
Zebrium Root Cause as a Service
(RCaaS) Documentation
Release EA84

Table of Contents

Key Concepts 1
Zebrium Root Cause as a Service (RCaaS) 2
Root Cause Reports (RCA Reports) 3
Alert Rules and Alert Keys 4
Log Collectors 4
Service Groups 5
Notification Channels 6
Observability Dashboard Integrations 8
Incident Management Integrations 8
Integrations Using Webhooks 9
Zebrium On Prem 10

Getting Started with Zebrium 11
How Zebrium Works 12
Consuming Root Cause Reports 13
Customizing Your Zebrium Results 15
Evaluating Zebrium 15

Signing Up for a New Account 15
What does Zebrium Do with Your Logs? 16

Configuring Log Collectors and File Uploads 17
Kubernetes Collector 18

Installing the Helm Chart 18
Uninstalling the Helm Chart 18
Additional Information 18

Log Path Mapping 18
Custom Namespace to Service Group Mapping 19

Values 19
Linux Collector 23

System Requirements 23
Installing the Collector 23
Upgrading the Collector 23
Uninstalling the Collector 24
Installing on Hosts with Existing td-agent Configuration 24

Configuration for td-agent 25
User Log Paths 26
Filtering Specific Log Events 27
Example 27

Log Path Mapping 28
Environment Variables 28
Usage 28

Start and Stop Fluentd 28
Testing Your Installation 29
Troubleshooting 29
Operation with a Proxy Server 29

Setting the Proxy Server in a systemd Environment 29
File Upload (ze Command) 30

Features 30
up (upload) 30
help 30
help_adv 30

Getting Started 30

Prerequisites 30
Installing ze 30

Configuration 31
Setup 31
Environment Variables 31

Usage 31
Command Syntax and Options 31
Advanced Options 32
Batch Uploads 32

Examples 33
Zebrium Batch Uploads and ze Command-line Interface 34

Batch Uploads vs Service Groups 34
Integration into ze CLI 34
ze batch CLI subcommand 34
Examples 35

Uploading a Large Log and Monitoring its Progress 35
Uploading Multiple Logs to be Processed Together 35
Batch_upload.sh script 36

CloudWatch Collectors 38
Preparation 38
Installation 38
Configuration 39

Setup 39
Testing Your Installation 39

Docker Container Log Collector 40
Getting Started 40

Docker 40
Docker Compose 40
AWS Elastic Container Service (ECS) 41

Environment Variables 42
Testing your Installation 43

Logstash Collector 44
Configuring Logstash to Send Log Data to Zebrium 44
Service Groups 45
Configuring Logstash Filters for Zebrium Required Fields (in Logstash) 45
Configuring Log Event Output to Zebrium (in Logstash) 49
Reload Logstash Configuration 50
Complete Example for filebeat and winlogbeat Data 50

Syslog Forwarder 55
Preparation 55
Forward Syslog 55

Installation 55
Client Configuration 56
Setup 56

Forward Log via TCP 56
Installation 56
Setup 57

Testing your installation 57
Working with Suggestions and Root Cause Reports 58

Suggestions in Zebrium 59
Managing Suggestions in the Zebrium User Interface 60

Using the Filters on the Alerts Page in Zebrium 61

Using the Timeline Widget on the Alerts Page 62
Root Cause Reports 64

Additional Actions on the RCA Report Page 67
Assessing Suggestions 68

Accepting a Suggestion 68
Rejecting a Suggestion 70

Key Use Cases for Suggestions and Root Cause Reports 70
Automated Root Cause Analysis Only 71
Proactive Detection and Root Cause Analysis 71
Deterministic Detection of Known Problems 71
Getting the Best Results from Zebrium 71
Ingest Complete Logs That Contain a Real Problem 72
Be Mindful of Elapsed Time 72
Review Service Group Setup 72
Review RCA Settings 72
Use Integrations to Separate High-priority Alerts 73
Manage Alert Destinations 75
Use Routing Rules to Classify and Route Alerts 76

Example: Ensure that the AI/ML Engine Highlights Significant Events When They Happen Nearby 77
Example: Ensure the AI/ML Engine Ignores Spam Events When They Happen Nearby 78

Configuring Observability Dashboard Integrations 79
AppDynamics 80

Features 80
How it Works 80

Auto-Detect (Recommended): Send Root Cause Detections to your AppDynamics Dashboards 80
CLICK HERE to send Root Cause Detections to your AppDynamics Dashboards 81

