the bind is "1" (one), the text entered in the Text Field will be used as the input value. If
the value of the bind is "0" (zero), the Default Value will be used as the input value. If the value of the
bind becomes "0" (zero) while a user is filling out the Report Input Form, Skylar One displays a pop-
up window that tells the user that they have entered an invalid value. A Formula data component is
commonly used as the bind for Input Validation. For example, the Formula might perform a regular
expression match against the value entered in the Text Field to limit the user to a certain format,
such as a string of numbers.

l Input Disabled. Defines whether the Text Field will be active or disabled on the Input Form. Input
Disabled can be bound to a static value or a data component, form input component, or custom
report component. If the value of the bind is "1" (one), the Text Field will be disabled. If the value of
the bind is "0" (zero), the Text Field will be active. If Input Disabled is bound to a form input
component or custom report component, the Text Field can dynamically change (between active
and disabled) as the Input Form is filled out and the value of the bind changes.

Data Components

Data Components allow you to include dynamic elements in report interfaces. Data Components can
retrieve data from the database, alter other input items based on various selections, and can include
formulas, switch statements, and other flexible tools. These components are hidden on the Report Form
Editor page until the [Data] button is selected.

Concatenate

Allows multiple data sources to be concatenated into a single data source.

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

l Input Sources. The data sources that will be concatenated into the Concatenate source. Each Input
Source is a drop down list that allows you to select the bind source. Input Sources can be bound to a
static value, or to a value from a data component, form input component, or custom report
component.

Correlate Lists

A combination of the Find In List and Select From List components. Correlate Lists compares two
reference lists using the same logic as the Find In List component, creating a list of indices that
represents items that appear in both lists. Correlate Lists then uses the list of indices to retrieve values
from a third correlated list. Correlate Lists outputs a list of values from the third correlated list that are
located at the indices returned by the comparison of the two reference lists.

For example, suppose you have a Reference List containing the list "open, working, pending, resolved",
and a Reference List Members containing the list "working, pending". The list of indices used to return
values from the Correlated List would be "1, 2". If the Correlated List contained the values "support,
development, qa, customer", the output of the Correlate Lists component would be "development, qa".

32

33

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

l Reference List. The initial list of values to be filtered. Reference List can be bound to a static value,
or to a value from a data component, form input component, or custom report component.

l Reference List Members. The list of members to retrieve indices for from the Reference List. The
list of indices is then used to return a list of values from the Correlated List. Reference List
Members can be bound to a static value, or to a value from a data component, form input
component, or custom report component.

l Correlated List. The list of values to correlate the list of indices against. The Correlate Lists
component returns the values in the Correlated List located at the indices in the list of indices.
Correlated List can be bound to a static value, or to a value from a data component, form input
component, or custom report component.

Filter List

Filters a list of values based on a comparison with a list of filters. The list of filters contains a list of "0"
(zeros) and "1" (ones), that allows you to turn on and off entries in the list of values. Filter List returns only
the values that have the same list position as a non-zero value in the list of filters.

For example, suppose you have a list of five values, "one, two, three, four, and five" and you want to
display only values "two" and "four." You could create a filter list that contains the following: "0, 1, 0, 1, 0".
Only those values in the value list that match a value of "1" (ones) in the filter list will be displayed.

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

l Value List. The list of values to be filtered. Value List can be bound to a static value, or to a value
from a data component, form input component, or custom report component.

l Filter List The list of "0" (zeros) and "1" (ones) that turn on and off the values in the value list. The
number of entries in the Filter List must be equal to the number of entries in the Value List. Filter List
can be bound to a static value, or to a value from a data component, form input component, or
custom report component.

Find In List

Filters a list of values based on a comparison with a list of members. Find In List returns a list of indices
from the list of values for the values that also appear in the list of members. The indices for the list of
values start at zero.

For example, suppose you have a list of four values, "open, working, pending, resolved", which has the
indices "0, 1, 2, 3". If the list of members contained the values "open, resolved", Find In List would return
the list of indices "0, 3".

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

l Value List. The list of values to be filtered. Value List can be bound to a static value, or to a value
from a data component, form input component, or custom report component.

l List Members. The list of members to return indexes for. List Members can be bound to a static
value, or to a value from a data component, form input component, or custom report component.

Data Components

Data Components

Formula

Returns the result of a calculated formula.

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

l Formula expression. The expression that will be use to calculate the value(s) returned by the
Formula. The following values, operators and functions can be used in a Formula expression:

Scalar Values

o Integer or floating point numbers.

o Single quoted strings.

o References to Iterating Variables. See Iterating Variables.

o References to Scalar Constants. See Scalar Constants.

List Values

o References to List Constants. see List Constants.

o Literal lists. Must be entered in the format "[1,2,3,...]", where 1, 2, 3, etc. are the list values.

Operators

o () (order of operation parentheses)

o ! (logical not)

o ~ (bitwise not)

o - (arithmetic negative)

o + (arithmetic add)

o - (arithmetic subtract)

o * (arithmetic multiply)

o / (arithmetic divide)

o % (arithmetic modulo)

o & (bitwise and)

o | (bitwise or)

o ^ (bitwise exclusive or)

o == (boolean equality comparison)

o != (boolean not equals comparison)

o >= (boolean greater than or equal to comparison)

34

35

o <= (boolean less than or equal to comparison)

o > (boolean greater than comparison)

o < (boolean less than comparison)

o && (boolean and)

o || (boolean or)

o <condition> ? <true value> : <false value> (ternary if-then)

Functions

o <scalar> in <list>. Returns 1 if the value of <scalar> appears in <list>, otherwise returns 0.

o <string 1> contains <string 2>. Returns 1 if <string 2> is a substring of <string 1>, otherwise
returns 0.

o <string> matches <regex>. Returns 1 if <string> matches the regular expression <regex>,
otherwise returns 0. <regex> must be a perl-compatible regular expression.

l Iterating Variables. Bound values that are substituted as scalar values into the Formula expression.
If the Iterating Variables are lists, the Formula expression will be evaluated once for each list
position in the Iterating Variables, and the return value of Formula will be a list of all the results from
the Formula expression. If the Iterating Variables are lists, each Iterating Variables list must be of
the same length. Each Iterating Variables includes a name field, where you can define a name for
the variable; this name is referenced by the Formula expression. Iterating Variables can be bound
to static values, or to values from a data component, form input component, or custom report
component. Each time you define an Iterating Variable, additional fields appear that allow you to
optionally add another Iterating Variable.

l Scalar Constants. Bound values that are substituted as a scalar value into the Formula expression.
Each Scalar Constant includes a name field, where you can define a name for the constant; this
name is referenced by the Formula expression. Scalar Constants can be bound to static values, or
to values from a data component, form input component, or custom report component. Each time you
define a Scalar Constant, additional fields appear that allow you to optionally add another Scalar
Constant.

l List Constants. Bound values that are substituted as a list value into the Formula expression. Each
List Constant includes a name field, where you can define a name for the constant; this name is
referenced by the Formula expression. List Constants can be bound to static values, or to values
from a data component, form input component, or custom report component. Each time you define a
List Constant, additional fields appear that allow you to optionally add another List Constant.

Predefined List

Provides a static list of data. The values in the static list are predefined by the report developer and do not
change dynamically.

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

Data Components

Data Components

l List values. Defines the values for the predefined list. Each value in the list should be entered into a
separate text field. Each time you define a List value, additional fields appear that allow you to
optionally add another List value.

Select From List

Filters a list of values based on a comparison with a list of indices. Select From List returns a new list of
values from the original list of values. The new list includes values from the original list that are located at
indices specified in the list of indices. The indices for the list of values start at zero.

For example, suppose you have a list of four values "open, working, pending, resolved", which have the
indices "0,1,2,3". If the list of indices contained the values "0, 3", Select From List would return the list of
values "open, resolved".

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

l Value List. The list of values to be filtered. Value List can be bound to a static value, or to a value
from a data component, form input component, or custom report component.

l List Indices. The list of indexes to return values for. List Indices can be bound to a static value, or to
a value from a data component, form input component, or custom report component.

Server Function

Provides data based on the results of a selected function.

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

l Function. The function to execute to generate the report data. The following functions are available:

o date(format, timestamp). Identical to the PHP date function, which returns a formatted date
string.

o mktime(hour, minute, second, month, day, year). Identical to the PHP mktime function,
which returns a UNIX timestamp.

o range(min, max, step). Identical to the PHP range function, which returns an array of
elements from min to max.

o gmdate(format, timestamp). Identical to the PHP date function, which returns a formatted
date string in GMT.

o gmmktime(hour, minute, second, month, day, year). Identical to the PHP mktime function,
which returns a UNIX timestamp in GMT.

o report_user_account_type(). Returns the account type of the user who is currently generating
the report. report_user_account_type() returns "0" (zero) if the user is an administrator, and
returns "1" (one) if the user is a user (not an administrator).

o report_user_organizations(). Returns a list of organization IDs for all organizations
associated with the user who is currently generating the report.

36

37

NOTE: For details on the referenced PHP functions, see
http://us.php.net/manual/en/funcref.php

l Function Arguments. Defines that values that will be used as parameters for the selected function.
The number of arguments you define should match the number of arguments allowed by the selected
Function. Function Arguments can be bound to static values, or to values from a data component,
form input component, or custom report component.

SQL Query

Provides data based on the results of an SQL query executed on the main ScienceLogic database.

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

l SQL Query. The SQL query to execute.

l Scalar Binds. Allows multiple, single, bind values to be substituted into the SQL query. Each Scalar
Bind includes:

o A name field, in which you define a name for the bind. You will then use this name to reference
the bind in the SQL statement.

o A drop down list from which you can select the bind source. Scalar Binds can be bound to a
static value, or to a value from a data component, form input component, or custom report
component.

o Each time you define a Scalar Bind, additional form fields appear that allow you to optionally
add another Scalar Bind.

l List Binds. Allows multiple lists of bind values to be substituted into the SQL query. Each List Bind
includes the following:

o A name field, in which you define a name for the bind. You will then use this name to reference
the bind in the SQL statement.

o A drop down list from which you can select the bind source. List Binds can be bound to a static
value, or to a value from a data component, form input component, or custom report
component.

o Each time you define a List Bind, additional form fields appear that allow you to optionally add
another List Bind.

String Format

Provides a list of data strings that have been formatted using the PHP sprintf function.

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

Data Components

http://us.php.net/manual/en/funcref.php

Custom Report Components

l Format string. The first argument passed to the sprintf function. Format string is a string of ordinary
characters that include conversion specifications (denoted by %) for each of the Format Arguments.
The conversion specifications in the Format string must match the data type of the values in the
Format Argument. For more information on the sprintf function and a list of conversion
specifications, see the PHP manual at php.net/sprintf.

l Format Arguments. The second and subsequent arguments passed to the sprintf function. Format
Arguments can be bound to static values, or to values from a data component, form input
component, or custom report components. If the bind values for Format Arguments are lists, each
Format Arguments must be a list of the same size as its bind value.

Switch Source

Allows you to include switch-statement functionality in your report, to dynamically select between multiple
data sources.

l Source name. The name of the data source. This name is displayed in the Form Structure pane and
binding drop down menus.

l Switch Value. A bind value that determines which of the Switched Inputs to use as the data source.
Switch Value can be bound to a static value, or to values from a data component, form input
component, or custom report components. The possible bind values must match the names given to
the Switched Inputs.

l Switched Inputs. The possible data sources that can be selected by the Switch Source. Each
Switched Input includes:

o A value field in which you specify the value that must occur in the Switch Value field before
Skylar One will select the current Switched Input to use.

o A drop down list from which you can select the bind source for the Switched Inputs. Switched
Inputs can be bound to a static value, or to a value from a data component, form input
component, or custom report component.

o Each time you define a Switched Input, additional form fields appear that allow you to
optionally add another Switched Input.

Custom Report Components

The Custom Report Components section in the Report Form Editor page contains a list of Report Input
Forms that have a Form Type of Component.

Generally, a Report Input Form defines the user interface for a report. Report Input Forms of type
Component cannot be associated with a report. Instead, a Report Input Form of type Component allows
you to define a common combination of input elements. You can then use that combination of input
elements in multiple Report Input Forms, without having to construct that combination of input elements in
each report.

Several Custom Report Components are installed by default. All default Custom Report Components
include the following options:

38

http://php.net/sprintf

39

l Input name. The key in the $input array that points to the input data for the Custom Report
Component.

l Width. Width of the Custom Report Component in pixels. If you do not supply a value in this field,
Skylar One automatically calculates the width of the Custom Report Component based on the size of
the Custom Report Component child components.

l Height. Height of the Custom Report Component in pixels. If you do not supply a value in this field,
Skylar One automatically calculates the height of the Custom Report Component based on the size
of the Custom Report Component child components.

When a Report Input Form includes a Custom Report Component, the $input array for the Report Input
Form will reference the Input name of the Custom Report Component as a key. The Input name of the
Custom Report Component will point to an array. That array will contain an item for each child input
element. Each item in the array will use the Input name of the child input element as its key. To view the
configuration of the child elements in a custom report component, select the wrench icon () for the
custom report component in the Report Input Forms page (Reports > Management > Report Input
Forms).

Custom Report Components

Chapter

4
Developing Gluecode

Overview

This chapter describes how to develop gluecode when creating custom reports in Skylar One.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

What is Gluecode? 41

Processing Input Form Options 41

Available Resources 42

Output 42

40

41

What is Gluecode?

Gluecode is PHP code that is executed by the report engine when the report is generated. The gluecode
must:

l Process the inputs from the Input Form.

l Make queries to the database or use other methods to gather the required data.

l Format the data so it can be populated into the Output Template.

You can add and edit gluecode on the Report Management page (Reports > Management > Report
Manager).

Processing Input Form Options

The values selected by the end user in the input form for a report are passed to the gluecode for that
report in the $input array. The keys in the $input array are the values from the Input name field for all form
input components and custom report components on the input form.

For a form input component, the value at the corresponding array key is:

l Checkbox. Either 0 (unchecked) or 1 (checked).

l Dropdown Select. The value from the Option Values array for the selected label.

l Hidden. The static value supplied in the configuration or the value from the input component selected
in the configuration.

l Multiple Checkboxes. A non-associative array of values. The array values are the values from the
Checkbox Values array for the checkboxes that were selected by the user. The array does not
include information about checkboxes that were not selected by the user.

l Multiple Select. A non-associative array of values. The array values are the values from the Option
Values array for the labels that were selected by the user. The array does not include information
about labels that were not selected by the user.

l Multiple Select with Category. A non-associative array of values. The array values are the values
from the Option Values array for the labels that were selected by the user. The array does not include
information about labels that were not selected by the user.

l Radio Buttons. The value from the Radio Button Values array for radio button select by the user.

l Text Area. The string entered by the end-user in the text area.

l Text Field. The string entered by the end-user in the text field.

