
XML, SOAP, and XSLT Dynamic
Application Development
ScienceLogic Version 12.2.0

Table of Contents

Introduction to XML, SOAP, and XSLT Dynamic Application Development 4

XML, SOAP, and XSLT Protocols 5

What is XML? 5

Elements of XML, SOAP, and XSLT Dynamic Applications 5

SOAP and XSLT Requests 7

Viewing the Requests in a Dynamic Application 9

Creating a Request 9

Defining XSLT Request Code 10

The XSLT Request Code Field 10

The Cached XSLT Request Field 12

Defining XSLT Parser Code 12

Substitution Characters 14

Collection Object Substitution Characters 14

Substitution Characters from Credentials 14

Substitution Characters from Component Devices 14

Editing a Request 15

Deleting a Request 15

Collection Objects 16

Protocol-Specific Fields for Collection Objects 17

XML Dynamic Applications 17

SOAP Dynamic Applications 17

XSLT Dynamic Applications 17

Specifying XML Tags and SOAP Tags 18

Parsing an XML Element 18

Specifying XSLT Tags 19

Session ID Objects 20

Creating an XML Dynamic Application 22

Creating the Dynamic Application 23

Defining XML Data-Points to Monitor 23

Defining the Collection Objects 26

Creating the Presentation Object 27

Testing the Dynamic Application 27

Creating a Credential 28

Manually Aligning the Dynamic Application to the Test Device 28

Viewing the Reports 29

Dynamic Component Mapping & Caching with XSLT 30

Design 32

Creating the "Example Dynamic Component Mapping General" Dynamic Application 33

Defining the Dynamic Application Properties 33

Adding the XSLT Request 34

Adding the Discovery Object 36

Creating the "Example Dynamic Component Mapping Discovery" Dynamic Application 37

Defining the Dynamic Application Properties 37

Adding the XSLT Requests 37

Adding the Collection Objects 41

Creating a Device Class for the Component Devices 44

Creating the "Example Component Performance" Dynamic Application 45

Defining the Dynamic Application Properties 45

Adding the XSLT Request 45

Adding the Collection Objects 47

Editing the Presentation Objects 49

Automatically Aligning the Dynamic Application to Component Devices 49

Using the Dynamic Applications 50

Configuring a Test Device 50

Editing the Device Class for the Test Device 50

Creating a Credential 51

Discovering the Test Device 51

Verifying the Dynamic Application Alignments 52

Viewing the Device Components Registry 52

Viewing the Component Device Map 52

Viewing the Performance Graphs 52

Expanding this Example 53

Chapter

1
Introduction to XML, SOAP, and XSLT Dynamic

Application Development

Overview

This manual describes how to create Dynamic Applications that collect data by parsing collection objects from
XML documents.

This manual does not cover elements of Dynamic Application development that are common to all Dynamic
Application types; you should be familiar with the common elements and concepts of Dynamic Applications. For
details on the common elements of Dynamic Applications, see the manual Dynamic Application Development.
XML, SOAP, and XSLT Dynamic Applications use XML markup language.

You should be familiar with the XML markup language before developing XML, SOAP, or XSLT Dynamic
Applications. The requests in XSLT Dynamic Applications are written using XSL transformations. You must be
familiar with the structure, syntax, and elements of XSL transformations before developing XSLT Dynamic
Applications.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

XML, SOAP, and XSLT Protocols 5

What is XML? 5

Elements of XML, SOAP, and XSLT Dynamic Applications 5

XML, SOAP, and XSLT Protocols

This manual describes how to create Dynamic Applications that collect data by parsing collection objects from
XML documents. There are three Dynamic Application protocols that parse collection objects from XML
documents:

l XML. For this Dynamic Application protocol, SL1 performs an HTTP GET request for the XML document
specified in the associated credential. The collection objects in an XML Dynamic Application specify how
SL1 should parse values from the XML document.

l SOAP. For this Dynamic Application protocol, SL1 performs one or more HTTP POST requests on the URL
specified in the associated credential. The collection objects in a SOAP Dynamic Application specify which
response returns values for the collection object and how SL1 should parse values from the returned XML
document. The requests in a SOAP Dynamic Application are performed in a specified order. You can
substitute a collected value from a request in the POST content of a future request. The collection object that
is substituted must collect a single value, not a list of values.

l XSLT. For this Dynamic Application protocol, SL1 performs one or more HTTP POST or GET requests on the
URL specified in the associated credential. The collection objects in an XSLT Dynamic Application specify
which response returns values for the collection object and how SL1 should parse values from the returned
XML document. The requests in a XSLT Dynamic Application are performed in a specified order. If the
credential specifies a POST method, the POST content is generated by performing an XSL transformation on
an XML document that contains all the values collected using the preceding requests. Therefore, unlike a
SOAP Dynamic Application, you can use the values collected for a collection object that returns a list of
values to constrict a request. All requests must specify an XSL transformation that is applied to the response
returned for that request. The result of the XSL transformation that is performed on the response must be in a
specific format from which SL1 parses the collection objects for that request.

What is XML?

XML stands for "eXtensive Markup Language". XML was designed to transport and store data, with focus on what
data is. By itself, XML does not actually do anything. XML was created to structure, store, and transport
information. XML stores data in plain-text format. This allows XML data to be exchanged between disparate
hardware and software.

XML data is frequently sent using HTTP requests. Users can send SL1 data by writing client code that makes HTTP
calls and sends the XML data.

When XML data is received, the receiving computer must include programs to receive, parse, and respond to XML
requests. Most browsers include built-in parsers for XML.

To learn more about XML, see http://www.w3schools.com/xml/default.asp

Elements of XML, SOAP, and XSLT Dynamic Applications

XML, SOAP, and XSLT Dynamic Applications have the following elements in common with other Dynamic
Application types:

http://www.w3schools.com/xml/default.asp

l Archetypes. Defines what type of data is being collected and how it will be displayed in SL1. XML, SOAP,
and XSLT Dynamic Applications can be either the Performance or Configuration archetypes.

l Properties. Allows for version control, release notes, collection, and retention settings.

l Collection Objects. Define the individual data-points that will be retrieved by the Dynamic Application.
These data points are called collection objects. Defines what type of data is being collected (gauge,
counter, etc) and how it is grouped. XML, SOAP, and XSLT Dynamic Applications have collection object
settings that are unique to the respective protocol. These settings are described in the Collection Objects
section.

l Presentations. For Performance Dynamic Applications, defines how collected values will be displayed by
SL1.

l Thresholds. Can be used to define a default threshold value that can be included in alerts. The threshold
appears in the Device Thresholds page for each device the Dynamic Application is aligned with. The
threshold value can be edited for each device without affecting the behavior of the Dynamic Application for
other devices.

l Alerts. Evaluate collected data. If the collected data meets the conditions defined in the alert, the alert can
insert a message into device logs and trigger events.

l Credentials. Define how authentication should occur for each Dynamic Application on each device. XML,
SOAP, and XSLT Dynamic Applications use SOAP/XML credentials. When an XML, SOAP, or XSLT Dynamic
Application is aligned with a device, you must align a SOAP/XML credential to that Dynamic Application for
collection to occur. The value specified in theMethod field for the aligned SOAP/XML credential must be:

o GET for XML Dynamic Applications.

o POST for SOAP Dynamic Applications.

o GET or POST for XSLT Dynamic Applications.

l Caching. When SL1 requests information from a device during Dynamic Application collection, SL1 can
optionally cache the response from the device. If a response is cached, other Dynamic Applications that use
the same protocol can use the cached response to retrieve collection object values. Caching responses
reduces the number of requests performed by SL1 and speeds up collection.

l Dynamic Component Mapping. Dynamic Component Mapping allows SL1 to use Dynamic Application
data that has been collected from a single management system, such as a VMware ESX server, to create
multiple device records for the entities managed by that single management system.

l Relationships. Dynamic Applications can be configured to automatically create relationships between
devices. For example, the Dynamic Applications in the VMware vSphere and NetApp PowerPacks are
configured to create relationships between VMware Datastore component devices and their associated
NetApp Volume component devices. Relationships created by Dynamic Applications are used and
visualized by the platform in the same manner as relationships created by topology collection, Dynamic
Component Mapping, and manually in the user interface. The settings for configuring the creation of
relationships in a configuration XML, SOAP, and XSLT Dynamic Application are the same as the relationship
settings for other Dynamic Application protocols.

Chapter

2
SOAP and XSLT Requests

Overview

SOAP and XSLT Dynamic Applications must include one or more requests that define how SL1 should request
data from a device. Each request specifies an operation that will gather a response from the device.

Each collection object in a SOAP or XSLT Dynamic Application is associated with a request. The collection object
specifies how to parse a data point from the response. A single request can be used to populate multiple
collection objects.

For SOAP Dynamic Applications, a request specifies the POST content that SL1 uses to perform the request. The
associated collection objects are parsed from the response.

For XSLT Dynamic Applications, a request specifies:

l An XSL transformation that SL1 applies to an XML document that contains the collected values from the
previous requests. The result of this transformation is used as the POST content that SL1 uses to perform the
request.

l A second XSL transformation that SL1 applies to the response from the device. The result of this
transformation must be in a specific format from which SL1 parses the associated collection objects.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Viewing the Requests in a Dynamic Application 9

Creating a Request 9

Defining XSLT Request Code 10

Defining XSLT Parser Code 12

Substitution Characters 14

Editing a Request 15

Deleting a Request 15

Viewing the Requests in a Dynamic Application

To view the existing requests in a SOAP or XSLT Dynamic Application:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Find the Dynamic Application you want to view the requests for. Select its wrench icon (). The Dynamic
Applications Properties Editor page is displayed.