Augment (Advanced Users): Receive Signals from AppDynamics Health Rule Violations 81
CLICK HERE to receive Signals from AppDynamics Health Rule Violations 81

Sending Root Cause Detections to AppDynamics Dashboards 82
Integration Overview 82
Integration Details 82

STEP 1: Configure API Access for Creating Root Cause Reports as Monitor Events 82
STEP 2: Create an AppDynamics Integration in Zebrium to Send Detections to AppDynamics 82

Support 83
Receiving Signals from AppDynamics Health Rule Violations 84

Integration Overview 84
Integration Details 84

STEP 1: Configure API Access for Creating Root Cause Reports as Monitor Events 84
STEP 2: Create an AppDynamics Integration in Zebrium to Receive Signals from AppDynamics 84
STEP 3: Create HTTP Request Template in AppDynamics to send Signals to Zebrium 85

Support 85
Datadog Dashboard Widget 86
Datadog Events and Metrics 87

Features 87
How it Works 87

Auto-Detect (recommended): Send Root Cause Detections to your Datadog Dashboards 87
CLICK HERE to send Root Cause Detections to your Datadog Dashboards 88

Augment (advanced users): Receive Signals from Datadog Triggered Monitors 88
CLICK HERE to receive Signals from Datadog Triggered Monitors 88

Sending Root Cause Detections to your Datadog Dashboards 89
Integration Overview 89
Integration Details 89

STEP 1: Create an API Key in Datadog 89
STEP 2: Create a Datadog Integration in Zebrium to Send Detections to Datadog 89
STEP 3: Add Zebrium Root Cause Report Detections and Log Count Metrics to Your Datadog
Dashboards 90

Visualizing Zebrium Data in Datadog 90
Important Metric Names 92
Support 93

Receiving Signals from Datadog Triggered Monitors 94
Integration Overview 94
Integration Details 94

STEP 1: Create an API Key in Datadog 94
STEP 3: Create a Webhook Integration in Datadog 95
STEP 4: Add Webhook notifications to your Triggered Monitors in Datadog 95
STEP 5: Add Zebrium Root Cause Report Detections to any of your Datadog Dashboards 95

Visualizing Zebrium Data in Datadog 95
Important Metric Names 97
Support 98

Dynatrace 99
Features 99
How it Works 99

Auto-Detect (recommended): Send Root Cause Detections to Dynatrace Dashboards 99
CLICK HERE to send Root Cause Detections to your Dynatrace Dashboards 100

Augment (advanced users): Receive Signals from Dynatrace Triggered Monitors 100
CLICK HERE to receive Signals from Dynatrace Triggered Monitors 100

Sending Root Cause Detections to Dynatrace Dashboards 101
Receiving Signals from Dynatrace Triggered Monitors 102
Elastic Stack 103

Features 103
How it Works 103

Auto-Detect: Send Root Cause Detections to your Kibana Dashboards 103
CLICK HERE to send Root Cause Detections to your Kibana Dashboards 103

Sending Root Cause Detections to Your Kibana Dashboards 104
Integration Overview 104
Integration Details 104

STEP 1: Create a Secure Access Token in Zebrium 104
STEP 2: Create Zebeat Override File and Deploy in your Kubernetes Environment 105
Deploy Zebeat in your Kubernetes Environment 105
STEP 3: Create Visualizations in your Dashboard 105
Visualizing in Kibana 105

Important Metric Names 106
Sample Payloads for Detections and Logs Metricsets 107

Detections Metricset Payload 107
Logs Metricset Payload 112

Support 116
Grafana Plugin 117

Features 117
How it Works 117

Auto-Detect: View Root Cause Detections to your Grafana Dashboards 117
CLICK HERE to View Root Cause Detections in your Grafana Dashboards 117

Viewing Root Cause Detections in your Grafana Dashboards 118
Integration Overview 118
Prerequisites 118

Current Zebrium Plugins 118
Integration Details 118

STEP 1: Download Plugins from GitHub 118
STEP 2: Sign and Install Plugins 119
STEP 3: Create a Secure Access Token in Zebrium 119
STEP 4: Set up the Zebrium Datasource 119
STEP 5: Install Zebrium Root Cause Finder on a Dashboard 120