For custom report components, the Input name of the custom report component will point to an array.
That array will contain an item for each child input element. Each item in the array will use the Input name
of the child input element as its key.

What is Gluecode?

Available Resources

Available Resources

The following resources can be used by gluecode:

l The $db object, which provides methods for querying the primary database in Skylar One. For more
information, see the Database Methods section.

l The data engine class, which provides methods for fetching performance data collected by Skylar
One. For more information, see the Data Engine section.

l The debugging functions described in the Debugging Reports section.

Output

There are two different methods by which gluecode can output values to the output template. The
structure of the output template is the same for both methods. Every report must use only one of the two
methods:

l The $output array. This option passes the entire data set to the output template when the gluecode
has finished executing. This method is easier to use. However, the PHP memory limit for the
execution of a single report is 3 MB, which typically translates to a row-limit of 10,000.Large reports
will generate a memory error and fail to execute when using the $output array.

l The $em7_report object. When using this option, output is passed incrementally using a set of
methods associated with the $em7_report object. This method typically requires more lines of code
in the gluecode. However, this option does not require the entire data set to reside in memory.

Output Templates and Output Directives

An Output Template is an Open Office Spreadsheet file (.ods file) that defines the format of the generated
report. An Output Template defines the formatting and table structure you want to use for the generated
report.

An output template includes one or more output directives. An output template directive indicates how
output provided by report gluecode should be laid out. There are four general types of output directives:

l Array Binding Directives. These output template directives define a section of the output template (a
cell, a row, a table, or an entire sheet) that will be repeated for each item in an array outputted by the
gluecode. For example, suppose a report outputs a list of tickets, with one ticket on each row. The
gluecode for the report outputs an array of tickets. The output template would include the bindrow
output template directive, specifying the name of that array, to indicate the row that should be
repeated for each ticket in the output.

42

43

l Conditional Directives. These output template directives include or exclude sections of the output
template (e.g. columns, rows, tables, etc) based on the output from the gluecode. For example,
suppose a report has an option that can be used to include or exclude certain columns. The glucode
for the report would output a boolean value for each optional column, indicating whether the column
should be included. The output template would include the ifcol output template directive in each
column to indicate that the inclusion of that column is controlled by the boolean value.

l Style Directives. These output template directives can be used to dynamically apply styles to cells in
the output. For example, suppose a report outputs a color-coded list of tickets, with the colors applied
based on the severity of the ticket. The gluecode for the report would include the color that is
associated with each ticket in the output. The output template would include the applystyle output
template directive in the appropriate cell(s) to select the style that matches that color.

l Image and Chart Directives. These output template directives can be used to place images and
charts in the output.

Using the $output Array

To use the $output array to pass data to the output template, you must assign an array of values, typically
multi-dimensional, to $output before the gluecode finishes executing. When Skylar One processes the
output template, the output directives are used to traverse the keys in the $output array and place
corresponding values on the output template.

The values in the first dimension of the $output array are:

l Single values used to output static elements on a report. For example, $output might include 'date' as
an array key, the value of which is the date the report was generated. The output template would
include a directive to place the date in a static location in the output.

l Single values used to control behavior. For example, $output might include 'opt_cols' as an array
key, the value of which is a boolean that controls whether the user wants optional columns in the
report. The output template would include a directive to include or exclude certain columns based on
the boolean value.

l One or more arrays that contain information for a repeated element in the report. Repeated elements
include sheets, tables, rows, and cells. The number of times the element is repeated is equal to the
number of elements in an array. For example, $output might include 'rows' as an array key, which is
used to repeat a row multiple times. A row is inserted for each key in the $output['rows'] array. The
value assigned to each key in the $output['rows'] array determines that values that are placed on that
row. The key for a row in the $output['rows'] array can also be placed on the row, but this is not
required (i.e. it can be any arbitrary value). Typically, the value assigned to each key in the $output
['rows'] array is an array of values, one for each column.

If an array is included as a value in the $output array, that second-dimension array can include arrays as
values, etc. Additional dimensions can be used to nest repeated elements within other repeated elements,
for example:

l The $output array includes the key 'sheets', which is used to repeat a sheet in the output multiple
times. An array of values is assigned to $output['sheets'], which includes one key for each sheet that
will be added to the output. This example uses an arbitrary key for each sheet; human-readable key
values could be used and optionally included in the output, e.g. to label each sheet. The $output
array now looks like this:

[sheets] => Array

Output

Output

(

[0]

[1]

.

.

)

l Each value in the $output['sheets'] is an array that includes the key 'tables'. This key is used to repeat
a table within each sheet. An array of values is assigned to the 'tables' key, which includes one key
for each table that will be added to that sheet. This example uses an arbitrary key for each table;
human-readable key values could be used and optionally included in the output, e.g. to label each
table. The $output array now looks like this:

[sheets] => Array

(

[0] => Array

{

[tables] => Array

{

[0]

[1]

.

.

}

}

[1] => Array

{

44

45

[tables] => Array

{

[0]

[1]

.

.

}

}

.

.

)

l Each value in each array of tables is an array that includes the key 'rows'. This key is used to repeat a
row within each table within each sheet. An array of values is assigned to the 'rows' key, which
includes one key for each row that will be added to that table within that sheet. This example uses an
arbitrary key for each row; human-readable key values could be used and optionally included in the
output, e.g. as the first value in each row. The $output array now looks like this:

[sheets] => Array

(

[0] => Array

{

[tables] => Array

{

[0] => Array

{

[rows] => Array

Output

Output

{

[0] =>

[1]

.

.

}

}

[1] => Array

{

[rows] => Array

{

[0]

[1]

.

.

}

}

.

.

}

}

[1] => Array

{

[tables] => Array

46

47

{

[0] => Array

{

[rows] => Array

{

[0]

[1]

.

.

}

}

[1] => Array

{

[rows] => Array

{

[0]

[1]

.

.

}

}

.

.

}

Output

Output

}

.

.

}

l Each value in each array of rows is assigned an array of column values. The keys in this array are
used in the output template to indicate where to place the values in the array within each row. For
example, suppose the tables have the columns "id", "device", and "availability". The $output array
now looks like this:

[sheets] => Array

(

[0] => Array

{

[tables] => Array

{

[0] => Array

{

[rows] => Array

{

[0] => Array

{

[id] => <id value>

[device] => <device value>

[availability] => <availability value>

}

[1] => Array

48

49

{

[id] => <id value>

[device] => <device value>

[availability] => <availability value>

}

.

.

}

}

[1] => Array

{

[rows] => Array

{

[0] => Array

{

[id] => <id value>

[device] => <device value>

[availability] => <availability value>

}

[1] => Array

{

[id] => <id value>

[device] => <device value>

[availability] => <availability value>

Output

Output

}

.

.

}

}

.

.

}

}

[1] => Array

{

[tables] => Array

{

[0] => Array

{

[rows] => Array

{

[0] => Array

{

[id] => <id value>

[device] => <device value>

[availability] => <availability value>

}

[1] => Array

50

51

{

[id] => <id value>

[device] => <device value>

[availability] => <availability value>

}

.

.

}

}

[1] => Array

{

[rows] => Array

{

[0] => Array

{

[id] => <id value>

[device] => <device value>

[availability] => <availability value>

}

[1] => Array

{

[id] => <id value>

[device] => <device value>

[availability] => <availability value>

Output

Output

}

.

.

}

}

.

.

}

}

.

.

}

l In this example, there are multiple arrays that include only one key (sheets, tables, rows). These
arrays can include additional values, which can be any of the three types of values described for the
first dimension in the $output array. For example, the array for each sheet, which in this example
includes only the key 'sheet', could also include the key 'name', the values of which can be used to
label each sheet.

Using the $em7_report object

The $em7_report object is instantiated automatically for all gluecode. To use the $em7_report object to
pass output to the output template, use the following methods:

l set_token_value(string token, string value). This method outputs single values for static elements
or to control behavior on a report. The token parameter must match the parameter supplied in the
output directive that places this value in the output template. The value parameter is the value you
want to supply to the output directive.

l get_token(string token). This method returns a token object that references either a [bindrow:token]
or [bindtable:token] output directive. The token parameter must match the parameter supplied in the
output directive. The token object returned by this method can then be used to populate data in the
tables or rows.

Token objects have the following methods:

52

53

l new_table(string token). Use this method only on tokens that reference a [bindtable:token] output
directive. This method returns a token object that references an instance of a table inside a
[bindtable:token] output directive. The token parameter must be unique to this table and can be used
in the output in the {##} output directive. The token object returned by this method can then be used
to populate data in the tables or rows.

l get_token(string token). Use this method only on tokens that reference an instance of a table inside
a [bindtable:token] output directive, i.e. a token returned by the new_table(string token) method.
This method returns a token object that references a [bindrow:token] output directive inside the
instance of a table. The token object returned by this method can then be used to create new rows.

l new_row(string token). Use this method only on tokens that reference a [bindrow:token] output
directive, i.e.a token returned by the get_token(string token) method. This method returns a token
object that references an instance of a row inside a [bindrow:token] output directive. The token
parameter must be unique to this row and can be used in the output in the {##} output directive. The
token object returned by this method can then be used to populate data in the rows.

l set_value(array values). Use this method only on tokens that reference an instance of a row inside a
[bindrow:token] output directive, i.e. a token returned by the new_row(string token) method. This
method populates the row with data. The array keys in the values parameter must match the output
directives that add values to each column.

l set_token_value(string token, string value). This method can be used:

o On tokens that reference an instance of a row inside a [bindrow:token] output directive, i.e. a
token returned by the new_row(string token) method. The data associated with a row is an
array with one entry for each column. This method populates a single entry in the data array.
The token parameter is the array key and must match an output directive on one of the
columns in the row. The value parameter is the value to add to that column.

o On tokens that reference an instance of a table inside a [bindtable:token] output directive, i.e.
a token returned by the new_table(string token) method. This method can be used to supply
data for the table in addition to the row data, i.e. values for output directives that appear inside
the [bindtable:token] directive but outside the [bindrow:token] directive. For example, you
could supply a title for each table using this method. The token parameter must match an
output directive parameter. The value parameter is the value to supply for that directive.

l close_row(). Use this method only on tokens that reference an instance of a row inside a
[bindrowtoken] output directive, i.e. a token returned by the new_row(string token) method. This
method saves the row. You must use this method on every row created in the gluecode; a row is not
passed to the output template and removed from memory until it is closed. You cannot edit a closed
row.

l close_table(). Use this method only on tokens that reference an instance of a table inside a
[bindrowtoken] output directive, i.e. a token returned by the new_table(string token) method. This
method saves the table. You must use this method on every table created in the gluecode; a table is
not passed to the output template and removed from memory until it is closed. You cannot edit a
closed table.

For example, suppose your output template is configured with output directives that specify repeated rows
inside repeated tables. Suppose that:

l tables are added to the output template using the output directive [bindtable:organizations].

l rows are added to the output template using the output directive [bindrow:devices].

Output

Output

To start populating data in the output template, you would first get a token object that references the
[bindtable:organizations] directive:

$organization_tables = $em7_report->get_token('organizations');

The gluecode would then include a loop. Suppose that on each iteration of the loop, the key for each table
is stored in the variable $org. On each iteration of the loop, a new table is added to the output using the
token that was returned by the previous method:

$org_table = $organization_tables->new_table($org);

The token for each table is then used to get a token that references the [bindrow:devices] directive within
that table:

$devices = $org_table->get_token('devices');

The gluecode would include a second loop within the current loop. Suppose that on each iteration of the
second loop, the key for each row is stored in he $did variable and an array of column values for that row
is stored in the $device variable. On each iteration of the second loop, the $devices token, which
references the [bindrow:devices] directive, is used to add a row:

$device_row = $devices->new_row($did);

$device_row->set_value($device);

$device_row->close_row();

After the second loop completes, the current table is closed:

$org_table->close_table();

54

Chapter

5
Database Methods

Overview

Skylar One includes a class for executing SQL queries against Skylar One's database instance. Skylar
One automatically instantiates $db as an instance of this class for use in gluecode. This chapter describes
the methods that are available for this object. For all the examples in this chapter, the following table
named cities is used:

state city area_code

VA Reston 703

VA Richmond 804

DC Washington 202

MD Baltimore 410

This chapter covers the following topics:

autofetch_all 57

autofetch_all_assoc 61

autofetch_column 69

autofetch_column_multival 72

autofetch_columns 74

autofetch_row 77

autofetch_value 78

expunge_call 79

55

56

autofetch_all

autofetch_all

Description

array autofetch_all(string sql)

Returns the results of the SQL query as a linear array of associative arrays. Each associative array
contains data for one row returned by the SQL query, with each field name as a key.

Parameters

l sql. SQL query to run against the database.

Return Values for SQL errors and zero returned rows

If there is an error in the SQL statement, returns FALSE.

If the database query returns zero rows, returns an empty array.

57

58

Example

autofetch_all

autofetch_all

Code:

$sql = "SELECT * FROM cities";

$results = $db->autofetch_all($sql);

print_r($results);

Output:

Array

(

[0] => Array

(

[state] => VA

[city] => Reston

[area_code] => 703

)

[1] => Array

(

[state] => VA

[city] => Richmond

[area_code] => 804

)

[2] => Array

(

[state] => DC

[city] => Washington

59

60

[area_code] => 202

)

[3] => Array

(

[state] => MD

[city] => Baltimore

[area_code] => 410

)

)

autofetch_all

autofetch_all_assoc

autofetch_all_assoc

Description

array autofetch_all_assoc(string sql [, array columns, bool collapse,

bool multival])

Without the optional parameters, returns the results of the SQL query as an associative array. Each
key value in the returned array maps to the value of the first column returned from the SQL
statement. Each value in the associative array is an associative array containing the other values
from that row, using each field name as a key.

When the columns parameter is specified, returns the results of the SQL query as an associative
array. Each key value in the returned array maps to value of the first column value specified in
columns. Each value in the associative array for the first column is an associative array with each
key value as the value from the second column value specified in columns. Each value in the
associative array for the second column is an associative array, using the names of the remaining
columns returned by the SQL query as the keys. More than two columns can be specified in
columns, which will apply the behavior recursively, with each value in the columns array as another
associative array.