3. Select the [Requests] tab. The Dynamic Applications Request Editor and Registry page is displayed.
The Request Registry pane at the bottom of the page displays the following information about each
request:

l Request Name. The name of the request.

l State. The state of the request. Possible values are:

o Enabled. SL1 will perform this request during collection for this Dynamic Application.

o Disabled. SL1 will not perform this request during collection for this Dynamic Application.

l Sequence. The order in which the requests in this Dynamic Application will be performed.

l ID. The unique ID assigned to the request by SL1. The unique ID will always start with "req_".

l Date Edit. The last time a user edited this request.

Creating a Request

To define a request for a SOAP or XSLT Dynamic Application:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Locate the Dynamic Application for which you want to define a request. Select its wrench icon (). The

Dynamic Applications Properties Editor page is displayed.

3. Select the [Requests] tab. The Dynamic Applications Request Editor and Registry page is displayed.

4. Supply values in the following fields:

l Request Name. Enter a name for the request.

l Execution Sequence. Specifies the order in which SL1 should perform the requests in this Dynamic
Application Select a numeric value in this field. The request with the lowest Execution Sequence
value will be performed first during collection, then the request with the next lowest Execution
Sequence value, etc.

l Active State. Specifies whether SL1 should perform this request during collection for this Dynamic
Application. Choices are:

o Enabled. SL1 will perform this request during collection for this Dynamic Application.

o Disabled. SL1 will not perform this request during collection for this Dynamic Application.

NOTE: If a collection object that has a Class Type of [109] SOAP/XSLT Session ID is associated with
a request, the request is executed only under certain conditions. For more information about
Session ID collection objects, see the Collection Objects section.

5. Depending on the type and configuration of the Dynamic Application, define the request code:

l If you are creating a request for a SOAP Dynamic Application, supply code in the SOAP Request
Code. This will be the POST content that SL1 will use for this request. You can use substitution
characters in the request code.

l If you are creating a request for an XSLT Dynamic Application that does not consume cached
responses, supply code in the XSLT Request Code and XSLT Parser Code fields. For a full
description of these fields, see the Defining XSLT Request Code and Defining XSLT Parser Code
sections.

l If you are creating a request for an XSLT Dynamic Application that consumes cached responses,
supply a value in the Cached XSLT Request field and supply code in the XSLT Parser Code field. For
a full description of these fields, see the Defining XSLT Request Code and Defining XSLT Parser
Code sections.

6. Select the [Save] button.

Defining XSLT Request Code

If your Dynamic Application has No Caching or Cache Results selected in the Caching drop-down list in the
Dynamic Applications Properties Editor page, you must supply an XSL transformation in the XSLT Request
Code field.

If your Dynamic Application has Consume Cached Results selected in the Caching drop-down list in the
Dynamic Applications Properties Editor page, you must select a cached XSLT request in the Cached XSLT
Request field.

The XSLT Request Code Field

When SL1 performs collection for an XSLT Dynamic Application, SL1 generates the POST content for each
request by applying the XSL transformation you supply in the XSLT Request Code field to an XML document. The
XML document contains the values collected for collection objects that have already been collected by the
Dynamic Application during this poll period.

NOTE: If your Dynamic Application will be used with a credential that specifies an HTTP GET request, the
result of the transformation specified in this field will not be used. However, SL1 will still apply the
supplied XSL transformation to the XML document that contains the collected values. You must
always supply a valid transformation in the XSLT Request Code field.

You must supply a valid XSL transformation in the XSLT Request Code field. SL1 will apply the specified XSL
transformation to an XML document that has the following structure:

<objects>

<o_XXXX>

<i_Y></i_Y>

<i_Z></i_Z>

.

.

</o_XXXX>

<o_AAAA>

<i_B></i_B>

<i_C></i_C>

.

.

</o_AAAA>

</objects>

Where:

l o_XXXX and o_AAAA are collection object ID's

l i_Y and i_Z are indexes associated with values in the list of values collected for collection object o_XXXX.

l i_B and i_C are indexes associated with values in the list of values collected for collection object o_AAAA.

The XML file of objects contains only objects collected from other XSLT requests in the same polling period on the
same device. For example, the XML file provided to the XSLT request with an Execution Sequence of "2" would

contain all the objects collected in the same polling period from the XSLT request with an Execution Sequence of
"0" and all the objects collected in the same polling period from the XSLT request with an Execution Sequence of
"1". The XML file provided to the XSLT request with an Execution Sequence of "0" will contain no collected
objects.

You can use the substitution characters described in the Substitution Characters section in your XSLT Request
Code.

The Cached XSLT Request Field

The Cached XSLT Request displays all XSLT requests defined in Dynamic Applications that have Cache Results
selected in the Caching drop-down list in the Dynamic Applications Properties Editor page.

To generate the XML document that contains the collection objects associated with this XSLT request, SL1
transforms the currently cached response for the XSLT request you select in this field using the XSLT Parser Code
defined for this XSLT request.

Defining XSLT Parser Code

The XSLT Parser Code for an XSLT request is XSL transformation that will be used by SL1 to transform the
response of the SOAP request. SL1 parses the collection objects associated with the request from the transformed
response.

In the XSLT Parser Code field, you must supply an XSL transformation that transforms the response from the
device in to an XML document with the following structure, where column_1 and column_2 are element names.:

<response>

<row>

<column_1></column_1>

<column_2></column_2>

.

.

</row>

<row>

<column_1></column_1>

<column_2></column_2>

.

.

</row>

</response>

The element names are used by SL1 to parse collection object values from the XML document.

Each "<row>" block specifies an entry in the list of collection objects. For example, if the transformed response
looks like this:

<response>

<row>

<label>Label 1</label>

<value>10</label>

</row>

<row>

<label>Label 2</label>

<value>20</label>

</row>

<row>

<label>Label 3</label>

<value>30</label>

</row>

</response>

A list of three values (Label 1, Label 2, and Label 3) will be collected for the collection object associated with the
label element.

A list of three values (10, 20, and 30) will be collected for the collection object associated with the value element.

You can use the substitution characters described in the Substitution Characters section in your XSLT Parser
Code.

Substitution Characters

You can include substitution characters in SOAP Request Code, XSLT Request Code, and XSLT Parser Code.
Depending on the type of substitution character that you use, SL1 will replace the substitution character with:

l The value of a collected object.

l A value specified in the associated credential.

l A property of the component device for which collection is being performed.

NOTE: Substitution characters for collected objects can be used only in SOAP Request Code.

Collection Object Substitution Characters

In SOAP Request Code, you can include the ID of one or more collection objects in the same Dynamic
Application. All collection object IDs begin with "o_" (lowercase "oh", underscore), e.g. "o_123". To use a
collection object ID in SOAP Request Code, the collection object must:

l Be associated with a request that has a lower Execution Sequence setting than the request that uses the
collection object in the SOAP Request Code.

l Collect a single value, not a list of values.

Substitution Characters from Credentials

SOAP/XML credentials can specify up to four substitution characters that can be used in SOAP Request Code,
XSLT Request Code, or XSLT Parser Code.

When you use substitution characters from a credential in SOAP Request Code, XSLT Request Code, or XSLT
Parser Code, you must ensure that the credential(s) that are used with the Dynamic Application define values for
these substitution characters:

l %1. SL1 will supply the value specified in the Embed Value [%1] field for the credential associated with the
Dynamic Application.

l %2. SL1 will supply the value specified in the Embed Value [%2] field for the credential associated with the
Dynamic Application.

l %3. SL1 will supply the value specified in the Embed Value [%3] field for the credential associated with the
Dynamic Application.

l %4. SL1 will supply the value specified in the Embed Value [%4] field for the credential associated with the
Dynamic Application.

Substitution Characters from Component Devices

In SOAP and XSLT Dynamic Applications that collect data from component devices, you can use the following
variables in the SOAP Request Code, XSLT Request Code, or XSLT Parser Code:

l %C. Distinguished name. SL1 will supply the distinguished name of the component device SL1 is currently
collecting data from.

l %N. Device name. SL1 will supply the device name of the component device SL1 is currently collecting data
from.

l %U. Unique identifier. SL1 will supply the unique identifier of the component device SL1 is currently
collecting data from.

For more information about Dynamic Component Mapping, see the Dynamic Application Development
manual.

Editing a Request

To edit a request in a SOAP or XSLT Dynamic Application, perform the following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Find the Dynamic Application you want to edit. Select its wrench icon (). The Dynamic Applications
Properties Editor page is displayed.

3. Select the [Requests] tab. The Dynamic Applications Request Editor and Registry page is displayed.

4. In the Request Registry pane at the bottom of the page, locate the request you want to edit. Select the
wrench icon () for the request you want to edit.

5. The fields in the top pane will be populated with the saved values for the selected request. Edit the values in
one or more fields. For a description of each field, see the Creating a Request section.

6. Select the [Save] button to save your changes to the request. Select the [Save As] button to save the
changes as a new request.

Deleting a Request

To delete a request from a SOAP or XSLT Dynamic Application, perform the following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Find the Dynamic Application you want to edit. Select its wrench icon (). The Dynamic Applications
Properties Editor page is displayed.