Support 122
New Relic 123

Features 123
How it Works 123

Auto-Detect (recommended): Send Root Cause Detections to your New Relic Dashboards 123
CLICK HERE to send Root Cause Detections to your New Relic Dashboards 124

Augment (advanced users): Receive Signals from New Relic Alert Policies 124
CLICK HERE to receive Signals from New Relic Alert Policies 124

Adding Zebrium Root Cause Reports to New Relic Dashboards 125
Integration Overview 125
Integration Details 125

STEP 1: Create an API Key in New Relic 125
STEP 2: Create a New Relic Outbound Integration in Zebrium 125
STEP 3: Add Zebrium Root Cause Report Detections and Log Metrics to your New Relic Dashboards126

Important Metric Names 130
Zebrium Detections Event Payload 130
Support 131

Augmenting New Relic with Root Cause Reports using Alert Policies 132
Integration Overview 132
Integration Details 132

STEP 1: Create an API Key in New Relic 132
STEP 2: Create a New Relic Inbound Integration in Zebrium 132
STEP 3: Create a Webhook Notification Channel in New Relic 133
STEP 4: Add Webhook Notifications to your Alert Policies in New Relic 133

Support 133
ScienceLogic 134

Features 134
How it Works 134

Auto-Detect (recommended): Send Root Cause Detections to your SL1 Events Page 134
CLICK HERE to Send Root Cause Detections to your ScienceLogic Event Console 134

Augment (advanced users): SL1 Tickets with Root Cause Reports 134
CLICK HERE to receive Signals from ScienceLogic Run Book Automation 135

Sending Root Cause Detections to the SL1 Events Page 136
Integration Overview 136
Integration Details 136

STEP 1: Choose an Existing or Create a New Device 136
Use an Existing Device 136
Create a New Virtual Device 136

STEP 2: Create a User with Restricted API Access 137
Define a New Access Key for API Access 137
Define a New User Policy using the New Access Key 137
Define a New User using the New User Policy 138

STEP 3: Create an Event Policy for the Zebrium Alert 138
STEP 4: Create a ScienceLogic Integration in Zebrium 138

Support 139

Receiving Signals from a ScienceLogic Run Book Automation 140
Integration Overview 140
Integration Details 140

STEP 1: Create a User with Restricted API Access 140
Define a New User Policy using the New Access Key 140
Define a New User using the New User Policy 141

STEP 2: Set Up Webhook Credentials and HTTP Action Policy 141
Create Credentials 141
Create a HTTP Request Action 141

STEP 3: Create a ScienceLogic Integration in Zebrium to Receive Signals from ScienceLogic 142
STEP 4: Set Up Run Book Automation to Augment Tickets with Root Cause Reports 143

Support 143
Configuring Incident Management Integrations 144

Opsgenie 145
Features 145
How it Works 145

Augment: Receive Signals from Opsgenie Incidents 145
CLICK HERE to receive Signals from Opsgenie Incidents 145

Auto-Detect: Send Root Cause Detections to Opsgenie as Incidents 145
CLICK HERE to send Root Cause Detections to Opsgenie as Incidents 146

Receiving Signals from Opsgenie 147
Integration Overview 147
Integration Details 147

STEP 1: Configure API Access for Zebrium in Opsgenie 147
STEP 2: Create an Opsgenie Integration in Zebrium to Receive Signals from Opsgenie 147
STEP 3: Add the Zebrium Webhook to Opsgenie 148

How to Uninstall 148
Disable API Access 148
Delete the Zebrium Integration 148

Support 148
Sending Root Cause Detections to Opsgenie as Incidents 149

Integration Overview 149
Integration Details 149

STEP 1: Add the Zebrium Integration to your Opsgenie Team 149
STEP 2: Create an Opsgenie Integration in Zebrium to Send Root Cause Detections to Opsgenie as
Incidents 149

Support 150
OpsRamp 151

Features 151
How it Works 151

Augment: Receive Signals from OpsRamp Incidents 151
CLICK HERE to receive Signals from OpsRamp Incidents 151

Auto-Detect: Send Root Cause Detections to OpsRamp as Incidents 151
CLICK HERE to send Root Cause Detections to OpsRamp as Incidents 152

Receiving Signals from OpsRamp 153
Sending Root Cause Detections to OpsRamp as Incidents 154

Integration Overview 154
Integration Details 154

STEP 1: Add the Zebrium Integration to OpsRamp 154
STEP 2: Create an OpsRamp Integration in Zebrium to Send Root Cause Detections to OpsRamp
as Incidents 154