Parameters

l sql. SQL query to run against the database.

l columns. see the Description.

l collapse. If TRUE: If after columns is processed only one returned column remains, the values
in the associative array for the last value in columns will be the value in the remaining column.
This is instead of the values in the associative array for the last value in columns being an
associative array containing one key for the remaining column.

l multival. Prevents function from overwriting data rows if there are duplicate array keys. If
TRUE, after the columns array is processed to create nested associative arrays, the value of
the innermost array will be a linear array with each value corresponding to one returned row.
The value of the linear array is an associative array that uses the remaining column names as
keys. This is instead of the innermost associative array having the value of an associative
array that uses the remaining column names as keys.

Return Values for SQL errors and zero returned rows

If there is an error in the SQL statement, returns FALSE.

If the database query returns zero rows, returns an empty array.

61

62

Example 1

Code:

$sql = "SELECT * FROM cities";

$results = $db->autofetch_all_assoc($sql);

print_r($results);

Output:

Array

(

[VA] => Array

(

[city] => Richmond

[area_code] => 804

)

[DC] => Array

(

[city] => Washington

[area_code] => 202

)

[MD] => Array

(

[city] => Baltimore

[area_code] => 410

)

)

autofetch_all_assoc

autofetch_all_assoc

NOTE: In example 1, the first and second rows returned by the SQL query have the same index in the
returned array. The first row has not been returned by the function as it has been overwritten
by the second row. Example 4 shows the same query with the multival parameter set to
TRUE, which prevents this data loss.

Example 2

Code:

$sql = "SELECT * FROM cities";

$columns = array(0 => state, 1 => city);

$results = $db->autofetch_all_assoc($sql, $columns);

print_r($results);

63

64

Output:

Array

(

[VA] => Array

(

[Reston] => Array

(

[area_code] => 703

)

[Richmond] => Array

(

[area_code] => 804

)

)

[DC] => Array

(

[Washington] => Array

(

[area_code] => 202

)

)

[MD] => Array

(

[Baltimore] => Array

autofetch_all_assoc

autofetch_all_assoc

(

[area_code] => 410

)

)

)

Example 3

Code:

$sql = "SELECT * FROM cities";

$columns = array(0 => state, 1 => city);

$results = $db->autofetch_all_assoc($sql, $columns, TRUE);

print_r($results);

65

66

Output:

Array

(

[VA] => Array

(

[Reston] => 703

[Richmond] => 804

)

[DC] => Array

(

[Washington] => 202

)

[MD] => Array

(

[Baltimore] => 401

)

)

Example 4

Code:

$sql = "SELECT * FROM cities";

$results = db->autofetch_array_assoc($sql, NULL, FALSE, TRUE);

print_r($results);

autofetch_all_assoc

autofetch_all_assoc

Output:

Array

(

[VA] => Array

(

[0] => Array

(

[city] => Reston

[area_code] => 703

)

[1] => Array

(

[city] => Richmond

[area_code] => 804

)

)

[DC] => Array

(

[0] => Array

(

[city] => Washington

[area_code] => 202

)

)

67

68

[MD] => Array

(

[0] => Array

(

[city] => Baltimore

[area_code] => 410

)

)

)

autofetch_all_assoc

autofetch_column

autofetch_column

Description

array autofetch_column(string sql [, bool associative])

If the associative parameter is not passed or equates to FALSE, returns a linear array of values
from the first column returned by the SQL statement.

If the associative parameter equates to TRUE, returns an associative array of values from the
second column returned by the SQL statement. The array uses each value from the first column
returned by the SQL statement as an index.

Parameters

l sql. SQL query to run against the database.

l associative. If FALSE or undefined, returns a linear array of values from the first column
returned by the SQL statement. If TRUE, returns an associative array that uses the values
from the first column returned by the SQL statement as keys and values from the second
column returned by the SQL statement as values.

Return Values for SQL errors and zero returned rows

If there is an error in the SQL statement, returns FALSE.

If the database query returns zero rows, returns an empty array.

69

70

Example 1

Code:

$sql = "SELECT * FROM cities";

$results = $db->autofetch_column($sql)

print_r($results);

Output:

Array

(

[0] => VA

[1] => VA

[2] => DC

[3] => MD

)

autofetch_column

autofetch_column

Example 2

Code:

$sql = "SELECT * FROM cities";

$results = $db->autofetch_column($sql, TRUE)

print_r($results);

Output:

Array

(

[VA] => Richmond

[DC] => Washington

[MD] => Baltimore

)

NOTE: In example 2, the first and second rows returned by the SQL query have the same index in the
returned array. The first row has not been returned by the function as it has been overwritten
by the second row.

71

72

autofetch_column_multival

Description

array autofetch_column_multival(string sql)

Operates on the first two columns returned by the SQL query. Returns an associative array that
uses each unique value from the first column as indexes. Each value in the array is a linear array of
values from the second column that is associated with that key value.

Parameters

l sql. SQL query to run against the database.

Return Values for SQL errors and zero returned rows

If there is an error in the SQL statement, returns FALSE.

If the database query returns zero rows, returns an empty array.

autofetch_column_multival

autofetch_column_multival

Example

Code:

$sql = "SELECT state, city, area_code FROM cities";

$results = $db->autofetch_column_multival($sql);

print_r($results);

Output:

Array

(

[VA] => Array

(

[0] => Reston

[1] => Richmond

)

[DC] => Array

(

[0] => Washington

)

[MD] => Array

(

[0] => Baltimore

)

)

73

74

autofetch_columns

Description

array autofetch_columns(string sql, array fields)

Returns an associative array that uses the fields in the fields array as the keys. Each value in the
array is a linear array of values returned for that field by the SQL statement.

Parameters

l sql. SQL query to run against the database.

l fields. Array of fields to use as keys in the returned associative array.

Return Values for SQL errors and zero returned rows

If there is an error in the SQL statement, returns FALSE.

If the database query returns zero rows, returns an empty array.

autofetch_columns

autofetch_columns

Example

Code:

$sql = "SELECT * FROM cities";

$fields = array(0 => "state", 1 => "city");

$results = $db->autofetch_columns($sql, $fields);

print_r($results);

Output:

Array

(

[state] => Array

(

[0] => VA

[1] => VA

[2] => DC

[3] => MD

)

[city] => Array

(

[0] => Reston

[1] => Richmond

[2] => Washington

[3] => Baltimore

)

)

75

76 autofetch_columns

autofetch_row

autofetch_row

Description

array autofetch_row(string sql)

Returns the first row returned by the SQL statement as an associative array. The name of each field
returned is a key value in the array.

Parameters

l sql. SQL query to run against the database.

Return Values for SQL errors and zero returned rows

If there is an error in the SQL statement, returns FALSE.

If the database query returns zero rows, returns FALSE.

Example

Code:

$sql = "SELECT * FROM cities";

$results = $db->autofetch_row($sql);

print_r($results);

Output:

Array

(

[state] => VA

[city] => Reston

[area_code] => 703

)

77

78

autofetch_value

Description

mixed autofetch_value(string sql)

Returns the value in the first field of the first row returned by the SQL statement.

Parameters

l sql. SQL query to run against the database.

Return Values for SQL errors and zero returned rows

If there is an error in the SQL statement, returns FALSE.

If the database query returns zero rows, returns FALSE.

Example

Code:

$sql = "SELECT * FROM cities";

$results = $db->autofetch_value($sql);

echo $results;

Output:

VA

autofetch_value

expunge_call

expunge_call

Description

NULL expunge_call()

Removes the additional result sets generated when calling a stored procedure. If you call a stored
procedure using the $db object, you must call this method before executing additional queries.

Parameters

The expunge_call() method does not take any parameters.

Return Values for SQL errors and zero returned rows

The expunge_call() method always returns NULL.

79

Chapter

6
The Data Engine

Overview

This chapter describes how to use the data engine in PHP code for custom reports in Skylar One.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

What is the Data Engine? 81

Instantiating a Data Engine Object 81

Time Range Methods 87

Normalized Data Methods 89

Dynamic Application Methods 91

Counter Processing Methods 94

Report Builder Methods 95

Other Methods 96

Data Retrieval Methods 96

80

81

What is the Data Engine?

The data engine is a class that can be used in PHP code for reports and widgets. The data engine
provides access to collected performance data from Dynamic Applications, monitoring policies, and
internal collections.

To use the data engine class in your report or widget code:

1. Instantiate a data engine object.

2. Define the time period for which you want data.

3. Optionally, configure the data engine object to return normalized data.

4. For Dynamic Application data, define the indexes for which you want data.

5. For counter data, configure how the data engine should handle counter rollovers.

6. Optionally, use other methods that are defined for the data engine class.

7. Retrieve data.

8. Use the unset() method on the data engine object. If you are instantiating multiple data engine
objects, this is recommended to prevent excessive memory usage.

Instantiating a Data Engine Object

Use the following syntax to instantiate a data engine object:

<object name> = em7_data_engine::obj(<type>, <entity_id>, <args>);

The constructor takes the following parameters:

l type. The type of data you want to retrieve. The types are:

o dynapp. Performance Dynamic Application data.

o vitalmap. Data associated with a collection label. Collection labels are an abstraction layer for
Dynamic Application presentation objects. If two presentation objects are associated with the
same collection label, e.g. "CPU", "Memory", or "Swap", those objects collect the same type of
data. This option is equivalent to instantiating a data engine object for the Dynamic Application
presentation object that is associated with the collection label for the specified device. For
more information on collection labels, see the Dynamic Application Development manual.

o avail. Availability data.

o cv. Data from aWeb Content monitoring policy.

o ports. Data from a port monitoring policy.

o procs. Data from a System Process monitoring policy.

o tv. Data from a SOAP/XML Transaction monitoring policy.

What is the Data Engine?

Instantiating a Data Engine Object

o dns. Data from a Domain Name monitoring policy.

o email. Data from an Email Round-Trip monitoring policy.

o services. Data from aWindows Service monitoring policy.

o storage. Data about File system utilization.

o if. The following types of interface data: utilization in octets, error rate, discard rate.

o ifutil. Data about Interface utilization, in percent.

o vif. Data from a bandwidth billing policy.

o itsm_har. Health, Availability, and Risk data for an IT service policy.

o itsm. Performance metric data for an IT service policy.

l entity_id. The ID of the primary entity with which the data is associated. For the itsm_har and itsm
data types, this is the ID of the IT service policy. For all other data types, this is the device ID for the
device record associated with the data.

l args. An array of arguments. The arguments array is different for each type of data. The following
sections describe the structure of this array for each type.

Dynamic Application Data

For Dynamic Application data, the args parameter for the constructor is an array that includes the
following keys:

l aid. The ID of the Dynamic Application for which you want data.

l presentation_id. The ID of the presentation object for which you want data.

l index. An optional array of indexes for which you want data. If you do not supply this parameter and
do not use the set_indexes() method for supplying a list of indexes, the data engine will return data
for index 0 only.

Data Associated with Collection Labels

Collection labels are an abstraction layer for Dynamic Application presentation objects. If two presentation
objects are associated with the same collection label, e.g. "CPU", "Memory", or "Swap", those objects
collect the same type of data. This option is equivalent to instantiating a data engine object for the
Dynamic Application presentation object that is associated with the collection label for the specified
device. The args parameter for the constructor is an array that includes the following key:

l map_type. The GUID of the collection label. Collection label GUIDs are stored in the master.system_
data_labels database table. For a collection label that is installed via a PowerPack, the GUID for that
collection label is the same on both the source and the target system. The following table lists the
GUIDs for the default set of collection labels provided by ScienceLogic:

82

83

Label Group GUID

CPU Vitals AFF64E74C73D96244F7DB426158A359F

Memory Vitals C36F10744B4BCA7C91CD1C405BC568C0

Swap Vitals BAC2484664F897DDBC2FECB0BD798E04

In Use Video Performance D6189453171DBC7296233976D5F51AF4

Max % Packet Loss Video Performance 1C7F5513FB8ADEED16810A27293D3E34

Max Jitter Video Performance E96337379DFBEFAF393684C1800EEE4C

Rx Audio Jitter Video Performance 777985E7BB0846423653FAE19A230F8C

Rx Audio Pkts Lost Video Performance 7E86018AD212A94671FB3FADB2F14ED6

Rx Total BW Video Performance 1ECD99199531EFB695866285A79B46DF

Rx Video Jitter Video Performance D57C18E5A4730B0A2C207140427255B0

Rx Video Pkts Lost Video Performance 96AB8783E2AC72E50424DA081192F19D

Tx Audio Jitter Video Performance DAFC53AF195639B311272BF8C7169777

Tx Audio Pkts Lost Video Performance 06BB4148C9FAD147ECE7E76BCFD84B01

Tx Total BW Video Performance C97457AFAE8658BF49B6C9F69E54670D

Tx Video Jitter Video Performance C97457AFAE8658BF49B6C9F69E54670D

Tx Video Pkts Lost Video Performance C03030DF1BCFC6692A627341C7EBE954

Usage Video Performance E8CE7E065677B95C83A5F404A6BA6178

Availability Data

For Availability data, the args parameter for the constructor is an array that includes the following key:

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one or both of the following values:

o d_check. The data series for device availability.

o d_latency. The data series for device latency.

Web Content Monitoring Policy Data

For Web Content Monitoring Policy data, the args parameter for the constructor is an array that includes
the following keys:

l policy_id. The ID of the web content monitoring policy.

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one, multiple, or all of the following values:

o d_state. The availability data for the web content monitoring policy.

o d_conn_time. The connection time data for the web content monitoring policy.

o d_ns_time. The lookup time data for the web content monitoring policy.

Instantiating a Data Engine Object

Instantiating a Data Engine Object

o d_dl_size. The page size data for the web content monitoring policy.

o d_dl_speed. The download speed data for the web content monitoring policy.

o d_trans_time. The transaction time data for the web content monitoring policy.

Port Monitoring Policy Data

For Port Monitoring Policy data, the args parameter for the constructor is an array that includes the
following key:

l policy_id. The ID of the port monitoring policy.

For port monitoring policies, the data engine returns a single data series, labeled 'd_state', representing
the availability of the port.

System Process Monitoring Policy Data

For System Process Monitoring Policy data, the args parameter for the constructor is an array that
includes the following keys:

l policy_id. The ID of the system process monitoring policy.

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one or both of the following values:

o d_state. The availability data for the system process monitoring policy.

o d_counter. The number of running processes for the system process monitoring policy.

SOAP/XML Transaction Monitoring Policy Data

For SOAP/XML Transaction Monitoring Policy data, the args parameter for the constructor is an array that
includes the following keys:

l policy_id. The ID of the SOAP/XML transaction monitoring policy.