3. Select the [Requests] tab. The Dynamic Applications Request Editor and Registry page is displayed.

4. In the Request Registry pane at the bottom of the page, locate the request you want to delete. Select its
bomb icon (). The request is deleted from SL1. You must edit all collection objects that were associated
with the request to associate those collection objects with other requests in the Dynamic Application.

Chapter

3
Collection Objects

Overview

This chapter describes how to define collection objects for XML, SOAP, and XSLT Dynamic Applications.

This chapter describes only the fields specific to Defining a Collection Object for a XML, SOAP, and XSLT
Dynamic Application. All the remaining fields, for both performance and configuration archetypes, are described
in detail in the manual Dynamic Application Development. All other elements of XML, SOAP, and XSLT
Collection Objects, such as presentation objects and alerts, behave in the same manner as other Dynamic
Application types.

For details on other parts of XML, SOAP, and XSLT Dynamic Applications, see the manual Dynamic Application
Development.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Protocol-Specific Fields for Collection Objects 17

Specifying XML Tags and SOAP Tags 18

Specifying XSLT Tags 19

Session ID Objects 20

Protocol-Specific Fields for Collection Objects

Similar to other Dynamic Application types, XML, SOAP, and XSLT Dynamic Applications contain collection
objects. Collection objects for XML, SOAP, and XSLT Dynamic Applications have characteristics common to
collection objects for other Dynamic Application types, such as naming, data typing, and grouping. This section
describes the collection object fields that are specific to XML, SOAP, and XSLT Dynamic Applications.

XML Dynamic Applications

Collection objects for XML Dynamic Applications have the following unique fields:

l XML Tags. Specifies how SL1 should parse the collection object from the XML document that is requested
for this Dynamic Application. For a full description of this field, see the Specifying XML Tags and SOAP
Tags section of this chapter.

l XML Document. Appears only for Dynamic Applications that have Consume cached results selected in the
Caching drop-down list in the Dynamic Applications Properties Editor page. This field specifies the
Dynamic Application that retrieves the XML document that this collection object will be collected from. The
list of Dynamic Applications in this field is limited to XML Dynamic Applications that have Cache results
selected in the Caching drop-down list in the Dynamic Applications Properties Editor page.

SOAP Dynamic Applications

Collection objects for SOAP Dynamic Applications have the following unique fields:

l SOAP Request. Select the SOAP request that returns a value for this collection object.

o For Dynamic Applications that have No Caching or Cache Results selected in the Caching drop-
down list in the Dynamic Applications Properties Editor page, this drop-down list contains all
SOAP requests defined in the same Dynamic Application.

o For Dynamic Applications that have Consume cached results selected in the Caching drop-down list
in the Dynamic Applications Properties Editor, this drop-down list contains requests defined in
SOAP Dynamic Applications that have Cache results selected in the Caching drop-down list in the
Dynamic Applications Properties Editor page.

l SOAP Tags. Specifies how SL1 should parse the collection object from the XML document that is collected
using the request specified in the SOAP Request field. For a full description of this field, see the Specifying
XML Tags and SOAP Tags section.

XSLT Dynamic Applications

Collection objects for XSLT Dynamic Applications have the following unique elements:

l XSLT Request. Select the XSLT request that returns a value for this collection object.

o For Dynamic Applications that have No Caching or Cache Results selected in the Caching drop-
down list in the Dynamic Applications Properties Editor page, this drop-down list contains all XSLT
requests defined in the same Dynamic Application.

o For Dynamic Applications that have Consume cached results selected in the Caching drop-down list
in the Dynamic Applications Properties Editor, this drop-down list contains requests defined in
XSLT Dynamic Applications that have Cache results selected in the Caching drop-down list in the
Dynamic Applications Properties Editor page.

l XSLT Tags. Specifies how SL1 should parse the collection object from the XML document that is returned by
the request specified in the XSLT Request field. For a full description of this field, see the Specifying XSLT
Tags section.

Specifying XML Tags and SOAP Tags

In the XML Tags field (for XML Dynamic Applications) or SOAP Tags field (for SOAP Dynamic Applications), you
must specify how SL1 should parse a value (or values) from the returned XML document.

In this field, you must specify a series of XML tags that specify an element or attribute in the XML document.

Parsing an XML Element

To specify that SL1 should parse the value of an element (that is, a value that is inside an opening and closing
XML tag), specify the series of opening XML tags that lead to that element. For example, suppose the XML
document looks like this:

<LoginMonitor>

<CustomerID>

<AuthFailures>10</AuthFailures>

</CustomerID>

</LoginMonitor>

If you wanted to parse the value of the <AuthFailures> element (in this example, the value "10"), you would enter
the following in the XML Tags field or SOAP Tags field:

<LoginMonitor><CustomerID><AuthFailures>

To specify that SL1 should parse the value of an XML tag attribute, specify the series of opening XML tags that lead
to the XML tag that contains the attribute. In the XML tag that contains the attribute, specify the attribute in the XML
tag with the substitution character %V as the attribute value. For example, suppose the XML document looks like
this:

<LoginMonitor>

<CustomerID>

<AuthFailures type="1">10</AuthFailures>

</CustomerID>

</LoginMonitor>

If you wanted to parse the value of the "type" attribute from the <AuthFailures> tag (in this example, the value
"1"), you would enter the following in the XML Tags field or SOAP Tags field:

<LoginMonitor><CustomerID><AuthFailures type="%V">

A collection object in an XML or SOAP Dynamic Application will return a list of values if the XML Tags or SOAP
Tags specify an element or attribute that appears multiple times in the XML document. For example, if the XML
document looks like this:

<LoginMonitor>

<CustomerID>

<AuthFailures type="1">10</AuthFailures>

</CustomerID>

<CustomerID>

<AuthFailures type="2">20</AuthFailures>

</CustomerID>

</LoginMonitor>

The example collection objects in this section will both collect a list of two values.

Specifying XSLT Tags

Unlike XML documents in XML and SOAP Dynamic Applications, the XML document returned by an XSLT request
is in a specific format. To specify how SL1 should parse a value (or values) from the XML document returned by an
XSLT request, enter the element tag name for the value you want to collect in the XSLT Tags field.

For example, suppose the result of the XSLT Parser transformation is:

<response>

<row>

<cpupercent>90</cpupercent>

</row>

</response>

If you wanted to parse the value of the <cpupercent> element (in this example, the value "90"), you would enter
"cpupercent" in the XSLT Tags field.

NOTE: Do not include the less-than (<) or greater-than (>) characters in the XSLT Tags field.

Session ID Objects

For SOAP and XSLT Dynamic Applications, an additional option is available in the Class Type field for collection
objects: [109] SOAP/XSLT Session ID.

Some SOAP servers require that a management system like SL1 use a unique, persistent session ID every time the
management system authenticates. This means that when SL1 monitors such a SOAP server, the same session ID
value must be used for every poll period.

You can tell SL1 to use the same session ID for every poll period by using the [109] SOAP/XSLT Session ID class
type. When a collection object uses this class type:

l The request that returns this collection object will be considered a "login" request to the SOAP server.
Usually, this request will be performed before all other requests in the Dynamic Application. This SOAP or
XSLT request must not return collection objects that do not use the [109] SOAP/XSLT Session ID class type.

l At the start of each poll period, SL1 checks to see if a value has previously been collected and stored for this
collection object:

o If a value has been previously collected and stored, SL1 does not perform the SOAP or XSLT
request the collection object is associated with. The previously collected value is used when this
collection object is substituted in to the other requests (for SOAP Dynamic Applications) or when this
collection object appears in the XML document that contains all collected values (for XSLT Dynamic
Applications).

o If a value has not been previously collected and stored, SL1 performs the SOAP or XSLT request the
collection object is associated with as normal. The collected value is stored for use in future polling
periods.

l If a previously collected value is used to populate the collection object and one of the subsequent requests
returns a SOAP fault, SL1 will:

o Perform the SOAP request that retrieves the SOAP/XSLT Session ID collection object, storing the new
value for use in future polling periods.

o Resume collection by retrying the request that returned the SOAP fault.

NOTE: The request that returns a SOAP/XSLT Session ID collection object will be performed only
once per poll period. After the request that returns a SOAP/XSLT Session ID collection object
is performed, subsequent request that return SOAP faults will not be retried.

Example

A
Creating an XML Dynamic Application

Overview

This chapter describes how to create and test an XML Performance Dynamic Application.

Use the following menu options to navigate the SL1 user interface:

l To view a pop-out list of menu options, click the menu icon ().

l To view a page containing all of the menu options, click the Advanced menu icon ().

This chapter covers the following topics:

Creating the Dynamic Application 23

Testing the Dynamic Application 27

Creating the Dynamic Application

In this example, the Dynamic Application will collect data from a Dial Number Identification Service on a
transaction switch. To define the properties for the Dynamic Application, perform the following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the [Actions] button, then select Create New Dynamic Application. The Dynamic Applications
Create New Application page appears.

3. Supply values in the following fields:

l Application Name. Enter "Dial Number Identification Service" in this field.

l Application Type. Select XML Performance.

l Poll Frequency. Select Every 1 Minute to see data as quickly as possible.

4. For this example, you can leave the remaining fields set to their default value. Select the [Save] button to
save the Dynamic Application.

Defining XML Data-Points to Monitor

After defining the properties for the XML Dynamic Application, we must determine what data-points are available
for the Dynamic Application to collect. Each data point will be used to create a collection object.