Support 155

PagerDuty 156
Features 156
How it Works 156
Augment: Receive Signals from PagerDuty Incidents 156

CLICK HERE to receive Signals from PagerDuty Incidents 156
Auto-Detect: Send Root Cause Detections to PagerDuty as Incidents 156

CLICK HERE to send Root Cause Detections to PagerDuty as Incidents 157
Receiving Signals from PagerDuty 158

Integration Overview 158
Integration Details 158

STEP 1: Configure API Access for Zebrium in PagerDuty 158
STEP 2: Create a PagerDuty Integration in Zebrium to Receive Signals from PagerDuty 158
STEP 3: Add the Zebrium Webhook to PagerDuty 159

How to Uninstall 159
Disable API Access in PagerDuty 159
Delete the Zebrium Integration 159

Support 159
Sending Root Cause Detections to PagerDuty as Incidents 160
VictorOps 161

Features 161
How it Works 161

Augment: Receive Signals from VictorOps Incidents 161
CLICK HERE to receive Signals from VictorOps Incidents 161

Auto-Detect: Send Root Cause Detections to VictorOps as Incidents 161
CLICK HERE to send Root Cause Detections to VictorOps as Incidents 162

Receiving Signals from VictorOps 163
Sending Root Cause Detections to VictorOps as Incidents 164

Integration Overview 164
Integration Details 164

STEP 1: Create an Incoming Webhook in VictorOps 164
STEP 2: Create a VictorOps Integration in Zebrium to Send Root Cause Detections to VictorOps as
Incidents 164

Support 164
Enabling Notification Channels 165

Email Notifications 166
Features 166
Integration Details 166

Mattermost Notifications 167
Features 167
Integration Overview 167
Integration Details 167

STEP 1: Create an Incoming Webhook in Mattermost 167
STEP 2: Create a Mattermost Integration in Zebrium to Send Detections to Mattermost 167

Slack Notifications 169
Features 169
Integration Overview 169
Integration Details 169

STEP 1: Create an Incoming Webhook in Slack 169
STEP 2: Create a Slack Integration in Zebrium to Send Detections to Slack 169

Microsoft Teams Notifications 171
Features 171
Integration Overview 171

Integration Details 171
STEP 1: Create an Incoming Webhook in Microsoft Teams 171
STEP 2: Create a Microsoft Teams Integration in Zebrium to Send Detections to Microsoft Teams 171

Webex Teams Notifications 173
Features 173
Integration Overview 173
Integration Details 173

STEP 1: Create an Incoming Webhook in Webex Teams 173
STEP 2: Create a Webex Teams Integration in Zebrium to Send Detections to Webex Teams 173

Creating Integrations Using Webhooks 175
Root Cause Report Outgoing Webhook 175
Root Cause Report Incoming Webhook 175

Root Cause Report Outgoing Webhook 176
Features 176
Integration Overview 176
Integration Details 176

STEP 1: Determine the Destination Endpoint 176
STEP 2: Create a Root Cause Report Outgoing Webhook Integration in Zebrium. 176

Webhook Payload Format 177
Root Cause Report Outgoing Webhook Payload 178

Payload 178
Event Object 180
Example Payload 181

Root Cause Report Incoming Webhook 209
Features 209
Integration Overview 209
Integration Details 209

STEP 1: Create a Root Cause Report Incoming Webhook Integration in Zebrium. 209
STEP 2: Request a Root Cause Report from Zebrium 210

Webhook Payload Format 210
Root Cause Report Incoming Webhook Payload 211

Payload 211
Example Payload 211

Managing Users 212
RBAC Component Definitions 213
Users 213
Groups 213
Roles 213

Owner 213
Admin 213
Editor 214
Viewer 214

Permissions 214
Zebrium Service Security 215

Culture Based on Data Security 216
Logical (and Optionally Physical) Separation of Customer Data 216
Encryption 216
Single Sign-On Support 216

Service Security 216
Handling of Sensitive Data 217
Access by Zebrium Employees 217
Physical Security 217

Customer Data 218
Reports and Third-party Audits 218

Zebrium On Prem 219
Zebrium On Prem: Getting Started 220
Sizing Considerations 222
Software Requirements 222
Account Name 222
Domain Name 222
Slack Channels 222
Helm Chart and Image Repository Access 223