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one, multiple, or all of the following values:

o d_state. The availability data for the SOAP/XML transaction monitoring policy.

o d_conn_time. The connection time data for the SOAP/XML transaction monitoring policy.

o d_ns_time. The lookup time data for the SOAP/XML transaction monitoring policy.

o d_dl_size. The page size data for the SOAP/XML transaction monitoring policy.

o d_dl_speed. The download speed data for the SOAP/XML transaction monitoring policy.

o d_trans_time. The transaction time data for the SOAP/XML transaction monitoring policy.

84

85

Domain Name Monitoring Policy Data

For Domain Name Monitoring Policy data, the args parameter for the constructor is an array that includes
the following keys:

l policy_id. The ID of the domain name monitoring policy.

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one or both of the following values:

o d_state. The availability data for the domain name monitoring policy.

o d_ns_time. The DNS-lookup time for the domain name monitoring policy.

Email Round-Trip Monitoring Policy Data

For Email Round-Trip Monitoring Policy data, the args parameter for the constructor is an array that
includes the following keys:

l policy_id. The ID of the Email round-trip monitoring policy.

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one or both of the following values:

o d_state. The availability data for the Email round-trip monitoring policy.

o d_rt_time. The round-trip time data for the Email round-trip monitoring policy.

Windows Service Monitoring Policy Data

For Windows Service Monitoring Policy data, the args parameter for the constructor is an array that
includes the following key:

l policy_id. The ID of the Windows service monitoring policy.

For windows service monitoring policies, the data engine returns a single data series, labeled 'd_state',
that represents the availability of the Windows service.

File System Utilization Data

For File System Utilization data, the args parameter for the constructor is an array that includes the
following keys:

l policy_id. The ID of the file system. Note that this is the comp_index value for the file system from the
master_dev.device_hardware database table, not the inv_id value.

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one or both of the following values:

o d_used. The utilization data for the file system, in KB.

o d_used_percent. The utilization data for the file system, in percent.

Instantiating a Data Engine Object

Instantiating a Data Engine Object

Interface Data - Percentage Utilization

For interface utilization data in percentage values, the args parameter for the constructor is an array that
includes the following keys:

l if_id. The ID of the interface for which you want data.

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one or both of the following values:

o d_perc_in. The inbound utilization data for the interface, in percent.

o d_perc_out. The outbound utilization data for the interface, in percent.

Interface Data - Octets, Errors, and Discards

For interface utilization data in octets, interface error rates, and interface discard rates, the args parameter
for the constructor is an array that includes the following keys:

l if_id. The ID of the interface for which you want data.

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one, multiple, or all of the following values:

o d_octets_in. The inbound utilization data for the interface, in octets.

o d_octets_out. The outbound utilization data for the interface, in octets.

o d_errors_in. The inbound error rate for the interface, in packets.

o d_errors_out. The outbound error rate for the interface, in packets.

o d_discards_in. The inbound discard rate for the interface, in packets.

o d_discards_out. The outbound discard rate for the interface, in packets.

Bandwidth Billing Policy Data

For Bandwidth Billing Policy data, the args parameter for the constructor is an array that includes the
following keys:

NOTE: The data engine returns the aggregate inbound and/or outbound utilization for the interfaces
in the bandwidth billing policy, not the calculated percentile values.

l policy_id. The ID of the bandwidth billing policy for which you want data.

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one or both of the following values:

86

87

o d_octets_in. The aggregate inbound utilization data for the interfaces in the bandwidth billing
policy, in octets.

o d_octets_out. The aggregate outbound utilization data for the interfaces in the bandwidth
billing policy, in octets.

IT Service Data - Health, Availability, and Risk

For health, availability, and risk data for an IT service policy, the args parameter for the constructor is an
array that includes the following key:

l datafields. An array that includes the data series for which you want data. You must supply an array
that includes one, multiple, or all of the following values:

o d_health. The calculated health metric for the IT service.

o d_available. The calculated availability metric for the IT service.

o d_risk. The calculated risk metric for the IT service

IT Service Data - Metrics

For performance metric data associated with an IT service policy, the args parameter for the constructor is
an array that includes the following key:

l presentation_id. The ID of the Dynamic Application presentation object that is used to calculate this
IT service metric. Presentation object information, including the ID, is stored in the master.dynamic_
app_presentation database table.

Time Range Methods

Before retrieving data from a data engine object, you must use one of the following methods to configure
the time range for which data will be returned:

set_date_range(<start_ts_or_now>, <end_ts_or_now>)

This method takes two parameters:

l start_ts_or_now. The start of the time range. You must pass either a unix timestamp or, to use
the current time, the string "now" in this field.

l end_ts_or_now. The end of the time range.You must pass either a unix timestamp or the string
"now" in this field to use the current time.

For example, if you instantiated the variable $data_obj as a data engine object, you can set the time
range from midnight UTC on January 1st, 2014 to the current time using the following line of code:

$data_obj->set_date_range(1388534400, 'now');

Time Range Methods

Time Range Methods

set_date_readable(<start>, <end>)

This method takes two parameters:

l start. The start of the time range. You must pass a string that is parsable by the strtotime() PHP
function.

l end. The end of the time range. You must pass a string that is parsable by the strtotime() PHP
function.

For example, if you instantiated the variable $data_obj as a data engine object, you can set the time
range from the first day of the month to the current time using the following line of code:

$data_obj->set_date_readable('first day', 'now');

set_date_range_forward(<start_ts>, <duration>, <interval>)

This method takes three parameters:

l start_ts. The start of the time range. You must pass a unix timestamp value.

l duration. The duration of the time range. The units for the duration are specified by the interval
parameter.

l interval. The units for the duration parameter. You must pass one of the following strings:
'SECOND', 'MINUTE', 'HOUR', 'DAY', 'MONTH', or 'YEAR'.

For example, if you instantiated the variable $data_obj as a data engine object, you can set the time
range from midnight UTC on January 1st, 2014 to 30 days later using the following line of code:

$data_obj->set_date_range_forward(1388534400, 30, 'DAY');

set_date_range_reverse(<end_ts>, <duration>, <interval>)

This method takes three parameters:

l end_ts. The end of the time range. You must pass a unix timestamp value.

l duration. The duration of the time range. The units for the duration are specified by the interval
parameter.

l interval. The units for the duration parameter. You must pass one of the following strings:
'SECOND', 'MINUTE', 'HOUR', 'DAY', 'MONTH', or 'YEAR'.

For example, if you instantiated the variable $data_obj as a data engine object, you can set the time
range to be the 12 hours, ending at midnight UTC on January 1st, 2014 using the following line of
code:

$data_obj->set_date_range_reverse(1388534400, 12, 'HOUR');

88

89

The following method can be used to retrieve the timestamp of the first collected item in the available data
set:

get_first_timestamp()

The following method can be used to retrieve the timestamp of the last collected item in the available data
set:

get_last_timestamp()

For example, if you instantiated the variable $data_obj as a data engine object, you can set the time
interval to 4 hours up to the last collection time with the following lines of code:

$last_ts = $data_obj->get_last_timestamp();

$data_obj->set_date_range_reverse($last_ts,4,'HOUR');

Normalized Data Methods

By default, the data engine class returns the raw collected values for the selected data type. Additional
methods are available that configure a data engine object to return normalized (rolled-up) data.
Normalized data includes values for the average, minimum, maximum, sum, and standard deviation for
the data in each normalization period. Depending on the frequency at which raw data is collected, up to
two different normalization periods are available:

l Hourly normalized data

l Daily normalized data

NOTE: Frequent normalization has been deprecated in the Skylar One. Methods that previously
specified frequent normalization will now return hourly normalized data.

Return Normalized Data for a Specified Normalization
Period

To configure a data engine object to return normalized data for a specific normalization period, call one of
the following methods with the specified parameters:

NOTE: You cannot reconfigure a data engine object to return normalized data if that object has
already been used to return data.

l Frequent data:

set_norm_interval('FREQ','MIN')

Normalized Data Methods

Normalized Data Methods

l Hourly data:

set_norm_interval(1,'HOUR')

l Daily data:

set_norm_interval(1,'DAY')

Return a Specified Number of Data Points of Normalized
Data

To configure a data engine object to return normalized data with an automatically-selected normalization
period based on a maximum number of data points, use the following method:

set_norm_interval_auto(<max_points>, <allow_raw>)

This method takes the following parameters:

l max_points. Pass an integer value. The maximum number of data points that should be
returned when one of the data retrieval methods is called. The set_norm_interval_auto method
will determine which available normalization period will generate the most data points for the
currently specified timeperiod that is less than the max_points value.

l allow_raw. Pass a boolean value. If you pass TRUE for this parameter, the method will not
configure the data engine object to return normalization data if there are fewer raw collected
data points in the specified time period than the max_points parameter. If you pass FALSE for
this parameter, the method will always configure the data engine object to use normalized
data.

Return a Specified Type of Normalized Data (Average,
Minimum, Maximum, Standard Deviation, Sum)

When you configure a data engine object to return normalized data, you can specify which calculated
values will be returned for each normalization period by calling the following method:

NOTE: If you do not call this method, a default list of values will be used. The default list includes
average, minimum, maximum, standard deviation high value, and standard deviation low
value.

set_norm_fields(<fields>)

This method takes a single parameter: an array of data labels that correspond to the different
calculated values that are available for normalized data. Valid array values are:

l avg. Returns the average of the collected values from each normalization period. This value is
included in the default list.

90

91

l min. Returns the smallest collected value from each normalization period. This value is
included in the default list.

l max. Returns the largest collected value from each normalization period. This value is
included in the default list.

l std. Returns the standard deviation for the collected values from each normalization period.

l sum. Returns the sum of the collected values from each normalization period.

l std_high. Returns either the average value plus half the standard deviation value or the largest
collected value from each normalization period, whichever is higher. This value is included in
the default list.

l std_low. Returns either the average value minus half the standard deviation value or the
smallest collected value from each normalization period, whichever is lower. This value is
included in the default list.

Dynamic Application Methods

The following methods can be used to get information about Dynamic Applications, Presentation Objects,
and Indexes.

Return Information about a Dynamic Application

The following method can be used to get information about the Dynamic Application for which the data
engine object is configured:

get_app_info(<field>)

The field parameter is optional. If no parameter is specified, the method returns an array that contains the
following key/value pairs:

l app_type. The type of Dynamic Application. Possible values are:

o 0. SNMP Performance.

o 4. XML Performance.

o 8. Database Performance.

o 10. SOAP Performance.

o 14. Snippet Performance.

o 16. XSLT Performance.

o 18. WMI Performance.

o 22. PowerShell Performance.
l poll. The poll frequency of the Dynamic Application, in minutes.

l name. The name of the Dynamic Application.

l db. The database that contains the data returned by this object.

Dynamic Application Methods

Dynamic Application Methods

l table. The name of the database and database table that contains the data returned by this object.
This value is in the format "<database>.<database_table>".

You can optionally pass one of the listed array keys in the field parameter. If you pass a parameter, the
method will return the value associated with that key instead of returning an array.

Return Information about a Presentation Object

The following method can be used to get information about the presentation object for which the data
engine object is configured:

get_presentation_info(<field>)

The field parameter is optional. If no parameter is specified, the method returns an array that contains the
following key/value pairs:

l presentation_id. The ID of the presentation object.

l presentation_guid The PowerPack GUID of the presentation object.

l app_id. The ID of the Dynamic Application with which the presentation object is associated.

l app_guid. The PowerPack GUID of the Dynamic Application with which the presentation object is
associated.

l name. The name of the presentation object.

l formula. The formula used to calculate each data point for the presentation object.

l hourly. This field is deprecated.

l daily. This field is deprecated.

l monthly. This field is deprecated.

l monthly_tot. This field is deprecated.

l 3month. This field is deprecated.

l yearly. This field is deprecated.

l suffix. The suffix that represents the units for the presentation object, e.g. "%", "MB", etc.

l graph_type. This field is deprecated.

l guage. Whether the presentation object represents a percentage value. Possible values are 0 (zero)
for no or 1 (one) for yes. This key name is not spelled "gauge".

l descr. The description of the presentation object.

l overview. This field is deprecated.

l state. Whether the presentation object is enabled. Possible values are 0 (zero) for disabled or 1
(one) for enabled.

l edit_user. The ID of the user account that last edited this presentation object.

l edit_date. The date and time that the presentation object was last edited, in YYYY-MM-DD HH-MM-
SS format.

l comp_mapping. Whether the presentation is "vitals linked" to represent the CPU, Memory, or Swap
utilization for subscriber devices. Possible values are:

92

93

o 0. The presentation object is not vitals linked.

o 1. The presentation object represents the CPU utilization for subscriber devices.

o 4. The presentation object represents the Memory utilization for subscriber devices.

o 5. The presentation object represents the Swap utilization for subscriber devices.

l units. The data unit for the presentation object, e.g. "Percent", "Megabytes", etc.

l formula_req_oids. An array that contains the IDs for the collection objects that are required to
calculate a value for the presentation object.

l formula_oids. An array that contains the IDs for all collection objects that are used to calculate a
value for the presentation object.

l oid_classes. An array that contains the numeric class type for all collection objects that are used to
calculate a value for the presentation object. The array keys are the ID for each collection object.

You can optionally pass one of the listed array keys in the field parameter. If you pass a parameter, the
method will return the value associated with that key instead of returning an array.

Return Information about Indexes

The following method can be used to get the label for a specific index:

NOTE: For details on indexing in Dynamic Applications, see the manual Dynamic Application
Development..

get_series_name(<index>)

This method takes a single parameter, the index for which you want the label. If the label value is not
available for the specified index, the index is returned.

The following method, which takes no parameters, can be used to get a list of all available indexes:

get_indexes()

This method returns an array:

l The array keys are the available indexes.

l The array values are the label for each index, if available. If label values are not available, the array
values are the same as the array keys.

The following method can be used to specify the indexes for which the data engine object will return data:

set_indexes(<indexes>)

This method takes one parameter: an array of indexes for which you want data. If you did not pass
indexes to the constructor and do not call this method, the data engine will return data for index 0 only.

Dynamic Application Methods

Counter Processing Methods

NOTE: The get_indexes() method returns the available indexes as array keys and the set_indexes()
method expects indexes to be array values. To configure a data engine object to return data
for all available indexes, use the PHP array_keys() function on the output of get_indexes()
before passing it to set_indexes().

Counter Processing Methods

For counter objects:

l Skylar One stores the raw collected value.

l For each collected value, the data engine returns the difference between the collected value and the
previously collected value. That is, counter math is already applied to all data returned by the data
engine.