This example Dynamic Application will collect data from an XML document that looks like this:

<?xml version="1.0" encoding="ISO‐8859‐1"?>

<TS-IENMonitor>

<DNIS>

<DNIS-ID>997</DNIS-ID>

<X25CallsSuccess>100</X25CallsSuccess>

<X25CallsFail>10</X25CallsFail>

<AuthsSuccess>100</AuthsSuccess>

<AuthsFail>10</AuthsFail>

<AuthsFailRate>10</AuthsFailRate>

<SettlementsSuccess>100</SettlementsSuccess>

<SettlementsFail>10</SettlementsFail>

<SettlementsFailRate>10</SettlementsFailRate>

</DNIS>

<DNIS>

<DNIS-ID>998</DNIS-ID>

<X25CallsSuccess>100</X25CallsSuccess>

<X25CallsFail>10</X25CallsFail>

<AuthsSuccess>100</AuthsSuccess>

<AuthsFail>10</AuthsFail>

<AuthsFailRate>10</AuthsFailRate>

<SettlementsSuccess>100</SettlementsSuccess>

<SettlementsFail>10</SettlementsFail>

<SettlementsFailRate>10</SettlementsFailRate>

</DNIS>

<DNIS-Summary>

<X25CallsTotal>220</X25CallsTotal>

<AuthsTotal>110</AuthsTotal>

<SettlementsTotal>110</SettlementsTotal>

</DNIS-Summary>

</TS-IENMonitor>

We will define the following collection objects in SL1:

Name XML Tag Description

DNIS ID <DNIS -ID> DNIS stands for dialed number identification service.
DNIS is a service sold by telecommunications
companies to corporate clients that lets them
determine which telephone number was dialed by a
customer. For example, a company may have a
different toll free number for each product line it
sells. If a call center is handling calls for multiple
product lines, the switch that receives the class can
examine the DNIS, then play the appropriate
recorded greeting.

The collection object "DNIS ID" specifies the phone
number called by customers

Successful X25
Calls

<X25CallsSuccess> X.25 is a data communications protocol developed
to describe how data passes into and out of public
data communication networks. The protocol is used
primarily by telephone companies.

The collection object "Successful X25 Calls" specifies
how many incoming and outgoing phone calls using
X25 were successfully connected.

Failed X25 Calls <X25CallsFail> The collection object "Failed X25 Calls" specifies how
many incoming and outgoing phone calls using X25
were not successfully connected.

Successful
Authentications

<AuthsSuccess> Authentication means the verification of the identity
of a person or process placing the call.

The collection object "Successful Authentication"
specifies how many calls were successfully
authenticated.

Failed
Authentications

<AuthsFail> The collection object "Failed Authentication" specifies
how many calls were not successfully authenticated.

Authentication
Failure Rate

<AuthsFailRate> The collection object "Authentication Failure Rate"
specifies the percentage of authentications that failed.

Successful
Settlements

<SettlementsSuccess> A Settlement is the process by which merchant banks
and cardholder banks exchange financial data
resulting from sales transactions, cash
disbursements, and merchandise credits.

The collection object "Successful Settlements"
specifies how many settlement transactions were
completed successfully.

Name XML Tag Description

Failed Settlements <SettlementsFail> The collection object "Failed Settlements" specifies
how many settlement transactions were not completed
successfully.

Settlement Failure
Rate

<SettlementsFailRate> The collection object "Settlement Failure Rate"
specifies the percentage of settlements that failed.

Total X25 Calls <X25CallsTotal> The collection object "Total X25 Calls" specifies the
total number of successful and failed, incoming and
outgoing phone calls using X25 on all monitored
DNIS numbers.

Total
Authentications

<AuthsTotal> The collection object "Total Authentications" specifies
the total number of successful and failed
authentications on all monitored DNIS numbers.

Total Settlements <SettlementsTotal> The collection object Total Settlements specifies the
total number of successful and failed settlements on all
monitored DNIS numbers.

Defining the Collection Objects

After determining what data-points are available, you can define your collection objects. To define the collection
objects:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the wrench icon () for the Dial Number Identification Service Application.

3. Select the [Collections] tab. The Dynamic Applications | Collections Objects page appears.

4. To create the collection object for DNIS ID, supply values in the following fields:

l Object Name. Enter "DNIS ID" in this field.

l XML Tags. In this field you specify the element or attribute that should be parsed from the XML document for
this collection object. Enter "<TS-IENMonitor><DNIS><DNIS-ID>" in this field

l Class Type. Select Label (Always Polled). This value will be used to label the graph lines on the performance
graph.

l Group Number. We selectedGroup 1. All collection objects that appear inside the <DNIS> section of the
XML document will be in this group. Including all these collection objects in the same group means that this
collection object will be used to label the graph lines on every performance graph that uses these collection
objects.

5. For this example, you can leave the remaining fields set to their default values.

6. Select the [Save] button.

7. Select the [Reset] button to clear the form fields.

8. For the remaining nine collection objects, follow the example above. Once complete, the Collection
Object Registry will look like this:

NOTE: Select Performance Gauge as the Class Type for the remaining collection objects, because these
collection objects contain performance values that can go up or down between poll periods. Include
every collection object inGroup 1, except for the Total X25 Calls, Total Settlements, and Total
Authentications. Because these values must not be associated with the "DNS ID" labels, group
these three collection objects inGroup 2.

Creating the Presentation Object

When you create a collection object in a Performance Dynamic Application, SL1 automatically creates a
presentation object that corresponds to that collection object. You must enable these presentation objects for SL1
to generate a graph using those presentation objects. To enable a presentation object:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the wrench icon () for the Dial Number Identification Service Application.

3. Select the [Presentations] tab. The Dynamic Applications Presentation Objects page appears.

4. In the Dynamic Applications Presentation Objects page, select the wrench icon () for the presentation
object you want to enable.

5. In the Active State drop-down, select Enabled.

6. Select the [Save] button.

7. Repeat the steps above for the remaining nine presentation objects.

Testing the Dynamic Application

To test the Dial Number Identification Service Dynamic Application in this example, you must configure a web
server to host the XML document. The web server must:

l Return the XML document listed in the Defining XML Data-Points to Monitor section in response to a GET
request.

l Be discoverable by SL1 as an SNMP device or a Non-SNMP device.

This example uses an Administration Portal as the web server. The root directory for an Administration Portal is:

/usr/local/silo/gui/ap/www/

For this example:

l A directory called "xml" was created in the root directory of the Administration Portal.

l A file called "ienmonitor.xml", which contains the XML listed in the Defining XML Data-Points to Monitor
section, was created in the "xml" directory.

l The permissions on the "xml" directory and the "ienmonitor.xml" file were changed to 755.

l The Administration Portal was discovered in SL1.

Creating a Credential

For SL1 to collect data for the Dial Number Identification Service Dynamic Application from a test device, you
must create a SOAP/XML credential. To create the SOAP/XML credential:

1. Go to the Credential Management page (System >Manage > Credentials).

2. Select the [Create] button, then select SOAP/XML Host Credential from the drop-down list. The Create
New CURL/SOAP Credential page appears.

3. Supply values in the following fields:

l Profile Name. Enter "Dial Number XML".

l Method. SelectGET in this field.

l URL. Enter the URL of the XML document. Use the "%D" substitution character to supply the IP address
of the test device. This example uses the URL "http://%D/xml/ienmonitor.xml".

4. For this example, you can leave the reaming fields set to the default values.

5. Select the [Save] button.

Manually Aligning the Dynamic Application to the Test Device

After you have configured the test device, you can align the Dial Number Identification Service Dynamic
Application to the device. After aligning the Dynamic Application to the device, SL1 will collect data and we can
view the Presentation objects we defined in the Creating a Presentation Object section.

To manually align the Dynamic Application to a device:

1. Go to the Device Manager page (Registry > Devices > Device Manager).

2. In the Device Manager page, find the test device you configured for this example. Select its wrench icon (
).

3. The Device Properties page appears. Select the [Collections] tab.

4. In the Dynamic Application Collections page, select the [Action] button and select Add Dynamic
Application. The Dynamic Application Alignment page appears.

5. In the Dynamic Applications pane, select the Dial Number Identification Service Dynamic Application. In the
Credentials pane, select Dial Number XML.

6. Select the [Save] button to assign the credential.

Viewing the Reports

After the Dynamic Application has collected the data specified in the collection objects, you can view the
performance report for the test device. To view the performance report for the test device with the Dial Number
Identification Service Dynamic Application aligned to it:

1. From the Dynamic Application Collections page, select the [Reset] button to update the page with the
latest information.

2. Locate the Dial Number Identification Service. If the graph icon () is colored, the performance graph is

available. Select the graph icon for the presentation object you want to view.

Or:

1. Go to the Device Manager page (Registry > Devices > Device Manager).

2. In the Device Manager page, find the test device you aligned the Dial Number Identification Service
application to. Select the device's graph icon ().

3. The Device Summary page appears. Select the [Performance] tab.

4. In the left NavBar, select Dial Number Identification Service, then select the presentation object you want to
view. For example, select AuthsSuccess.

5. The AuthsSuccess report is displayed.

l You can mous eover different data points on the report, and the report will display the collected value
for the given time.

l The values for each label object are displayed in the graph key at the bottom of the report.

6. To learn more above device performance reports, see the manualMonitoring Device Infrastructure
Health.

Example

2
Dynamic Component Mapping & Caching with

XSLT

Overview

The following sample describes the development of three XSLT Dynamic Applications. The Dynamic Applications
in this example demonstrate:

l How to create Dynamic Applications to discover component devices using Dynamic Component Mapping.

l How to use caching to associate performance data with component devices.