Helm Chart Overrides 223
Configuration Questions 223
Assumptions 224

STEP 1: Installing the Helm Chart 224
STEP 2: Configuring Your Account 224
STEP 3: Configuring Outbound Notifications 225
STEP 4: Configuring AutoSupport (optional) 225
STEP 5: Ingesting Data into your Zebrium On Prem Instance 226

Obtaining your ZAPI Token and Endpoint 226
Failure Domain Boundary 226
Using the Command-line Interface to Ingest Data 226
Using the Kubernetes Log Collector to Ingest Data 226
Using Logstash to Ingest Data 227
Sending Operational Data to Zebrium Support 227

Slack Notifications 227
Log Data 227

Contacting Zebrium Support 228
Slack (preferred) 228
Email 228
Support Hours 228
Support SLAs 228

Zebrium On Prem: API 228
Create Incident Type 230

Request Arguments 230
Example Request Payload 230
Example Response Payload 230

Read Incident 231
Request Arguments 232
Example Request Payload 232
Example Response Payload 233

Create Signal 234
Request Arguments 234
Example Request Payload 234
Example Response Payload 235

Read Signal 235
Request Arguments 235
Example Request Payload 236
Example Response Payload 236

Begin Batch 237
Request Arguments 237
Response Payload 237
Example Request Payload 237

Example Response Payload 237
End Batch 238

Request Arguments 238
Response Payload 238
Example Request Payload 238
Example Response Payload 238

Cancel Batch 239
Request Arguments 239
Response Payload 239
Example Request Payload 239

Get Batch 239
Example Response Payload 240

List Batches 240
HTTP Method GET 240

Listing Incidents for Batch Uploads 241
Listing Incidents for Batch Uploads 241

Usage 242
Batch IDs and Scope of Batches 243
Batch States 243

Opportunistic or Delayed Batch Processing 244
Example 244

Note on Canceled and Failed Batches 245
Get Etroot Vector 245

Request Arguments 246
Example Request Payload 246
Example Response Payload 246

Chapter

1
Key Concepts

Overview

The following video explains how Zebrium can automatically show you the root cause of any kind of software or
infrastructure problem, without any manual training or rules: https://www.youtube.com/watch?v=4jm108RXz1c.

This chapter covers the following topics:

Zebrium Root Cause as a Service (RCaaS) 2

Root Cause Reports (RCA Reports) 3

Alert Rules and Alert Keys 4

Log Collectors 4

Service Groups 5

Notification Channels 6

Observability Dashboard Integrations 8

Incident Management Integrations 8

Integrations Using Webhooks 9

Zebrium On Prem 10

1

https://www.youtube.com/watch?v=4jm108RXz1c

2

Zebrium Root Cause as a Service (RCaaS)

Zebrium Root Cause as a Service (RCaaS) uses unsupervised machine learning on logs to automatically find
the root cause of software problems. It does not require manual rules or training, and it typically achieves
accuracy within 24 hours.

As Zebrium ingests logs, the Zebrium artificial-intelligence machine-learning (AI/ML) engine analyzes the logs,
looking for abnormal log line clusters that resemble problems, such as abnormally correlated rare and error
events from across all log streams.

When the AI/ML engine detects one of these "abnormal" clusters, it generates a suggestion, which appears on
the Alerts page (the home page) of the Zebrium user interface:

A suggestion is a summary report that contains the following main elements:

l AI-generated title. This title is generated using the GPT-3 language model, which is trained on a large
volume of public data. As a result, the titles might not always be accurate and should not be relied upon
alone to make a decision about a suggestion.

l Word Cloud. A set of relevant words chosen by the AI/ML engine from the log lines contained in the alert.

l Root Cause (RCA) Report Summary. The report contains the actual cluster of anomalous log lines that
was identified by the AI/ML engine. Up to eight of these log lines are shown in the summary view. You can
click anywhere in the summary to view the full RCA report.

l Alert Key. One or two log lines, denoted with a key icon (), that are used to identify the suggestion if this
type of suggestion occurs again. The alert keys make up an alert rule.

IMPORTANT: Suggestions are generated when the AI/ML engine finds a cluster of correlated anomalies in
your logs that resembles a problem. However, this does not mean that all suggestions relate
to actual important problems. This is especially true during the first few days of using Zebrium,
as the AI/ML engine learns the normal patterns in your logs.