There are multiple circumstances under which a collected value for a counter is lower than the previously
collected value. Skylar One includes logic that determines which of the following circumstances occurred:

l The maximum value has been exceeded and counter was reset to zero.

l Data was collected out-of-order, that is, due to a slowdown somewhere in the network, two counter
values were stored out of sequence.

l The counter was manually reset to zero on the external device.

Two thresholds control this behavior:

l The Rollover Percent threshold is used to determine when a 32-bit counter has reached its
maximum value and restarted counting. When Skylar One encounters a counter value from a 32-bit
counter that is lower than the previously collected value, Skylar One:

1. Calculates the difference between the two counter values (the delta) using the following
formula:

maximum value (232) - Last Collected Value + Current Collected

Value

2. Examines the value of the Rollover Percent threshold. If the delta is less than the specified
percentage of the maximum possible value (232), Skylar One concludes that the 32-bit counter
rolled over. When Skylar Onedetermines a 32-bit counter has rolled over, Skylar One uses the
delta value when displaying the data point for this poll period.

NOTE: For 64-bit counters, when the counter values go from a higher value to a lower value,
Skylar One assumes that the counter has been manually reset or that the two values
were collected out of order. The Rollover Percent threshold does not apply to 64-bit
counters.

94

95

l The Out-of-order Percent threshold is used to determine when data has been collected out of order.
When Skylar One encounters a counter value that is lower than the previously collected value and
Skylar One has determined that the value is not a rollover, Skylar One:

1. Compares the current value to the last collected value:

current value / last collected value

2. If the ratio of current value / last collected value is greater than the percent specified in the Out-
of-order Percent field, Skylar One concludes that the data was collected out of order.

3. When Skylar One determines a data point has been collected out of order, Skylar One uses
the following value as the current value of the data point:

last collected value - current collected value

If a collected value does not meet the rollover or out-of-order criteria, Skylar One assumes a manual reset
occurred and the current collected value is used for the data point.

By default, the data engine uses the default values for both thresholds:

l Rollover Percent. 20%

l Out-of-order Percent. 50%

The following method, which takes no parameters, configures a the data engine object to use the Rollover
Percent and Out-of-order Percent thresholds that have been specified for the device with which the data
is associated:

load_counter_thresholds()

The following method can be used to specify custom Rollover Percent and Out-of-order Percent
thresholds:

set_counter_thresholds(<rollover>,<outoforder>)

This method takes the following parameters:

l rollover. The Rollover Percent threshold to apply to the data returned by the object.

l outoforder. The Out-of-order Percent threshold to apply to the data returned by the object.

Report Builder Methods

The report_builder_table class and its methods let you add grouping (separated by) in custom reports.

Methods from the report_builder_table class:

l set_data($data). This function takes raw data as a parameter and sets data to be displayed in
report output tables. For example: $table->set_data($data);

l set_dynamic_columns($column_arr). This function sets the dynamic columns to be used by
the bindcell directive in the report.

Report Builder Methods

Other Methods

l add_total_column ($column, $function). This function sets the column that will be used
to show aggregated for total rows.

l populate(). This function builds the final output table and initiate the .ods report building.

l add_separation_level(). This function defines the grouping and separation levels.

NOTE: You can use additional methods in the report_builder_table class as needed.

Other Methods

The following method, which takes no parameters, returns the name of the database that contains the
data returned by this object.

get_db()

The following method returns the name of the database and database table that contains the data
returned by this object. The returned value is in the format "<database>.<database_table>":

get_table(<norm>)

This method takes one boolean parameter. If FALSE is passed, the method returns the table that contains
the raw data. If TRUE is passed and the object has been configured to return normalized data, the method
returns the table that contains the normalized data returned by this object.

The following method, which takes no parameters, returns an array that includes the currently defined
start and end times for the time period in unix timestamp format. The start and end times are at array
indices 0 and 1, respectively:

get_date_range()

Data Retrieval Methods

To retrieve data from a data engine object, call the following method:

get_datasets()

This method returns an array. The structure of the returned array is different for raw and normalized data.
For both raw and normalized data, the array includes data series objects, which have methods for
retrieving arrays of data.

Raw Data

For raw data, the get_datasets() method returns an array of data series objects. The array of data series
objects has the following keys:

96

97

l For Dynamic Application data (including CPU, Memory, and Swap data), the key values are the
indexes that were specified in the index parameter in the constructor or the set_indexes() method.

l For port and Windows service monitoring policy data, a single key: "d_state".

l For IT service metric data, a single key: "1".

l For all other data types, the key values are the data series labels that were specified in the datafields
array that was passed to the constructor.

Normalized Data

For normalized data, the get_datasets() method returns an array with the same key values listed for raw
data. Each key points to an array that includes keys for each value that was passed to the set_norm_fields
() method. If you did not call this method, a default list of array keys is used. Possible array keys are:

l avg. Returns the average of the collected values from each normalization period. This value is
included in the default list.

l min. Returns the smallest collected value from each normalization period. This value is included in
the default list.

l max. Returns the largest collected value from each normalization period. This value is included in the
default list.

l std. Returns the standard deviation for the collected values from each normalization period.

l sum. Returns the sum of the collected values from each normalization period.

l std_high. Returns either the average value plus half the standard deviation value or the largest
collected value from each normalization period, whichever is higher. This value is included in the
default list.

l std_low. Returns either the average value minus half the standard deviation value or the smallest
collected value from each normalization period, whichever is lower. This value is included in the
default list.

Each key in each array of normalized data labels points to a data series object.

Data Series Object Retrieval Methods

The following method can be used to retrieve the array of values from a data series object:

get_array(<addpadding>)

This method returns an array of values for the data series. The array keys are the collection times in unix
timestamp format.

This method takes one boolean parameter: addpadding. If TRUE is passed, the array of values includes
NULL values for collection times where collection is expected, but no value exists (i.e. a missed poll). If
FALSE is passed, missed polls are not included in the output array.

The following method can be used to retrieve the number of missed polls (NULL values) that occurred
during the time span of the data series:

get_missed()

Data Retrieval Methods

Data Retrieval Methods

This method returns an integer value equal to the number of missed polls.

The following method can be used to retrieve a bi-directional weighted average for each collection time:

get_smoothed()

This method returns an array of smoothed values for the data series. Smoothed values are a bi-directional
weighted average for each raw data point. The array keys are the collection times in unix timestamp
format.

98

Chapter

7
Debugging Reports

Overview

This chapter describes the logging options that are available to report and widget developers. Logging can
be enabled on any appliance that provides the user interface (Administration Portals, Database Servers,
and All-In-One Appliances). When logging is enabled on an appliance:

l As a user navigates the user interface on that appliance, the ScienceLogic user interface code will
write messages to the user interface log file.

l When reports are generated on the appliance, reports that are configured to log messages will write
to the user interface log file.

l When widgets are loaded in the user interface of the appliance, widgets that are configured to log
messages will write to the user interface log file.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Controlling Log Settings 100

Writing to the Log File 101

99

100

WARNING: Log rotation is not enabled on the log files described in this chapter. The log files
described in this chapter can cause the file system to become full if they remain enabled
for a long period of time. Do not leave the log files described in this chapter enabled
unless you are actively debugging a problem with the user interface, a report, or a widget.

Controlling Log Settings

In rare cases, you may need to modify log levels or suppression of certain logs in Skylar One, usually at
the request of ScienceLogic Customer Support. To do so, you can use the following pages:

l Skylar One Developer Logs (System > Tools > Skylar One Developer Logs), which captures logs
related to the default user interface (AP2), GraphQL, and associated services.

l PHP Developer Logs (System > Tools > PHP Developer Logs), which captures logs related to PHP
execution, errors, and database queries for the classic Skylar One user interface.

Both of these pages are helpful for debugging and troubleshooting issues in Skylar One.

This section describes the options included on the Skylar One Developer Logs and PHP Developer
Logs pages.

NOTE: These pages are available only for Administrator-level users in Skylar One.

Setting UI Developer Log Levels

When configuring logging on an appliance, you must specify a log level. The log level controls the types of
messages that are written to the user interface log file (em7php.log). Each type of message has an
associated number; the log level is the sum of all enabled messages. The numbers and associated
message types are:

l 1. Critical

l 2. Error

l 4. Warning

l 8. Info

l 16. Debug

l 32. Trace

To determine the log level, sum the numbers associated with each type of message you want to enable.
For example, if you want to enable Critical, Error, and Warning messages, you would sum one, two, and
four to get a log level value of seven.

Controlling Log Settings

Writing to the Log File

Setting UI/REST MySQL Query Log Levels

The UI/REST MySQL Query Log Levels settings let you specify the log level for the mysqli.log file.
This log file collects every PHP-based call to MySQL and includes general information about the query.
Determine the granularity of data you want and select one or more checkboxes.

l Error

l Warning

l Info (non-error)

In addition, if you select the Request URI option, the mysqli.log file will include the request URI.

Configuring Advanced Log Settings

In the Advanced Settings section, you can configure the suppressions and the date/time format you want
to use:

l Suppression List. This list acts as a bitmask to log entries. For example, to suppress all entries for
css-em7, you would enter "css.em7::127", where 127 is the sum of all possible log levels. You can
specify multiple suppressions in the list, separated by commas.

l Datetime Format. Specifies a user-defined date format that will be used for5 system logs. You can
use any date variables supported by the PHP date function in this field.

NOTE: Seconds and milliseconds are always appended to the date/time stamp.

l Include IP in log filenames. Select this option to add the IP address from which the user is logged
in to the name of each log file.

Writing to the Log File

PHP code for reports and widgets can write messages to the log file by using one of the following
functions. Although these functions can be called at any time, messages will be written to the log file only if
logging is configured with a log level that includes the message type created by the function. Each
function takes one parameter, a message string (denoted by $msg) to be written to the log file:

l To write a log message of type "Critical", use the following function:

devlog::crit($msg);

l To write a log message of type "Error", use the following function:

devlog::err($msg);

l To write a log message of type "Warning", use the following function:

101

102

devlog::warn($msg);

l To write a log message of type "Info", use the following function:

devlog::inf($msg);

l To write a log message of type "Debug", use the following function:

devlog::dbg($msg);

Writing to the Log File

Chapter

8
Report Output

Overview

This chapter describes how to use output templates when creating reports in Skylar One.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

What is an Output Template? 104

Output Methods 104

Array Binding Directives 105

Conditional Directives 106

Style Directives 106

Image and Chart Directives 106

Uploading Customized Report Output Templates 107

103

104

What is an Output Template?

An Output Template is an Open Office Spreadsheet file (.ods file) that defines the format of the generated
report. An Output Template defines the formatting and table structure you want to use for the generated
report.

An output template includes one or more output directives. An output template directive indicates how
output provided by report gluecode should be laid out. There are four general types of output directives:

l Array Binding Directives. These output template directives define a section of the output template (a
cell, a row, a table, or an entire sheet) that will be repeated for each item in an array outputted by the
gluecode. For example, suppose a report outputs a list of tickets, with one ticket on each row. The
gluecode for the report outputs an array of tickets. The output template would include the bindrow
output template directive, specifying the name of that array, to indicate the row that should be
repeated for each ticket in the output.

l Conditional Directives. These output template directives include or exclude sections of the output
template (e.g. columns, rows, tables, etc) based on the output from the gluecode. For example,
suppose a report has an option that can be used to include or exclude certain columns. The glucode
for the report would output a boolean value for each optional column, indicating whether the column
should be included. The output template would include the ifcol output template directive in each
column to indicate that the inclusion of that column is controlled by the boolean value.

l Style Directives. These output template directives can be used to dynamically apply styles to cells in
the output. For example, suppose a report outputs a color-coded list of tickets, with the colors applied
based on the severity of the ticket. The gluecode for the report would include the color that is
associated with each ticket in the output. The output template would include the applystyle output
template directive in the appropriate cell(s) to select the style that matches that color.

l Image and Chart Directives. These output template directives can be used to place images and
charts in the output.

Output Methods

There are two different methods by which gluecode can output values to the output template. The
structure of the output template is the same for both methods. Every report must use only one of the two
methods:

l The $output array. This option passes the entire data set to the output template when the gluecode
has finished executing. This method is easier to use. However, the PHP memory limit for the
execution of a single report is 3 MB, which typically translates to a row-limit of 10,000.Large reports
will generate a memory error and fail to execute when using the $output array.

l The $em7_report object. When using this option, output is passed incrementally using a set of
methods associated with the $em7_report object. This method typically requires more lines of code
in the gluecode. However, this option does not require the entire data set to reside in memory.

What is an Output Template?

Array Binding Directives

Array Binding Directives

The following directives can be used to dynamically repeat a section of the output template multiple times.
These directives correspond to an array in the output; the number of times the section of the output is
repeated is equal to the number of array elements supplied by the gluecode:

l [bindrow:array]. Binds an array from the output to a row. The array parameter must match the name
of an array in the gluecode. If this directive is inside another repeating element, e.g. a table or sheet,
use [bindrow:#.array]. When this directive is included on a formatted row, a single row in that format
will be created for each item in the array. There is no closing directive for [bindrow:array]. The array
value for each row is another array of values. To place a value from the array for a row in a column,
use one or more of the following directives:

o {##}. Places the array key for this row.

o {#.key}. Places a value from the array of values for the row with array key key.
l [bindtable:array][endbindtable:array]. Binds an array from the output to a table. The array
parameter must match the name of an array in the gluecode. If this directive is inside another
repeating element, i.e. a sheet, use [bindtable:#.array]. When this directive surrounds a formatted
table, a single table in that format will be created for each item in the array. Each [bindtable:array]
directive must be closed with an [endbindtable:array] directive. The array value for each table is
another array of values, typically including additional array dimensions for use with [bindrow:#.array]
directives. To use the values from the array for a table, use one or more of the following directives:

o {##}. Places the array key for this table inside a cell.

o {#.key}. Places a value from the array of values for the table with array key key.

o [bindrow:#.array]. Binds an array from the array for a table to a row, i.e. nests repeating rows
inside a repeating table. See the description of [bindrow:array] for a description on how to use
this directive.

l [bindsheet:array]. Binds an associative array to a sheet in the output document. The array
parameter must match the name of an array in the gluecode. When this directive is used on a
formatted sheet, a sheet in that format will be created for each item in the array. There is no closing
directive for [bindsheet:array]. The array value for each table is another array of values, typically
including additional array dimensions for use with [bindtable:#.array] and [bindrow:#.array]
directives. To use the values from the array for a sheet, use one or more of the following directives:

o {##}. Places the array key for this sheet inside a cell.

o {#.key}. Places a value from the array of values for the sheet with array key key.

o [bindrow:#.array]. Binds an array from the array for a sheet to a row, i.e. nests repeating rows
inside a repeating sheet. See the description of [bindrow:array] for a description on how to use
this directive.

o [bindtable:#.array]. Binds an array from the array for a sheet to a table, i.e. nests repeating
tables inside a repeating sheet. See the description of [bindtable:array] for a description on
how to use this directive.