The Dynamic Applications in this example collect component device information from a hypothetical
management system. For simplicity, the management system used in this example does not require some features
that would typically be used in XSLT Dynamic Applications:

l The management system reports all the necessary data in a single static XML document. This allows the
Dynamic Applications to make only one request.

l The management system returns the XML document in response to a GET request. This means that the
Dynamic Applications do not require XSLT Request code. This simplification also means you can try the
Dynamic Applications described in this example by configuring a Web Server to act as the management
system.

The XML document returned by the management system looks like this:

<xml>

<component>

<name>component-one</name>

<id>00001</id>

<cpu>80</cpu>

<memory>80</memory>

</component>

<component>

<name>component-two</name>

<id>00002</id>

<cpu>60</cpu>

<memory>60</memory>

</component>

<component>

<name>component-three</name>

<id>00003</id>

<cpu>70</cpu>

<memory>70</memory>

</component>

<component>

<name>component-four</name>

<id>00004</id>

<cpu>55</cpu>

<memory>55</memory>

</component>

<component>

<name>component-five</name>

<id>00005</id>

<cpu>20</cpu>

<memory>20</memory>

</component>

</xml>

Using this XML document, the Dynamic Applications in this example:

l Cache the returned XML document, so that the Dynamic Applications must make only a single request to the
management system during a polling period.

l Retrieves the name and id values for each component to model each component as a separate device in
SL1.

l Use the cpu andmemory values to create performance graphs for each component device. The Dynamic
Application that collects the CPU and Memory data will be aligned with each component device separately;
the performance graph for each component device will show the CPU and Memory statistics for that
component device only.

NOTE: Because the XML document used in this example is static, the values on the CPU and Memory
graphs for each component device will be constant.

Design

This example uses three Dynamic Applications:

l Example Dynamic Component Mapping General. This Dynamic Application:

o Requests and caches the XML page from the management system.

o Contains a discovery object so that SL1 can automatically align the Dynamic Application with the
management system during discovery.

o Contains no other collection objects. Remember that a Dynamic Application that caches responses
cannot include collection objects that need to be collected at regular intervals.

l Example Dynamic Component Mapping Discovery. This Dynamic Application:

o Contains a discovery object so that SL1 can automatically align the Dynamic Application with the
management system during discovery.

o Uses the cached response collected by the Example Dynamic Component Mapping General
Dynamic Application to collect the Name and ID values from the XML document.

o Uses the Name and ID values to model the component devices. The Name value populates the
Device Name component identifier, and the ID value populates the Unique Identifier component
identifier.

o Is associated with a Device Class. SL1 assigns that device class to each component device that is
created.

o Automatically aligns the Example Component Performance Dynamic Application to each
component device that is created.

NOTE: The Example Dynamic Component Mapping Discoverymeets the minimum requirements
for creating component devices by including a Device Name component identifier, a Unique
Identifier component identifier, and an associated device class.

l Example Component Performance. This Dynamic Application:

o Is automatically aligned to component devices by the Example Dynamic Component Mapping
Discovery Dynamic Application.

o Uses the cached response collected by the Example Dynamic Component Mapping General
Dynamic Application to collect the CPU and Memory values from the XML document.

o The XSLT Parser Code specified in this Dynamic Application uses the %U substitution (the Unique
Identifier component identifier) to collect only the CPU and Memory values that are associated with
the current component device.

o Contains Presentation Objects to display the collected CPU and Memory values in a graph.

Creating the "Example Dynamic Component Mapping
General" Dynamic Application

Defining the Dynamic Application Properties

To create the Dynamic Application and define the general properties for this Dynamic Application, perform the
following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the [Actions] button, then select Create New Dynamic Application™. The Dynamic Applications
Create New Application page appears.

3. Supply values in the following fields:

l Application Name. Enter "Example Dynamic Component Mapping General" in this field.

l Application Type. This example uses the XSLT protocol. Dynamic Applications of type Performance
must include a presentation object to work correctly. Because this Dynamic Application does not
include collection objects that can be used in a presentation object, this Dynamic Application is of
type Configuration. Select XSLT Config [17] in this field.

l Poll Frequency. To see data as quickly as possible, select Every 1 Minute in this field.

l Caching. This Dynamic Application must cache the response from the management system. Select
Cache Results in this field.

l Component Mapping. This Dynamic Application does not include collection objects that are used
to create component devices. Leave this checkbox unchecked.

4. For this example, you can leave the remaining fields set to the default values.

5. Select the [Save] button.

Adding the XSLT Request

The XSLT request in this Dynamic Application retrieves the XML document from the management system. The
retrieved XML document is cached for use by the other Dynamic Applications in this example.

The XSLT request in this Dynamic Application contains XSLT Parser Code that transforms the XML document to
collect the discovery object for this Dynamic Application. The XSLT Parser code applies only to this Dynamic
Application. The other Dynamic Applications in this example contain different XSLT Parser code that will perform
different transformations on the cached XML document.

To create the XSLT request for this Dynamic Application, perform the following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the wrench icon () for the Example Dynamic Component Mapping General Dynamic

Application. The Dynamic Applications Properties Editor page appears.

3. Select the [Requests] tab. The Dynamic Applications Request Editor and Registry page appears.

4. Supply values in the following fields:

l Request Name. Enter "Get Full Document" in this field.

l Execution Sequence. This Dynamic Application contains only one XSLT request. Select 0 in this field.

l Active State. This XSLT request must be executed to collect data. Select Enabled in this field.

l XSLT Request Code. Because SL1 performs an HTTP GET request to retrieve the XML document from
the management system, we are not required to generate an XML document to POST to the
management system. However, SL1 still performs a transformation using the XSLT Request Code
before performing the request. Therefore, the XSLT Request Code used in this example performs a
transformation that outputs a blank XML document. Enter the following code in this field:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding="iso-8859-1"

indent="yes"/>

</xsl:stylesheet>

l XSLT Parser Code. The discovery object in this Dynamic Application determines whether the
returned XML document contains at least one "<component>" element that contains a value for the
"<name>" element. Therefore, the XSLT Parser Codemust transform the returned XML document
into an XML document with the following structure:

<response>

<row>

<name>name value</name>

</row>

</response>

The XSLT Parser Code uses a single xsl:value-of element to select the first component name that
appears in the returned XML document. The component name is inserted inside the required
structure. Enter the following code in this field:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding="iso-8859-1"

indent="yes"/>

<xsl:template match="/">

<response>

<row>

<name>

<xsl:value-of select="xml/component/name"/>

</name>

</row>

</response>

</xsl:template>

</xsl:stylesheet>

5. Select the [Save] button.

Adding the Discovery Object

This Dynamic Application includes one discovery object that tells SL1 to automatically align the Dynamic
Application to the management system. Because a Dynamic Application that caches responses cannot include
collection objects that need to be collected at regular intervals, there are no other collection objects in this
Dynamic Application. The discovery object in this Dynamic Application will determine whether the returned XML
document contains at least one "<component>" element that contains a value for the "<name>" element.

To create the discovery object for this Dynamic Application, perform the following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the wrench icon () for the Example Dynamic Component Mapping Discovery Dynamic
Application. The Dynamic Applications Properties Editor page appears.

3. Select the [Collections] tab. The Dynamic Applications | Collections Objects page appears.

4. Supply values in the following fields:

l Object Name. Enter "Discovery" in this field.

l XSLT Tags. The value you enter in this field must correspond with the name of an XML tag in the
transformed response. Enter "name" in this field. The XSLT Request that you defined in the previous
section returns the following transformed response:

<response>

<row>

<name></name>

</row>

</response>

This discovery object looks for the presence of a component name in the transformed response.

l Class Type. Select 100 Discovery in this field. This specifies that the object is a discovery object.

l XSLT Request. Select theGet Full Document request you created in the previous section.

5. For this example, you can leave the remaining fields set to the default values.

6. Select the [Save] button. After you save the discovery object, the form will change to show additional fields
that apply only to discovery objects. These additional fields are not used by this example.

Creating the "Example Dynamic Component Mapping
Discovery" Dynamic Application

Defining the Dynamic Application Properties

To create the Dynamic Application and define the general properties for this Dynamic Application, perform the
following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the [Actions] button, then select Create New Dynamic Application™. The Dynamic Applications
Create New Application page appears.

3. Supply values in the following fields:

l Application Name. Enter "Example Dynamic Component Mapping Discovery" in this field.

l Application Type. This example uses the XSLT protocol. The data collected by this Dynamic
Application, the component name and ID, are best displayed in tabular format, so this example uses
the Configuration type. Select XSLT Config [17] in this field.

l Poll Frequency. To see data as quickly as possible, select Every 1 Minute in this field.

l Caching. This Dynamic Application uses the XML document collected by the Example Dynamic
Component Mapping General Dynamic Application. Select Consume Cached Results in this field.

l Component Mapping. This Dynamic Application contains collection objects that SL1 will use to
create component devices. Check this checkbox.

4. For this example, you can leave the remaining fields set to the default values.

5. Select the [Save] button.

Adding the XSLT Requests

This Dynamic Application includes two XSLT requests. Each XSLT request contains XSLT Parser Code that
transforms the XML document cached by the Example Dynamic Component Mapping General Dynamic
Application. The transformed XML document contains:

l For the first request, the discovery object for this Dynamic Application. The discovery object in this Dynamic
Application is the same as the discovery object in the Example Dynamic Component Mapping General
Dynamic Application.

l For the second request, the component name and ID values that SL1 uses to create the component devices.

To create the XSLT requests for this Dynamic Application, perform the following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the wrench icon () for the Example Dynamic Component Mapping Discovery Dynamic
Application. The Dynamic Applications Properties Editor page appears.

3. Select the [Requests] tab. The Dynamic Applications Request Editor and Registry page appears.

4. To create the first request, supply values in the following fields:

l Request Name. Enter "Discovery" in this field. This request returns the XML document that contains
the discovery object for this Dynamic Application.

l Execution Sequence. This Dynamic Application does not require SL1 to execute the XSLT requests in
a specific order; however, the two requests must have unique values for this field. Select 0 in this field.

l Active State. This XSLT request must be executed to collect data. Select Enabled in this field.

l Cached XSLT Request. This field specifies the cached XML document to transform. Locate the
Example Dynamic Component Mapping Discovery Dynamic Application and selectGet Full
Document from this list.

l XSLT Parser Code. This Dynamic Application uses the same discovery object as is used in the
Example Dynamic Component Mapping General Dynamic Application. Therefore, this request
uses the same XSLT Parser Code as the request in the Example Dynamic Component Mapping
General Dynamic Application. Enter the following code in this field:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding="iso-8859-1"

indent="yes"/>

<xsl:template match="/">

<response>

<row>

<name>

<xsl:value-of select="xml/component/name"/>

</name>

</row>

</response>

</xsl:template>

</xsl:stylesheet>

5. Select the [Save] button.

6. Select the [Reset] button to clear the form fields.

7. To create the second request, supply values in the following fields:

l Request Name. Enter "Get Components" in this field. This request will return the XML document that
contains the name and ID values for the component devices.

l Execution Sequence. This Dynamic Application does not require SL1 to execute the XSLT requests in
a specific order; however, the two requests must have unique values for this field. Select 1 in this field.

l Active State. This XSLT request must be executed to collect data. Select Enabled in this field.

l Cached XSLT Request. This field specifies the cached XML document to transform. Locate the
Example Dynamic Component Mapping Discovery Dynamic Application and selectGet Full
Document from this list.

l XSLT Parser Code. Two collection objects will be parsed from the output of this XSLT request: the
component name and the component ID. The XML document returned by the management system
might contain information about multiple component devices, so both the name and ID collection
objects might be a list of values. The association of component name to component ID must be
maintained for each pair of values, that is, they must reside in the same row in the transformed XML
document. Therefore, the XSLT Parser Codemust transform the returned XML document into an XML
document with the following structure:

<response>

<row>

<name>name value for the first component device in the

response</name>

<id>ID value for the first component device in the

response</id>

</row>

<row>

<name>name value for the second component device in the

response</name>

<id>ID value for the second component device in the

response</id>

</row>

.

.

.

<row>

<name>name value for the last component device in the

response</name>

<id>ID value for the first component device in the

response</id>

</row>

</response>

The XSLT Parser Code uses an xsl:for-each element to iterate through the component devices in
the returned XML document, creating a <row> block for each component device. The component
name and ID values are inserted inside the required structure. Enter the following code in this field:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding="iso-8859-1"

indent="yes"/>

<xsl:template match="/">

<response>

<xsl:for-each select="xml/component">

<row>

<xsl:element name="name">

<xsl:value-of select="name"/>

</xsl:element>

<xsl:element name="id">

<xsl:value-of select="id"/>

</xsl:element>

</row>

</xsl:for-each>

</response>

</xsl:template>

</xsl:stylesheet>

8. Select the [Save] button.

Adding the Collection Objects

This Dynamic Application includes a discovery object that tells SL1 to automatically align the Dynamic
Application to the management system. The discovery object in this Dynamic Application determines whether the
returned XML document contains at least one "<component>" element that contains a value for the "<name>"
element.

To create a component device, a Dynamic Component Mapping Dynamic Application must:

l Collect an object that maps to the Unique Identifier component identifier. This Dynamic Application
includes a collection object that parses the component ID from the XML document. The component ID maps
to the Unique Identifier.

l Collect an object that maps to the Device Name component identifier. This Dynamic Application includes a
collection object that parses the component name from the XML document. The component name maps to
the Device Name.

l Be associated with a component device class. The device class for this Dynamic Application is described in
the Creating a Device Class for the Component Devices section.

To create the collection objects for this Dynamic Application, perform the following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the wrench icon () for the Example Dynamic Component Mapping Discovery Dynamic

Application. The Dynamic Applications Properties Editor page appears.

3. Select the [Collections] tab. The Dynamic Applications | Collections Objects page appears.

4. To create the discovery object, supply values in the following fields:

l Object Name. Enter "Discovery" in this field.

l XSLT Tags. The value you enter in this field must correspond with the name of an XML tag in the
transformed response. Enter "name" in this field. The "Discovery" XSLT Request you defined in the
previous section returns the following transformed response:

<response>

<row>

<name></name>

</row>

</response>

This discovery object should look for the presence of a component name in the transformed
response.

l Class Type. Select 100 Discovery in this field. This specifies that the object is a discovery object.

l XSLT Request. Select the Discovery request you created in the previous section.

5. For this example, you can leave the remaining fields set to the default values.

6. Select the [Reset] button to clear the form fields.

7. To create the collection object for the component ID, supply values in the following fields:

l Object Name. Enter "Component ID" in this field.

l XSLT Tags. Enter "id" in this field. The "Get Components" XSLT Request you defined in the previous
section returns the following <row> block for each component device:

<row>

<name></name>

<id></id>

</row>

This collection object parses the component ID from each <row> block.

l Class Type. Select 10 Config Character in this field. To maintain the leading zeroes in the collected
component ID values, the ID is stored as a string.

l Group Number. To maintain the association between the collected component ID and component
name values, you must ensure that SL1 uses the same internal indexes for each list. SL1 maintains
internal indexes for each group of collection objects. Therefore, the component ID and component
name collection objects must be in the same group for SL1 to use the same internal index for both
collection objects. SelectGroup 1 in this field.

l Index. By default, SL1 assigns internal indexes to the list of collected values based on the order in
which they appear in the response. Suppose that "component-four" is disabled on the management
system. Suppose that when "component-four" is disabled, it no longer appears in the XML response
from the management system. When "component-four" appeared in the XML response, the following
internal indexes would have been assigned:

o Index 0 = component-one

o Index 1 = component-two

o Index 2 = component-three

o Index 3 = component-four

o Index 4 = component-five

When "component-four" is disabled, it no longer appears in the XML response from the
management system. During the next poll period, the index for "component-five" will change:

o Index 0 = component-one

o Index 1 = component-two

o Index 2 = component-three

o Index 3 = component-five

In cases where the order or size of the list of values might change, you must designate a collection
object as an index. This example designates the component ID collection object as the index. The
collection object that is designated as an index must meet the following requirements:

l The list of values returned by the collection object must be unique. In this example, the
component ID is unique.

l If a previously collected value in the list of values appears in a new list of collected values, that
collected value is associated with the same set of values. In this example, a set of values is a
component ID/component name pair. When a previously collected component ID is collected
again, it is always associated with the same component name; therefore, the component ID
can be used as the index.

Select the Index checkbox.

l XSLT Request. Select theGet Components request you created in the previous section.

l Component Identifiers. Each value collected for this collection object will be used as the unique
identifier for a component device. Select Unique Identifier (%U) in this field.

8. For this example, you can leave the remaining fields set to the default values.

9. Select the [Save] button.

10. Select the [Reset] button to clear the form fields.

11. To create the collection object for the component name, supply values in the following fields:

l Object Name. Enter "Component Name" in this field.

l XSLT Tags. Enter "name" in this field. The "Get Components" XSLT Request you defined in the
previous section returns the following <row> block for each component device:

<row>

<name></name>

<id></id>

</row>

This collection object parses the component name from each <row> block.

l Class Type. Select 10 Config Character in this field. The component name is a string.

l Group Number. To maintain the association between the collected values for component ID and
component name, you must ensure that SL1 uses the same internal indexes for each list. SL1
maintains internal indexes for each group of collection object. Therefore, the component ID and
component name collection objects must be in the same group for SL1 to use the same internal index
for both collection objects. SelectGroup 1 in this field.

l Index. Leave this checkbox unchecked. The collection object for the component ID has already been
designated as the index for this group of collection objects.

l XSLT Request. Select theGet Components request you created in the previous section.

l Component Identifiers. Each value collected for this collection object will be used as the device
name of a component devices. Select Device Name (%N) in this field.

12. For this example, you can leave the remaining fields set to the default values.

13. Select the [Save] button.

Creating a Device Class for the Component Devices

For SL1 to create a component device, the Dynamic Component Mapping Dynamic Application must include
collection objects that map to the Device Name and Unique Identifier component identifiers. In addition, the
same Dynamic Application must be associated with a component Device Class. When you associated a
component Device Class with a Dynamic Application, you are telling SL1 to assign that device class to each
component device that is created by the Dynamic Application.

To create a device class that is associated with the Example Dynamic Component Mapping Discovery
Dynamic Application, perform the following steps:

1. Go to the Device Class Editor page (System > Customize > Device Classes).

2. In the Device Class Editor pane at the top of the page, supply values in the following fields:

l Device Type. This device class will be assigned to component devices. Select Component in this
field.

l Root Device. The component devices in this example will not act as root devices. Leave this
checkbox unchecked.

l Device Class. Enter "Example" in this field.

l Description. Enter "Component Device" in this field.

l Dynamic App Alignment. Select Example Dynamic Component Mapping Discovery in this field.