105

106

l [bindcell:array]. Binds an array from the output to a row or cells. The array parameter must match
the name of an array in the gluecode. If this directive is inside another repeating element, e.g. a row,
a table, or a sheet, use [bindcell:#.array]. Each value in the array will be placed in a separate cell in
the row. There is no closing directive.

Conditional Directives

The following output directives conditionally include output template elements in the output based on
values passed by the gluecode:

l [columns:option]. Expands or collapses a set of merged cells to handle optional columns. option can
be expand, collapse, or flex.

l [if:bool][endif]. Conditionally displays rows based on a boolean evaluation. If bool is true, this row up
to and including the [endif] directive is displayed.

l [if:bool][else][endif]. Conditionally displays rows based on a boolean evaluation. If bool is true, this
row up to the row beginning with [else] is displayed. If bool is false, the row beginning with [else] up
to and including the [endif] directive is displayed.

l [ifcol:bool]. Conditionally displays columns based on a boolean evaluation. Place this directive at the
bottom of the output template. If bool is true, this column is displayed. If bool is false, this column is
hidden.

Style Directives

The following output directives change the style applied to individual cells:

l [cellstyle:style]. Changes the style of a cell to the specified style. The specified style must already
exist in the template's available styles.

l [applystyle:style]. Adds style to a cell. This directive adds only the specified style; the specified style
does not inherit properties or related styles from its parent style.

Image and Chart Directives

The following output directives add images or chart data passed by the gluecode:

l [bindimage:image]. Dynamically adds an image. Make sure the cell is large enough to contain the
image.

l [bindchart:1]. Identifies a cell into which a chart will be inserted. The :1 is for future use.

The following Output Template Directives can be included in the same cell as a [bindchart:1] directive and
will substitute values into the chart properties:

l [chart_xmin:value]. Substitutes the value of variable value into the Minimum field for the X-axis. You
must uncheck the Automatic checkbox on the Output Template for value to be substituted.

Conditional Directives

Uploading Customized Report Output Templates

l [chart_xmax:value]. Substitutes the value of variable value into the Maximum field for the X-axis.
You must uncheck the Automatic checkbox on the Output Template for value to be substituted.

l [chart_xmajor:value]. Substitutes the value of variable value into the Major interval field for the X-
axis. You must uncheck the Automatic checkbox on the Output Template for value to be substituted.

l [chart_xminor:value]. Substitutes the value of variable value into the Minor interval count field for
the X-axis. You must uncheck the Automatic checkbox on the Output Template for value to be
substituted.

l [chart_ymin:value]. Substitutes the value of variable value into the Minimum field for the Y-axis. You
must uncheck the Automatic checkbox on the Output Template for value to be substituted.

l [chart_ymax:value]. Substitutes the value of variable value into the Maximum field for the Y-axis.
You must uncheck the Automatic checkbox on the Output Template for value to be substituted.

l [chart_ymajor:value]. Substitutes the value of variable value into the Major interval field for the Y-
axis. You must uncheck the Automatic checkbox on the Output Template for value to be substituted.

l [chart_yminor:value]. Substitutes the value of variable value into the Minor interval count field for
the Y-axis. You must uncheck the Automatic checkbox on the Output Template for value to be
substituted.

For more information on how these values affect the presentation of the graph, in the OpenOffice
spreadsheet, go to the Object Properties page, go to the Scale tab, and select the [Help] button to open
OpenOffice help.

Uploading Customized Report Output Templates

If you have downloaded a customized report output template that you want to use for Skylar One reports,
you can upload it in Skylar One and then run that report.

To upload a customized report output template:

1. Go to the Reports page (Reports > Reports).

2. Click Management on the left menu, and then select Report Output Templates. The Report Output
Templates page appears.

3. Click [Upload]. The Upload an OpenDocument Report Template modal appears.

4. Click the [Browse] button, then navigate to the downloaded report output template on your local
machine. Select the template, and then click [Upload].

5. To use the template, from the Reports page, click Run Report on the left menu and then select the
report for which you want to use the template. The Run Quick Report page appears.

6. Click [Edit]. The Report Template Editor modal appears.

7. In the Output Template field, select the output template you uploaded. Make any other necessary
changes and then click [Save].

8. On the Run Quick Report page, make any necessary changes to the report parameters and then
click [Generate] to run the report.

9.

107

Chapter

9
Output Styles and Media

Overview

When creating an .ods file to use as a report template, you can use the OpenOffice Calc formatting
options to change the look and feel of your custom reports. Skylar One includes several options for
maintaining consistency across multiple output templates:

l Instead of including a static logo in reports, you can specify that a report will use the logo associated
with each user's theme.

l For commonly used styles, you can add them to the global list of styles that is included with each
report template downloaded from the Report Output Templates page.

l You can upload commonly used images to the Report Output Media page for re-use in multiple
reports.

Use the following menu options to navigate the Skylar One user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Using Theme Logos 109

Adding Global Styles 110

Report Output Media 111

108

109

Using Theme Logos

Instead of including a static logo in reports, you can specify that a report will use the report logo assigned
to each user's theme. To assign a report logo to a theme:

1. Go to the Theme Management page (System > Customize > Themes) in the classic Skylar One user
interface.

2. Select the wrench icon () for the theme to which you want to assign a new report logo. The Theme
Editor page is displayed.

3. In the Theme Images section, select a new logo in the Report Logo field. You can upload a new logo
for use in this field under the [Images] tab.

4. Click [Save]. Users who subscribe to this theme will see the new logo in all reports that use the report
logo setting.

To configure an output template to use the Report Logo from a theme:

1. In the output template for the report, merge or expand cells to create an appropriately sized cell that
can display the report image. Skylar One will automatically proportionally scale the report logos to fit
this cell; the image will be scaled until either the height or width is the same as the height or width of
the cell. In most of the ScienceLogic default reports, this cell is 5 standard rows high and a width
proportional to the data displayed in the report. For example, the Asset Warranty Expiration report
includes the input options in the header. The width of the report image is the remaining width of the
data table:

2. In the cell, enter the following output directive, entering the desired alignment settings where
indicated:

[bindimage:logoimage:<alignment 1>:<alignment 2>]

Possible values for the first alignment setting are:

l left. The image will be aligned to the left border of the cell.

l right. The image will be aligned to the right border of the cell.

l center. The image will be equidistant from the left and right borders of the cell.

Possible values for the second alignment setting are:

l top. The image will be aligned to the top border of the cell.

l bottom. The image will be aligned to the bottom border of the cell.

Using Theme Logos

Adding Global Styles

l middle. The image will be equidistant from the top and bottom borders of the cell.

3. Add a default logo image to the report and anchor the image to the cell.

Adding Global Styles

For commonly used styles, you can add them to the global list of styles that is included with each report
template downloaded from the Report Output Templates page (Reports > Management > Report Output
Templates).

To view the list of global styles, go to the Report Output Styles page (Reports > Management > Report
Output Styles).

For each global style, the page displays the following information:

l Style Family. The type of style.

l Style Name. The name of the style.

l Style Description. A description of the style. You can select the wrench icon () in this field to edit
the description of the style.

l Parent Style. The style that this style is linked to in OpenOffice.

l Edited By. The user that last imported the style.

l Edited On. The date and time that the style was last edited.

To add a global style:

1. Go to the Report Output Styles page (Reports > Management > Report Output Styles).

2. Select the [Export] button and save the em7_styles.ods file to your local system.

3. In the em7_styles.ods file, create a new custom style and save the .ods file. For information about
adding and editing custom styles in OpenOffice Calc, see:
https://wiki.openoffice.org/wiki/Documentation/OOo3_User_Guides/Calc_Guide/Styles_and_
Templates.

4. In the Report Output Styles page, click the [Import] button.

5. In the modal page that appears, select the [Browse] button, locate the updated em7_styles.ods file,
and then select the [Import] button. The Import Styles page is displayed.

6. Select the checkbox for your new style and select the [Import] button.

7. Your new style will now be displayed in the Report Output Styles page and will be included when an
output template is downloaded with global styles from the Report Output Templates page. To add a
description, select the wrench icon for the new style ().

NOTE: Although new styles will be included in existing output templates when they are downloaded
from the Report Output Templates page, new styles are not automatically added to the
existing templates; if you generate a report in .ods format, the new style will not automatically
appear.

110

https://wiki.openoffice.org/wiki/Documentation/OOo3_User_Guides/Calc_Guide/Styles_and_Templates
https://wiki.openoffice.org/wiki/Documentation/OOo3_User_Guides/Calc_Guide/Styles_and_Templates

111

Report Output Media

You can upload commonly used images to the Report Output Media page for re-use in multiple reports.

To upload an image:

1. Go to the Report Output Media page (Reports > Management > Report Output Media).

2. Select the [Upload] button.

3. In the modal page that appears, select the [Browse] button, locate the image file on your local
system, and then select the [Upload] button.

To configure a report to use the image:

1. In the output template for the report, merge or expand cells to create an appropriately sized cell that
can display the image. Skylar One will automatically proportionally scale the image to fit this cell, i.e.
the image will be scaled until either the height or width is the same as the height or width of the cell.

2. In the cell, enter the following output directive, entering a unique output variable name and the
desired alignment settings where indicated:

[bindimage:<variable_name>:<alignment 1>:<alignment 2>]

Possible values for the first alignment setting are:

l left. The image will be aligned to the left border of the cell.

l right. The image will be aligned to the right border of the cell.

l center. The image will be equidistant from the left and right borders of the cell.

Possible values for the second alignment setting are:

l top. The image will be aligned to the top border of the cell.

l bottom. The image will be aligned to the bottom border of the cell.

l middle. The image will be equidistant from the top and bottom borders of the cell.

3. Add a default logo image to the report and anchor the image to the cell.

4. In your report gluecode, use the following function, entering the file name of the image (displayed in
the Report Output Media page) and the output variable name (specified in the output directive) where
indicated:

$output['<variable_name>']=od_image('<image_file_name>');

To delete an image:

1. Go to the Report Output Media page (Reports > Management > Report Output Media).

2. Select the checkbox for the image(s) you want to delete.

3. In the Select Action drop-down list in the lower right of the page, select the Delete File button, and
then select the [Go] button.

Report Output Media

Example

1
Simple Tabular Report

Overview

This example will walk you through creating a simple tabular report in Skylar One.

The following steps are covered in this example:

This chapter covers the following topics:

Report Elements 113

Creating the Report Input Form 114

Creating the Report Output Template 115

Creating the Gluecode 119

Creating the Report Template 127

Full Code Listing for the $output Version 128

Full Code Listing for the $em7_report Version 130

112

113

Report Elements

There are three elements that must be created during report development:

l Input Form. Defines the user interface for a report. This user interface allows the user to provide
inputs to use in the report. Inputs may include specifying a timespan for the report, selecting specific
elements to include in the report, and selecting the information to include in the report. The Input
Form defines the GUI elements that make up the form itself, how the GUI elements interact with each
other, and how the input should be passed to the Gluecode.

l Gluecode. PHP code that examines the inputs provided in the Input Form and makes database
queries to the ScienceLogic database to gather the required data. The Gluecode then formats the
data so it can be populated into the Output Template.

l Output Template. OpenOffice speadsheet that defines the layout and formatting styles of the report.
An Output Template can include directives that define how data should be displayed depending on
how the Gluecode outputs the data.

This example will focus on creating simple versions of each of these elements. The report we will create in
this example will:

l Show a simple table of all tickets, with the following columns:

o Ticket ID

o Organization

o Severity

o Description

o Date Create

o Created By

o Category

o Status

o Source

o Queue Name

o Assigned To

l Allow the list of tickets to be limited to specific organizations.

After we create the three elements (Input Form, Gluecode, Output Template), we will use them in a Report
Template, which is used to generate the Report. This example includes two versions of the gluecode that
use different methods for outputting data.

Report Elements

Creating the Report Input Form

NOTE: The examples in this chapter are available on the ScienceLogic Support Site in the
Example Reports PowerPack.

Creating the Report Input Form

In our example, the Report Input Form will include an option that limits the results to only tickets for
specific organizations.

First, create a new Report Input Template:

1. Go to the Report Input Forms page (Reports > Management > Report Input Forms).

2. Select the [Create] button. The Report Form Editor page is displayed.

3. Supply a value in each of the following fields:

l Form Name. Name of the Report Input Form. This example is called "Simple Ticket List".

l Form Type. Can be set to either Report or Component. If Report is selected, the Report Input
Form can be used to generate reports. If Component is selected, the Report Input Form can be
used as an element in other Report Input Forms. This example uses the default value, Report.

l Version. The version number for the Report Input Form. Skylar One uses this when reports are
included in Power Packs. This example uses the default value, "1.0".

l Author. The person who authored the Report Input Form. This example uses "ScienceLogic
Documentation Team".

4. Click the [Save] button.

Now that we have created the Report Input Form, we can add the input elements. This example uses one
input element, the Organization Selector, which is one of the default Custom Report Components.
Custom Report Components allow common combinations of elements to be reused in many Report Input
Forms. In this case, the Organization Selector includes the input elements that allow a user to select an
organization from a list of all organizations in the system. To add the Organization Selector to the Report
Input Form:

1. In the Available Components pane, double click on Organization Selector. The Organization
Selector appears in the Form Structure pane.

2. Select the wrench icon for the Organization Selector. The Editing Organization Selector
Component modal window is displayed.

3. Supply a value in each of the following fields:

l Input Name. Name that identifies this instance of the Organization Selector and its input to the
gluecode. In our example, the Organization Selector is named "orgs".

l Width. Specifies the width in pixels of the Organization Selector when it is displayed on the
Report Input Form. This example uses the default value of "200".

l Height. Specifies the height in pixels of the Organization Selector when it is displayed on the
Report Input Form. In our example, we leave this field blank, so Skylar One automatically
calculates the height based on the size of the list of organizations.