3. Select the [Save] button.

Creating the "Example Component Performance" Dynamic
Application

Defining the Dynamic Application Properties

To create the Dynamic Application and define the general properties for this Dynamic Application, perform the
following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the [Actions] button, then select Create New Dynamic Application™. The Dynamic Applications
Create New Application page appears.

3. Supply values in the following fields:

l Application Name. Enter "Example Component Performance" in this field.

l Application Type. This example uses the XSLT protocol. The data collected by this Dynamic
Application will be displayed in a graph, so this example uses the Performance archetype. Select XSLT
Performance in this field.

l Poll Frequency. To see data as quickly as possible, select Every 1 Minute in this field.

l Caching. This Dynamic Application will use the XML document collected by the Example Dynamic
Component Mapping General Dynamic Application. Select Consume Cached Results in this field.

l Component Mapping. Although this Dynamic Application will be aligned with component devices,
this Dynamic Application does not include collection objects that are used to create component
devices. Leave this checkbox unchecked.

4. For this example, you can leave the remaining fields set to the default values.

5. Select the [Save] button.

Adding the XSLT Request

This Dynamic Application includes one XSLT request. The XSLT request will contain XSLT Parser Code that
transforms the XML document cached by the Example Dynamic Component Mapping General Dynamic
Application. The transformed response will return the CPU and memory utilization values for the component
device.

The XSLT request uses the "%U" substitution character to filter the cached XML document. Before performing the
transformation, SL1 will replace "%U" with the unique identifier of the component device for which data is
currently being collected. By filtering the cached XML document using the unique identifier, the transformed
response will contain the CPU and Memory utilization only for the component device for which data is currently
being collected.

This Dynamic Application will be aligned with each of the five component devices in this example. Therefore,
during each poll, the transformation will be performed five times, resulting in five different sets of CPU and
memory utilization data (one set for each component device).

To create the XSLT request for this Dynamic Application, perform the following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the wrench icon () for the Example Component Performance Dynamic Application. The

Dynamic Applications Properties Editor page appears.

3. Select the [Requests] tab. The Dynamic Applications Request Editor and Registry page appears.

4. Supply values in the following fields:

l Request Name. Enter "Get CPU+Memory" in this field. This request will return the XML document
that contains the CPU and memory utilization values for the component devices.

l Execution Sequence. This Dynamic Application will contain only one XSLT request. Select 0 in this
field.

l Active State. This XSLT request must be executed to collect data. Select Enabled in this field.

l Cached XSLT Request. This field specifies the cached XML document to transform. Locate the
Example Dynamic Component Mapping Discovery Dynamic Application and selectGet Full
Document from this list.

l XSLT Parser Code. Two collection objects will be parsed from the output from this XSLT request: the
CPU utilization and the memory utilization. The transformed response must include the set of CPU
and memory utilization values only for the component device for which data is currently being
collected. Therefore, the XSLT Parser Codemust transform the returned XML document into an XML
document with the following structure:

<response>

<row>

<cpu>CPU utilization value</cpu>

<memory>Memory utilization value</memory>

</row>

</response>

The XSLT Parser Code uses an xsl:for-each element to iterate through the component devices in
the returned XML document. On each iteration, an xsl:if element is used to determine whether the
ID value in the XML document matches the component ID value of the component device for which
data is currently being collected (the "%U" substitution). If the ID values match, the <row> block is
created using the CPU and memory values that appear in the XML document. Enter the following
code in this field:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding="iso-8859-1"

indent="yes"/>

<xsl:template match="/">

<response>

<xsl:for-each select="xml/component">

<xsl:if test="id = '%U'">

<row>

<xsl:element name="cpu">

<xsl:value-of select="cpu"/>

</xsl:element>

<xsl:element name="memory">

<xsl:value-of select="memory"/>

</xsl:element>

</row>

</xsl:if>

</xsl:for-each>

</response>

</xsl:template>

</xsl:stylesheet>

5. Select the [Save] button.

Adding the Collection Objects

This Dynamic Application contains one collection object for the CPU utilization value and one collection object
for the memory utilization value. To create the collection objects for this Dynamic Application, perform the
following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the wrench icon () for the Example Component Performance Dynamic Application. The
Dynamic Applications Properties Editor page appears.

3. Select the [Collections] tab. The Dynamic Applications | Collections Objects page appears.

4. To create the collection object for the CPU utilization, supply values in the following fields:

l Object Name. Enter "CPU Usage" in this field.

l XSLT Tags. Enter "cpu" in this field. The "Get CPU+Memory" XSLT Request you defined in the
previous section returns the following XML structure:

<row>

<cpu></cpu>

<memory></memory>

</row>

This collection object parses the CPU utilization from the transformed response.

l Class Type. The CPU utilization is a number that can go up or down between polls. Select 4
Performance Gauge in this field.

l XSLT Request. Select theGet CPU+Memory request you created in the previous section.

5. For this example, you can leave the remaining fields set to the default values.

6. Select the [Save] button.

7. Select the [Reset] button to clear the form fields.

8. To create the collection object for the memory utilization, supply values in the following fields:

l Object Name. Enter "Memory Usage" in this field.

l XSLT Tags. Enter "memory" in this field. The "Get CPU+Memory" XSLT Request you defined in the
previous section returns the following XML structure:

<row>

<cpu></cpu>

<memory></memory>

</row>

This collection object parses the memory utilization from the transformed response.

l Class Type. The memory utilization is a number that can go up or down between polls. Select 4
Performance Gauge in this field.

l XSLT Request. Select theGet CPU+Memory request you created in the previous section.

9. For this example, you can leave the remaining fields set to the default values.

10. Select the [Save] button.

Editing the Presentation Objects

When you create a collection object in a Dynamic Application of type Performance, SL1 automatically creates a
presentation object that corresponds to that collection object. This example makes some minor changes to the
presentation objects that were automatically created. To edit the presentation objects for this Dynamic
Application, perform the following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the wrench icon () for the Example Component Performance Dynamic Application. The
Dynamic Applications Properties Editor page appears.

3. Select the [Presentations] tab. The Dynamic Applications Presentation Objects page appears.

4. Select the wrench icon for the CPU Usage presentation object. Edit the following fields:

l Active State. Select Enabled in this field.

l Show as Percent. The CPU utilization values are reported as percentage used. Select Yes in this
field.

5. For this example, you can leave the remaining fields set to the default values.

6. Select the wrench icon for theMemory Usage presentation object. Edit the following fields:

l Active State. Select Enabled in this field.

l Show as Percent. The memory utilization values are reported as percentage used. Select Yes in this
field.

7. For this example, you can leave the remaining fields set to the default values.

8. Select the [Save] button.

Automatically Aligning the Dynamic Application to Component
Devices

When SL1 creates component devices using data collected by a Dynamic Application, SL1 can automatically
align other Dynamic Applications to those component devices as they are created. In this example, the Example
Component Performance Dynamic Application should be aligned to the component devices created by the
Example Dynamic Component Mapping Discovery Dynamic Application.

The Example Component Performance Dynamic Application does not include a discovery object. Instead of a
discovery object, we explicitly tell SL1 to automatically align the Example Component Performance Dynamic
Application with each component device that is created with the Example Dynamic Component Mapping
Discovery Dynamic Application.

To do this, perform the following steps:

1. Go to the Dynamic Applications Manager page (System >Manage > Applications).

2. Select the wrench icon () for the Example Dynamic Component Mapping Discovery Dynamic

Application. The Dynamic Applications Properties Editor page appears.

3. Select the [Component] tab. The Dynamic App Component Alignmentmodal page appears:

4. Select the Example Component Performance Dynamic Application from the Unaligned Dynamic Apps
list.

5. Select the>> button. The Example Component Performance Dynamic Application moves to the
Aligned Dynamic Apps list.

6. Select the [Save] button.

7. SL1 will automatically align the Example Component Performance Dynamic Application with each
component device created by the Example Dynamic Component Mapping Discovery Dynamic
Application.

Using the Dynamic Applications

Configuring a Test Device

To test the Dynamic Applications in this example, you must configure a web server to act as the management
system. The web server must:

l Return the XML document listed in theOverview section in response to a GET request.

l Be discoverable by SL1 as an SNMP device or a Non-SNMP device.

This example uses an Administration Portal as the web server. The root directory for an Administration Portal is:

/usr/local/silo/gui/ap/www/

For this example:

1. A directory called "xml" was created in the root directory of the Administration Portal.

2. A file called "components.xml", which contains the XML listed in theOverview section, was created in the
"xml" directory.

3. The permissions on the "xml" directory and the "components.xml" file were changed to 755.

Editing the Device Class for the Test Device

You must edit the device class that SL1 will assign to the device that hosts the web server. The device class for the
test device must be enabled as a root device. A root device is a device for which SL1 can create children
component devices. Perform the following steps to enable the device class as a root device:

1. Go to the Device Class Editor page (System > Customize > Device Classes).

2. In the Device Class Register at the bottom of the page, locate the device class that SL1 will assign to the
device that hosts the web server. In our example, the device that hosts the web server will be assigned the
device class with the description "EM7 G3 Admin Portal". Select the wrench icon () for the device class.