114

https://support.sciencelogic.com/s/

115

4. Click the [Save] button. The Editing Organization Selector Component modal window closes.

5. Click the [Save] button on the Report Form Editor window. The Report Input Form for this example
is now complete.

Creating the Report Output Template

In this example, we will use the default global styles for the Report Output Template. To create the Report
Output Template with the default styles, download one of the existing Report Output Templates:

1. Go to the Report Output Templates page (Reports > Management > Report Output Templates).

2. Click on the Template Name of event_detections.ods.

CAUTION: To download the Report Output Template with the global style information, you
must click on the filename of the Report Output Template. Selecting the save icon (
) will download the Report Output Template without the global styles.

3. When the browser save dialog appears, save the file as "simple_ticket_list.ods"

4. Delete the "Debug" sheet.

5. Delete all the content and unmerge all cells in Sheet1.

6. Set the width of columns A - J to 1 inch.

7. Select Format > Styles and Formatting. The Styles and Formatting toolbar will be displayed,
containing all the global styles.

8. Select cells A1 - J20, then, in the Styles and Formatting toolbar, double click on "Default". The Report
Output Template will look like this:

Creating the Report Output Template

Creating the Report Output Template

9. Save the Report Output Template. The Report Output Template is now ready for the addition of
content specific to this report.

In the next step, we add static text, output directives, and variable substitution to the template. Output
directives specify where to insert data from the gluecode into the output template. To add the static text
and output directives to the example template:

1. Insert a header image. Merge cells A1 - H5, then insert an image and anchor the image to the
merged cell. In this example the ScienceLogic logo image is used:

2. Add static column headers. This example uses the column headers listed in the Overview section.
Enter the column headers in cells A7 - J7:

3. Add [if:], [else:] and [endif:] directives. These directives are conditional statements that are used to
evaluate inputs and then specify one of multiple outputs (based on the inputs). In this example, we
will use them to check if the gluecode has passed any tickets as output. If the gluecode has passed
tickets, the report will display a table with the ticket information. If the gluecode has not passed any
tickets, , the report will display the message "No tickets to display". These directives use the value of
the boolean tickets to determine if there are tickets to be listed. Enter "[if:tickets]" in cell A8, and "
[else:tickets][endif:tickets]" in cell A9:

116

117

4. Add a [bindrow:] directive. When the [bindrow:] directive is used with an array, the report engine will
duplicate the row the [bindrow:] appears on for each item in the array. In our example, the displayed
table will contain a row for each ticket in the array tickets. Enter "[bindrow:tickets]" after "[if:tickets]" in
cell A8:

5. Add variable substitutions. Variables are inserted into Report Output Templates using curly braces.
As described in the gluecode section, suppose the gluecode returns a ticket with ticket id 0. The
ticket data will be stored in the following array structure:

[tickets] => Array

(

[0] => Array

(

[company] => System

[descr] => Example Ticket

[date_create] => 2010/01/01 8:00 AM

[user_create] => em7admin

[ticket_class] => Abuse

[status] => Working

[source] => Internal

[assign] => Monitoring

[assigned_to] => em7admin

)

)

In cell A8, {##} is entered after the [bindrow:tickets] directive. The first pound-sign indicates that
the value to be substituted comes from the array used by the previous bind directive, in this case the
tickets array in [bindrow:tickets]:

Creating the Report Output Template

Creating the Report Output Template

The second pound-sign indicates that our example should use the array key for this row. In our
example, the array keys are the ticketIDs, so the substituted value from the example array is 0.

For the other columns in our example, the substitution variable uses in the format {#.array_key},
where array_key is the key that points to the value for that column. For example, {#.company}
would substitute the highlighted value from the example array into the column B8:

[company] => System

In row 8, enter substitution variables for the remaining array key names in cells B8 - J8:

6. Add a "Generated On" message at the end of the report. Enter "Generated On {date}" in cell A11.
The gluecode passes the variable called date, which contains the date on which the report was
generated:

7. Add header information to display the options used to generate the report. The default reports
created by ScienceLogic use the upper right-hand two columns to display the options used to
generate the report. In our example, the variable orgspec is passed by the gluecode. orgspec
specifies whether the user selected the All Organizations checkbox in the Report Input Form. If the
user selected the All Organizations checkbox, orgspec is set to "All Orgs". If the user did not select
the All Organizations checkbox, orgspec is set to "Selected Orgs". orgspec can be substituted into
the report in the same way date was in the previous step. Enter "Selected" in cell I2 (eye-two), and "
{orgspec}" in cell J2:

NOTE: The header image, table column, "Generated On" text and "Selected" text are not
inside an output directive or variable substitution. These elements will be displayed in
the report as they appear on the template.

118

119

Now that we have added the static text and output directives, we can apply styles to the template. To add
styles to the example template:

1. Select a cell or collection of cells to apply the style to.

2. In the Styles and Formatting toolbar, double click the style. Our example uses the following styles:

l EM7 Report Header/Footer. Applied to the header image, cells A1 - H5.

l EM7 Column Header. Applied to the column headings, cells A7 - J7.

l EM7 Data Text. Applied to the data rows and "No tickets to display" message, cells A8 - J9.

l EM7 Data Date/Time. Overrides the EM7 Data Text style for the Create Date, cell D8.

l EM7 Data Numeric. Overrides the EM7 Data Text style for the Ticket ID, cell A8.

l EM7 Report Footer. Applied to the "Generated On" message, cell A11.

l EM7 Report Header Label. Applied to the "Selected" text, cell I2.

l EM7 Report Header Value. Applied to the orgspec variable, cell J2.

The completed template looks like this:

The Report Output Template can now be uploaded to the user interface. To do this:

1. Go to Reports > Management > Report Output Templates.

2. Select the [Upload] button.

3. Select the [Browse] button. In the upload dialog, select simple_ticket_list.ods.

4. Select the [Upload] button.

5. In the pop-up window that appears, select the [OK] button.

Creating the Gluecode

Report gluecode is written in PHP. For our example, the gluecode must do the following:

l Extract the values from the $input array passed from the Report Input Form.

l Process the inputs to determine whether the "All Organizations" checkbox was checked or
unchecked and then build an appropriate WHERE clause for the SQL statement.

l Query the database.

l Process any datetime strings to use the correct format.

Creating the Gluecode

Creating the Gluecode

l Pass the output to the output template. This example describes two versions of the gluecode: one
version that populates the $output array and another that uses $em7_report to pass the output.

Extracting Input Values

Report Input Forms pass an array called $input to the gluecode. The name you define for each input
element in the Report Input Form is used as a key in the $input array . Each key points to the input values
for that element. In this example, the $input array contains one key, orgs. The orgs key points to the input
values from the Organization Selector. The following line of code is used to extract the orgs array from
the $input array:

extract($input, EXTR_PREFIX_ALL, 'in');

This extract statement will extract each entry in the $input array and store the entry in its own variable.
Each variable will be named $in_, followed by the array key for the array entry. In our example, one new
variable is created: $in_orgs.

Because the Organization Selector is a Custom Report Component, its input value is an array of values
for each of its child elements. The keys for each child element map to the child elements' name. For an
Organization Selector, the child elements are named "all_orgs" and "org". For more information on the
names given to components in default Custom Report Components, see the Input Forms section.

Another extract statement is included in the gluecode to extract the values of the child elements into
variables, prefixed by "selected_":

extract($in_orgs, EXTR_PREFIX_ALL, 'selected');

The Organization Selector has two constituent components, a checkbox (named "all_orgs") and a
Multiple Select (named "orgs"). After the extract statements, the gluecode will be working with the
following variables:

l $selected_all_orgs. Contains the value passed by the "All Organizations" checkbox, either 0 (zero)
or 1 (one).

l $selected_orgs. Contains the value passed by the "Organizations" Multiple Select List, a linear array
of organization IDs.

Processing Inputs and Building a WHERE Clause

You must write the gluecode so that it processes the input for the following three conditions:

l The All Organizations checkbox was checked. In this case, the SQL query should be run with a
WHERE clause that includes all organizations. The output variable orgspec should be set to "All".

l The All Organizations checkbox was unchecked, and organizations were selected. In this case,
the SQL query should be run with a WHERE clause that includes only the selected organizations.
The output variable orgspec should be set to "Selected Orgs".

l The All Organizations checkbox was unchecked, and no organizations were selected. In this
case, the SQL query should be skipped and the output variable orgspec should be set to "Selected
Orgs".

120

121

To handle these three situations, the gluecode will set the following variables prior to querying the
database:

l $where. Contains the WHERE clause for the query. $where is initially given a value that will return all
organizations:

$where = "1";

If organizations were selected, the gluecode will later append $where with an AND statement.

l $skip_query. A boolean that determines whether the database will be queried. $skip_query is
initially given a value for the most likely outcome, that the database will be queried:

$skip_query = FALSE;

l $output['orgspec']. The output variable orgspec, which will contain either "All" or "Selected Orgs".
This is set in the "if statements" described below.

The gluecode must include an "if statement" that evaluates the variable $selected_all_orgs to determine
whether the All Organizations checkbox was unchecked:

if ($selected_all_orgs) {

If $selected_all_orgs is TRUE, the initial values of $where (return all organizations) and $skip_query
(FALSE, meaning the database should be queried) are still correct. orgspec should then be set as follows
for the version of the gluecode that populates the $output array:

$output['orgspec'] = 'All';

} else {

Or as follows for the version of the gluecode that uses $em7_report to pass the output:

$em7_report->set_token_value('orgspec', 'All');

} else {

If $selected_all_orgs is FALSE, orgspec should be set as follows for the version of the gluecode that
populates the $output array:

$output['orgspec'] = 'Selected Orgs';

Or as follows for the version of the gluecode that uses $em7_report to pass the output:

$em7_report->set_token_value('orgspec', 'Selected Orgs');

Creating the Gluecode

Creating the Gluecode

NOTE: Remember that the orgspec variable specifies whether the user selected the All
Organizations checkbox in the Report Input Form. If the user selected the All Organizations
checkbox, orgspec is set to "All Orgs". If the user did not select the All Organizations
checkbox, orgspec is set to "Selected Orgs".

The gluecode must include another "if statement" to evaluate the variable $selected_all_orgs and
determine if the array of selected organizations is empty (meaning the user did not select any
organizations):

if (empty($selected_orgs)) {

If the array $selected_all_orgs is empty, the database query should be skipped:

$skip_query = TRUE;

} else {

If the user selected one or more organizations and the array $selected_all_orgs is not empty, $where
should be appended with an appropriate AND statement:

$where .= ' AND o.roa_id IN ('.implode(',',$selected_orgs).')';

}

}

This statement selects all organizations where the organization ID matches an entry in the $selected_all_
orgs array.

Querying the Database

If the value of the variable $skip_query is TRUE, the gluecode will not query the database. The section of
gluecode that queries the database is contained in an "if statement" that evaluates the variable $skip_
query:

if(!$skip_query) {

Ticket information is stored in the table master_biz.ticketing. Nine fields from this table will be used in the
query:

l tid. The ticket ID.

l roa_id. The organization ID.

l descr. The ticket description.

122

123

l date_create. The date of creation.

l status. The ticket status, stored as an integer between 0 and 3.

l user_create. The user ID of the user that created the ticket.

l class. The ID number of the ticket category.

l source. The ID number of the ticket source.

l qid. The queue ID of the ticket queue.

l assigned_to. The user ID of the user the ticket is assigned to.

Six of these values are stored as an integer. You must use a a LEFT JOIN statement on these values to
obtain a human-readable value:

l roa_id. Used to join to the "roa_id" field in the master_biz.organizations table. The "company" field
in master_biz.organizations stores the name of the organization.

l user_create. Used to join to the "uid" field in the master_access.accounts table. The "user" field in
master_access.accounts stores the username of the user.

l class. Used to join to the "id" field in the master.definitions_ticketing table. The "def" field in
master.definitions_ticketing stores the category name if the t_type field is 0.

l source. Used to join to the "id" field in the master.definitions_ticketing table. The "def" field in
master.definitions_ticketing stores the source name if the t_type field is 2.

l qid. Used to join to the "qid" field in the master_biz.ticket_queues table. The "name" field in master_
biz.ticket_queues stores the name of the ticket queue.

l assigned_to. Used to join to the "uid" field in the master_access.accounts table. The "user" field in
master_access.accounts stores the username of the user.

Two values require additional processing to be included in the query:

l date_create. Requires the UNIX_TIMESTAMP function to convert the timestamp into a UNIX
timestamp. Later, the gluecode requires a UNIX timestamp when the timestamps are processed.

l status. Requires a CASE statement to convert the integer into a human-readable value:

o 0 = Open

o 1 = Working

o 2 = Pending

o 3 = Resolved

The query is built and stored in the variable $sql, using the variable $where to add the WHERE clause:

$sql = "SELECT

t.tid, o.company, t.descr, UNIX_TIMESTAMP(t.date_create) date_

create, CASE t.status WHEN 0 THEN 'Open' WHEN 1 THEN 'Working'

WHEN 2 THEN 'Pending' ELSE 'Resolved' END status, acr.user user_

create, dtcat.def ticket_class, dtsrc.def source, tq.name assign,

aas.user assigned_to FROM master_biz.ticketing t

Creating the Gluecode

Creating the Gluecode

LEFT JOIN master_biz.organizations o ON (t.roa_id = o.roa_id)

LEFT JOIN master_access.accounts acr ON (t.user_create = acr.uid)

LEFT JOIN master.definitions_ticketing dtcat ON (dtcat.id =

t.class AND dtcat.t_type = 0)

LEFT JOIN master.definitions_ticketing dtsrc ON (dtsrc.id =

t.source AND dtsrc.t_type = 2)

LEFT JOIN master_biz.ticket_queues tq ON (tq.qid = t.qid)

LEFT JOIN master_access.accounts aas ON (t.assigned_to = aas.uid)

WHERE " . $where . "

ORDER BY t.date_create ";

The query uses an ORDER BY statement using the date the ticket was created. This is the order in which
the tickets will appear in the report.

The variable that contains the query ($sql) is then used to query the database:

$tickets = $db->autofetch_all_assoc($sql);

$db is an instance of a class that is always passed to the gluecode. The $db class provides several
functions that query the database and return the results as variables. The return values of the $db class
functions are typically stored in arrays; different functions will return different array structures. For more
information on the $db class functions, see the section on Database Methods.

Our example uses the autofetch_all_assoc function. This function returns the results of an SQL query as
an associative array. Each key value in the returned array maps to the value of the first column of each
row returned from the SQL statement. The key value for each row points to another associative array that
contains the remaining values from the row. In this example, the keys of the returned array will map to the
ticket ID . Each ticket ID key will point to an array containing the rest of the values returned for that row,
with the keys as the field names. The following example shows the array structure if one ticket, with ticket
id = 0, is returned:

[tickets] => Array

(

[0] => Array

(

[company] => System

124

125

[descr] => Example Ticket

[date_create] => 123456789

[user_create] => em7admin

[ticket_class] => Abuse

[status] => Working

[source] => Internal

[assign] => Monitoring

[assigned_to] => em7admin

)

)

Populating the $output Array

This section is applicable only to the version of the gluecode that populates the $output array.

The returned values for the date_create field are in UNIX timestamp format. The gluecode uses the od_
datetime function to convert each of these UNIX timestamps into a format readable by the Report Output
Template:

foreach ($tickets as &$ticket) {

$ticket['date_create'] = od_datetime($ticket['date_create']);

}

The gluecode has now correctly formatted the values in the $tickets array. The next step is to copy the
$tickets array into the $output array, which will be passed to the Report Output Template:

$output['tickets'] = $tickets;

Using $em7_report to Output Results

This section is applicable only to the version of the gluecode that uses $em7_report to pass the output.

The output template includes the directive [bindrow:tickets] to repeat a row for each ticket in the output.
The gluecode uses the get_token method to create a token object ($ticket_rows) that references this
directive:

Creating the Gluecode

Creating the Gluecode

$ticket_rows = $em7_report->get_token('tickets');

A foreach loop is used to iterate through the list of tickets returned by the database query:

foreach ($tickets as $ticket_id=> &$ticket) {

The returned values for the date_create field are in UNIX timestamp format. The gluecode uses the od_
datetime function to convert each of these UNIX timestamps into a format readable by the Report Output
Template:

$ticket['date_create'] = od_datetime($ticket['date_create']);

For each ticket, the $ticket_rows token object is used to create a new row. The ticket ID (the key value
form the foreach loop) is supplied as the key. These keys will populate the {##} directive in the output:

$ticket_row = $ticket_rows->new_row($ticket_id);

Values are supplied to the row using the current value from the $tickets array and the row is closed:

$ticket_row->set_value($ticket);

$ticket_row->close_row();

The foreach loop is then closed:

}

Populating the Date

The "if statement" that contains the gluecode that queries the database is closed:

}

The Report Output Template requires the date variable to be included. orgspec should be set as follows
for the version of the gluecode that populates the $output array:

$output['date'] = date("Y-m-d");

Or as follows for the version of the gluecode that uses $em7_report to pass the output:

$em7_report->set_token_value('date', date("Y-m-d"));

126

127

Creating the Report Template

To generate the example report, we must create a Report Template. A Report Template allows you to
define all the parts of a report. A Report Template specifies identifying information about a report, and the
Report Input Form, Report Output Template and gluecode that will be used to generate instances of a
report.

To create the Report Template for this example:

1. Go to the Report Management page (Reports > Management > Report Manager).

2. Click the [Create] button. The Report Template Editor page appears.

3. Complete the following fields:

l Template Name. The name of the report, without spaces. This example is called "Simple_
Ticket_List".

l Version. The version number for the report. This example uses the default value, "1.0".

l Author. The person who authored the report. This example uses "ScienceLogic
Documentation Team".

l Delivery Method. This option allows you to limit the options that are available when a user
schedules this report. Select the methods by which scheduled instances of this report can be
delivered. This example uses the default values.

l Input Form. The Report Input Form that will be used to generate the Report. This example
uses Simple Ticket List.

l Output Template. The Report Output Template that will be used to generate the Report. This
example uses simple_ticket_list.ods.

l Description. A description of the report. This example leaves this field empty.

l Category. Select one or more categories for the report. Categories are used to arrange the list
of reports in the left NavBar and in drop-down lists that display reports. This example assigns
the "Ticketing" category.

l Key Words. A comma-separated list of key words that describe the report. This example
leaves this field empty.

l Report Count Query. This query populates the Row Count Estimate field for the report, and
this query executes in the background with each input filter change made by the report user.
The Row Count Estimate field informs users before they generate reports that are so large
that Skylar One cannot create them successfully. The query can include variables for the fields
that a user selects in the report (Input Forms). The variables can be scalars or lists. As the user
selects or de-selects Inputs, such as selecting Devices, then de-selecting Devices and
selecting Assets instead, the query is re-run, and a new value appears in the Row Count
Estimate field.

Creating the Report Template

Full Code Listing for the $output Version

l Name. If the report requires multiple possible queries based on the inputs that the user
selects, type a name for each query, such as "devices" and "assets". Based on the input
selected by the user, one of the two queries will be used to get the row count estimate. If the
report requires only a single query, type "default" in this field. Click the [Add Row] button to
add additional queries. Do not use double quotes (") or the back slash character (\) in this field.

l Query. Add an SQL query that returns the total possible number of data rows in the report
using the inputs selected buy the user. The query includes variables for fields that a user
selects from the Input Form. The query can include variables for scalar values (single values)
and variables for list values (multiple values). For more information about the SQL query for
this field, see Creating Queries for the Row Count Estimate Field. Do not use double quotes (")
or the back slash character (\) in this field.

NOTE: The goal of the SQL query in the Query field is to provide an estimate of the
returned rows, but the query should be as lightweight as possible. Do not re-use
the SQL query that populates the report.

l [Add Row]. Click this button to add another row containing the name and query code for an
additional query for this template. You can add up to eight queries. Click the red cancel icon (
) to remove a query that you previously added.

NOTE: To disable the Row Count Estimate feature, de-select the Report Size
Estimation option on the Behavior Settings page (System > Settings
> Behavior). This feature is enabled by default. If you disable this feature, Skylar
One retains the queries you created in the Query field, but Skylar One will not run
those queries when you create reports.

l Query/Template Binding Code. The gluecode that will be used to generate the Report. This
example uses the gluecode listed in the Full Code Listing for the $output Version section or the
Full Code Listing for the $em7_report Version section.

4. Click the [Save] button. The report is now available under the Run Report > Ticketing section in the
left NavBar, and you can include the report in a Report Job on the Report Jobs page.

Full Code Listing for the $output Version

extract($input, EXTR_PREFIX_ALL, 'in');

extract($in_orgs, EXTR_PREFIX_ALL, 'selected');

$where = "1";

$skip_query = FALSE;

if ($selected_all_orgs) {

128

129

$output['orgspec'] = 'All';

} else {

$output['orgspec'] = 'Selected Orgs';

if (empty($selected_orgs)) {

$skip_query = TRUE;

} else {

$where .= ' AND o.roa_id IN ('.implode(',',$selected_orgs).')';

}

}

if(!$skip_query) {

$sql = "SELECT t.tid, o.company, t.descr, UNIX_TIMESTAMP(t.date_create)

date_create,

CASE t.status WHEN 0 THEN 'Open' WHEN 1 THEN 'Working' WHEN 2 THEN

'Pending' ELSE 'Resolved' END

status, acr.user user_create, dtcat.def ticket_class, dtsrc.def

source, tq.name assign, aas.user assigned_to

FROM master_biz.ticketing t

LEFT JOIN master_biz.organizations o ON (t.roa_id = o.roa_id)

LEFT JOIN master_access.accounts acr ON (t.user_create = acr.uid)

LEFT JOIN master.definitions_ticketing dtcat ON (dtcat.id = t.class

AND dtcat.t_type = 0)

LEFT JOIN master.definitions_ticketing dtsrc ON (dtsrc.id = t.source

AND dtsrc.t_type = 2)

LEFT JOIN master_biz.ticket_queues tq ON (tq.qid = t.qid)

LEFT JOIN master_access.accounts aas ON (t.assigned_to = aas.uid)

WHERE " . $where . "

Full Code Listing for the $output Version

Full Code Listing for the $em7_report Version

ORDER BY t.date_create ";

$tickets = $db->autofetch_all_assoc($sql);

foreach ($tickets as &$ticket) {

$ticket['date_create'] = od_datetime($ticket['date_create']);

}

$output['tickets'] = $tickets;

}

$em7_report->set_token_value('date', date("Y-m-d"));

Full Code Listing for the $em7_report Version

extract($input, EXTR_PREFIX_ALL, 'in');

extract($in_orgs, EXTR_PREFIX_ALL, 'selected');

$where = "1";

$skip_query = FALSE;

if ($selected_all_orgs) {

$em7_report->set_token_value('orgspec', 'All');

} else {

$em7_report->set_token_value('orgspec', 'Selected Orgs');

if (empty($selected_orgs)) {

$skip_query = TRUE;

} else {

$where .= ' AND o.roa_id IN ('.implode(',',$selected_orgs).')';

130

131

}

}

if(!$skip_query) {

$sql = "SELECT t.tid, o.company, t.descr, UNIX_TIMESTAMP(t.date_create)

date_create,

CASE t.status WHEN 0 THEN 'Open' WHEN 1 THEN 'Working' WHEN 2 THEN

'Pending' ELSE 'Resolved' END

status, acr.user user_create, dtcat.def ticket_class, dtsrc.def

source, tq.name assign, aas.user assigned_to

FROM master_biz.ticketing t

LEFT JOIN master_biz.organizations o ON (t.roa_id = o.roa_id)

LEFT JOIN master_access.accounts acr ON (t.user_create = acr.uid)

LEFT JOIN master.definitions_ticketing dtcat ON (dtcat.id = t.class

AND dtcat.t_type = 0)

LEFT JOIN master.definitions_ticketing dtsrc ON (dtsrc.id = t.source

AND dtsrc.t_type = 2)

LEFT JOIN master_biz.ticket_queues tq ON (tq.qid = t.qid)

LEFT JOIN master_access.accounts aas ON (t.assigned_to = aas.uid)

WHERE " . $where . "

ORDER BY t.date_create ";

$tickets = $db->autofetch_all_assoc($sql);

$ticket_rows = $em7_report->get_token('tickets');

foreach ($tickets as $ticket_id=>&$ticket) {

$ticket['date_create'] = od_datetime($ticket['date_create']);

Full Code Listing for the $em7_report Version

Full Code Listing for the $em7_report Version

$ticket_row = $ticket_rows->new_row($ticket_id);

$ticket_row->set_value($ticket);

$ticket_row->close_row();

}

}

$em7_report->set_token_value('date', date("Y-m-d"));

132

© 2003 - 2026, ScienceLogic, Inc.

All rights reserved.

ScienceLogic™, the ScienceLogic logo, and ScienceLogic's product and service names are
trademarks or service marks of ScienceLogic, Inc. and its affiliates. Use of ScienceLogic's
trademarks or service marks without permission is prohibited.

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUTWARRANTY
OF ANY KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS
DISCLAIM ALLWARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIEDWARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information herein, the information
provided in this document may contain inadvertent technical inaccuracies or typographical errors,
and ScienceLogic™ assumes no responsibility for the accuracy of the information. Information may
be changed or updated without notice. ScienceLogic™ may also make improvements and / or
changes in the products or services described herein at any time without notice.

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction
	What is a Custom Report?
	Report Input Forms
	Gluecode
	Report Output Templates
	The Report Management Page
	Creating a Report Template
	Creating Queries for the Row Count Estimate Field
	Types of Variables
	Sample Input Filter Array
	Query Example 1
	Query Example 2
	Best Practices

	Running & Scheduling Reports
	Quick Reports
	Generating a Quick Report
	Filling Out Input Forms

	Scheduled Reports
	Creating a Report Job
	Running a Report Job
	Scheduling a Report Job
	Viewing Upcoming and Archived Scheduled Report Jobs

	Input Forms
	What is an Input Form?
	Creating an Input Form
	Adding and Configuring Input Form Components
	Editing an Input Form
	Deleting an Input Form
	Static Layout Components
	Text
	Paragraph
	Vertical Box
	Horizontal Box
	Field Set

	Form Input Components
	Checkbox
	Dropdown Select
	Hidden
	Multiple Checkboxes
	Multiple Select
	Multiple Select with Category
	Radio Buttons
	Text Area
	Text Field

	Data Components
	Concatenate
	Correlate Lists
	Filter List
	Find In List
	Formula
	Predefined List
	Select From List
	Server Function
	SQL Query
	String Format
	Switch Source

	Custom Report Components

	Developing Gluecode
	What is Gluecode?
	Processing Input Form Options
	Available Resources
	Output
	Output Templates and Output Directives
	Using the $output Array
	Using the $em7_report object

	Database Methods
	autofetch_all
	autofetch_all_assoc
	autofetch_column
	autofetch_column_multival
	autofetch_columns
	autofetch_row
	autofetch_value
	expunge_call

	The Data Engine
	What is the Data Engine?
	Instantiating a Data Engine Object
	Dynamic Application Data
	Data Associated with Collection Labels
	Availability Data
	Web Content Monitoring Policy Data
	Port Monitoring Policy Data
	System Process Monitoring Policy Data
	SOAP/XML Transaction Monitoring Policy Data
	Domain Name Monitoring Policy Data
	Email Round-Trip Monitoring Policy Data
	Windows Service Monitoring Policy Data
	File System Utilization Data
	Interface Data - Percentage Utilization
	Interface Data - Octets, Errors, and Discards
	Bandwidth Billing Policy Data
	IT Service Data - Health, Availability, and Risk
	IT Service Data - Metrics

	Time Range Methods
	Normalized Data Methods
	Return Normalized Data for a Specified Normalization Period
	Return a Specified Number of Data Points of Normalized Data
	Return a Specified Type of Normalized Data (Average, Minimum, Maximum, Standa...

	Dynamic Application Methods
	Return Information about a Dynamic Application
	Return Information about a Presentation Object
	Return Information about Indexes

	Counter Processing Methods
	Report Builder Methods
	Other Methods
	Data Retrieval Methods
	Raw Data
	Normalized Data
	Data Series Object Retrieval Methods

	Debugging Reports
	Controlling Log Settings
	Setting UI Developer Log Levels
	Setting UI/REST MySQL Query Log Levels
	Configuring Advanced Log Settings

	Writing to the Log File

	Report Output
	What is an Output Template?
	Output Methods
	Array Binding Directives
	Conditional Directives
	Style Directives
	Image and Chart Directives
	Uploading Customized Report Output Templates

	Output Styles and Media
	Using Theme Logos
	Adding Global Styles
	Report Output Media

	Simple Tabular Report
	Report Elements
	Creating the Report Input Form
	Creating the Report Output Template
	Creating the Gluecode
	Extracting Input Values
	Processing Inputs and Building a WHERE Clause
	Querying the Database
	Populating the $output Array
	Using $em7_report to Output Results
	Populating the Date

	Creating the Report Template
	Full Code Listing for the $output Version
	Full Code Listing for the $em7_report Version