3. Check the Root Device checkbox.

4. Select the [Save] button.

Creating a Credential

For SL1 to align the Dynamic Applications in this example to the device that hosts the web server, we must include
a SOAP/XML credential in the discovery session. SL1 will use the SOAP/XML credential to collect the XML
document from the web server. To create the credential for this example:

1. Go to the Credential Management page (System >Manage > Credentials).

2. Select the [Create] button, and then select SOAP/XML Host Credential from the drop-down list. The Create
New CURL/SOAP Credential page is displayed:

3. Supply values in the following fields:

l Profile Name. Enter "Components XML".

l Method. SelectGET in this field.

l URL. Enter the URL of the XML document on the web server. Use the "%D" substitution character to
supply the IP address of the test device. This example uses the URL "http://%D/xml/components.xml".

4. For this example, you can leave the remaining fields set to the default values.

5. Select the [Save] button.

Discovering the Test Device

To discover the device that hosts the web server:

1. Go to the Discovery Control Panel page (System >Manage > Classic Discovery).

2. Select the [Create] button. The Discovery Session Editor page is displayed in a new window:

3. Supply values in the following fields:

l IP Address Discovery List. Enter the IP address of your device.

l SNMP Credentials. If your device responds to SNMP, select the appropriate SNMP credential in this
field.

l Other Credentials. Select the Components XML credential you created in the previous section.

l Initial Scan Level. Select at least 1. Initial Population of Apps in this field.

l Discover Non-SNMP. If your device does not respond to SNMP, check this checkbox.

4. For this example, you can leave the remaining fields set to the default values.

5. Select the [Save] button.

6. In the Discovery Control Panel page, select the [Reset] button. The discovery session you created will
appear in the list of discovery sessions.

7. Select the lightning bolt icon () for the discovery session you created to run the discovery session. The
Discovery Session log will appear.

Verifying the Dynamic Application Alignments

To verify that the discovery process aligned the appropriate Dynamic Applications to the test device and that SL1
has created the component devices, perform the following steps:

1. Go to the Device Manager page (Registry > Devices > Device Manager).

2. Select the wrench icon () for the device that hosts the web server. The Device Properties page is

displayed in a new window.

3. Select the [Logs] tab. The Device Logs & Messages page is displayed.

4. Enter "Component" in the search bar and select the [Search] button. The search results should show:

l The Example Dynamic Component Mapping General and Example Dynamic Component
Mapping Discovery Dynamic Applications were aligned to the device during discovery.

l That SL1 created child component devices. The logs will contain one message for each component
device that SL1 created.

Viewing the Device Components Registry

The Device Components page (Registry > Devices > Device Components) displays a list of all root devices and
component devices discovered by SL1. The Device Components page is similar to the Device Manager page
(Registry > Devices > Device Manager) page. The Device Components page displays all root devices and
component devices in an indented view, so you can easily view the hierarchy and relationships between child
devices, parent devices, and root devices. You can expand or hide the child devices for each root device and for
each parent device.

To view the device that hosts the web server and its child component devices in the Device Components page:

1. Go to the Device Components page (Registry > Devices > Device Components).

2. Select the plus icon (+) for the device that hosts the web server. The list is expanded to show the component
devices.

Viewing the Component Device Map

The Component Map page allows you to view root devices and their children component devices in a graphical
map. To view the test device and the child component devices in the Component Map page:

1. Go to the Component Map page (Classic Maps > Device Maps > Components).

2. If there are multiple root devices discovered in your SL1 system, select the appropriate device from the drop-
down list in the upper right of the page. A map of the device that hosts the web server and the child
component devices is displayed.

Viewing the Performance Graphs

To view the performance graphs generated by the Example Component Performance Dynamic Application:

1. Go to the Device Manager page (Registry > Devices > Device Manager).

2. Select the graph icon () for one of the component devices. The Device Summary page is displayed in a
new window.

3. Select the [Performance] tab. In the NavBar to the left of the page, select Example Component
Performance > CPU Usage. The CPU Usage graph is displayed. Because the XSLT request in this Dynamic
Application filtered the returned XML document by component ID, the graph displays only the CPU data for
this component.

Expanding this Example

If you would like to create additional Dynamic Component Mapping Dynamic Applications, here are some
suggestions for ways you could try modifying this example:

l Although the caching feature and the Dynamic Component Mapping feature are typically used together,
you are not required to do so. Try combining the Example Dynamic Component Mapping General and
Example Dynamic Component Mapping Discovery Dynamic Applications in to a single Dynamic
Application that does not use the caching feature but still creates component devices. Use the XSLT Request
Code from the Example Dynamic Component Mapping General Dynamic Application to create the
XSLT requests for your combined Dynamic Application.

l Modify the Example Component Performance Dynamic Application so that it does not use caching.
Again, use the XSLT Request Code from the Example Dynamic Component Mapping General
Dynamic Application to create the XSLT requests for the new Dynamic Application. For your new Dynamic
Application to collect data, you must manually align a credential that uses the "%D" substitution in the URL
field. When a credential that uses "%D" in the URL field is used with a component device, SL1 will substitute
the IP address of the root device in to the URL.

l Modify the XML document on the test device to include additional layers in the component tree, i.e. include
additional components that are children of the existing components. Create an additional Dynamic
Application that creates component devices as children of the existing component devices. You can then
add your new Dynamic Application to the list of Dynamic Applications that SL1 should automatically align to
each component device created by the Example Dynamic Component Mapping Discovery Dynamic
Application. The modified XML document might look like this:

<xml>

<component>

<name>component-one</name>

<id>00001</id>

<cpu>80</cpu>

<memory>80</memory>

<sub_component>

<name>sub-component-one</name>

<id>10001</id>

</sub_component>

<sub_component>

<name>sub-component-two</name>

<id>10002</id>

</sub_component>

</component>

<component>

<name>component-two</name>

<id>00002</id>

<cpu>60</cpu>

<memory>60</memory>

<sub_component>

<name>sub-component-three</name>

<id>10003</id>

</sub_component>

</component>

<component>

<name>component-three</name>

<id>00003</id>

<cpu>70</cpu>

<memory>70</memory>

<sub_component>

<name>sub-component-four</name>

<id>10004</id>

</sub_component>

<sub_component>

<name>sub-component-five</name>

<id>10005</id>

</sub_component>

<sub_component>

<name>sub-component-six</name>

<id>10006</id>

</sub_component>

</component>

<component>

<name>component-four</name>

<id>00004</id>

<cpu>55</cpu>

<memory>55</memory>

</component>

<component>

<name>component-five</name>

<id>00005</id>

<cpu>20</cpu>

<memory>20</memory>

<sub_component>

<name>sub-component-six</name>

<id>10006</id>

</sub_component>

<sub_component>

<name>sub-component-seven</name>

<id>10007</id>

</sub_component>

</component>

</xml>

© 2003 - 2024, ScienceLogic, Inc.

All rights reserved.

LIMITATIONOF LIABILITY AND GENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and ScienceLogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without notice.
ScienceLogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

ScienceLogic, the ScienceLogic logo, and EM7 are trademarks of ScienceLogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to ScienceLogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

l ScienceLogic™
l EM7™ and em7™
l Simplify IT™
l Dynamic Application™
l Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
ScienceLogic’s trademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of ScienceLogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com. For more information, see
https://sciencelogic.com/company/legal.

mailto:legal@sciencelogic.com
https://sciencelogic.com/company/legal

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Introduction to XML, SOAP, and XSLT Dynamic Application Development
	XML, SOAP, and XSLT Protocols
	What is XML?
	Elements of XML, SOAP, and XSLT Dynamic Applications

	SOAP and XSLT Requests
	Viewing the Requests in a Dynamic Application
	Creating a Request
	Defining XSLT Request Code
	The XSLT Request Code Field
	The Cached XSLT Request Field

	Defining XSLT Parser Code
	Substitution Characters
	Collection Object Substitution Characters
	Substitution Characters from Credentials
	Substitution Characters from Component Devices

	Editing a Request
	Deleting a Request

	Collection Objects
	Protocol-Specific Fields for Collection Objects
	XML Dynamic Applications
	SOAP Dynamic Applications
	XSLT Dynamic Applications

	Specifying XML Tags and SOAP Tags
	Parsing an XML Element

	Specifying XSLT Tags
	Session ID Objects

	Creating an XML Dynamic Application
	Creating the Dynamic Application
	Defining XML Data-Points to Monitor
	Defining the Collection Objects
	Creating the Presentation Object

	Testing the Dynamic Application
	Creating a Credential
	Manually Aligning the Dynamic Application to the Test Device
	Viewing the Reports

	Dynamic Component Mapping & Caching with XSLT
	Design
	Creating the Example Dynamic Component Mapping General Dynamic Application
	Defining the Dynamic Application Properties
	Adding the XSLT Request
	Adding the Discovery Object

	Creating the Example Dynamic Component Mapping Discovery Dynamic Application
	Defining the Dynamic Application Properties
	Adding the XSLT Requests
	Adding the Collection Objects

	Creating a Device Class for the Component Devices
	Creating the Example Component Performance Dynamic Application
	Defining the Dynamic Application Properties
	Adding the XSLT Request
	Adding the Collection Objects
	Editing the Presentation Objects
	Automatically Aligning the Dynamic Application to Component Devices

	Using the Dynamic Applications
	Configuring a Test Device
	Editing the Device Class for the Test Device
	Creating a Credential
	Discovering the Test Device
	Verifying the Dynamic Application Alignments
	Viewing the Device Components Registry
	Viewing the Component Device Map
	Viewing the Performance Graphs
	Expanding this Example