Zebrium Root Cause as a Service (RCaaS)

Root Cause Reports (RCA Reports)

When you start getting suggestions on the Alerts page, you can review the word clouds and event logs that
display in the summary views for the Root Cause reports for the suggestions. As a best practice, identify a specific
timeframe when a possible problem occurred, and then start looking at the reports that have the most interesting
or relevant information related to the possible root cause of the problem.

You can choose to "accept" or "reject" a suggestion. For more information, see Assessing Suggestions.

You can also decide on the action to take if the same kind of alert type occurs again, such as sending a
notification to Slack, email, or another type of notification. For more information, see Enabling Notification
Channels.

If you currently use a monitoring tool from ScienceLogic, Datadog, New Relic, Elastic, Dynatrace or
AppDynamics, you can configure an observability dashboard integration that lets you view Zebrium suggestions
on your existing monitoring dashboards. For more information, see Configuring Observability Dashboard
Integrations.

Root Cause Reports (RCA Reports)

A Root Cause Report or RCA Report is a report generated by the AI/ML engine that consists of a group of log
events that the AI/ML engine identified as being part of a problem.

A full RCA Report page (below) appears after you click the summary view for that report on the Alerts page:

The RCA report contains the actual cluster of anomalous log lines that was identified by the AI/ML engine. There
are typically between ten and 100 log events in a report. Up to eight of these log lines are shown in the summary
view. Clicking a summary on the Alerts page takes you to the full RCA report.

3

4

Each RCA report matches a particular "fingerprint" of log events. You can add notes, summaries, Jira links, and
alert preferences to the alert rules for the RCA report so that future occurrences of the same type of problem will
reflect these preferences and notes.

For more information, seeWorking with Suggestions and Root Cause Reports.

Alert Rules and Alert Keys

An alert rule is made up of one or two log events that best represent a specific type of problem that caused the
event, and these events often provide clues as to the nature of the problem. These notable log events are called
alert keys, and the AI/ML engine uses these keys to trigger an alert when new log data is ingested.

A key icon () appears next to an alert key in the list of log events on the Alerts page and on the RCA Report
page:

The AI/ML engine also uses the alert keys as a "signature" for a particular type of alert. There are typically two
hallmark events:

l The first event in the sequence, which is usually a rare event or anomaly and often relates the root cause.

l A high severity event, either as determined by log severity, or other indicators, such as certain words or
phrases indicating a problem, like "exception", "failed", "could not restart", and so on.

You can edit the alert keys of any Root Cause (RCA) report to select different log events if you believe those log
events are more useful. Future matches of this type of RCA report will match against your user-defined alert keys,
and carry forward your notes, summaries, Jira links, and alert preferences.

For more information, see Editing Alert Keys.

Log Collectors

When you are setting up your Zebrium system, one of the first tasks you need to do is configure a method for
gathering log data to send to Zebrium so the AI/ML engine can begin to analyze the log data.

You would typically configure one or more log collectors to gather logs and send those logs to Zebrium for
automated incident detection. For example, the following dialog explains how to set up a Linux log collector:

Alert Rules and Alert Keys

Service Groups

You can also use a file uploadmethod using ze, the Zebrium command-line interface for uploading log events
from files or streams.

For more information, see Configuring Log Collectors and File Upload.

Service Groups

A Service Group is the collection of log types, pods, hosts, and other items that are all part of a "failure domain".
In other words, logs from the micro-services and processes that could all interact with each other to contribute to
an incident should be part of a service group. The AI/ML engine will only attempt to correlate anomalies and
errors across logs that fall within a service group. For more complex applications, you can have multiple service
groups if there is more than one failure domain.

For example, in the following image, sockshop and shop2 are two separate service groups where the same event
occurred:

5

6

Using a service group allows you to collect logs from multiple applications or support cases and isolate the logs
of one from another so as not to mix these in a RCA report.

If omitted, the service group is set to "default", which means that the service group represents shared services. For
example, a database that is shared between two otherwise distinctly separate applications would be considered a
shared service. In this example scenario, you would set the service group to "app01" for one application and
"app02" for the other application. For the database logs, you would either omit the service group setting, or you
could explicitly set it to "default".

With this configuration, RCA reports will consider correlated anomalies across the following:

"app01" log events and default (i.e. database logs) and

"app02" log events and default (i.e. database logs) but not across:

"app01" and "app02

For more information, seeWorking with Suggestions and Root Cause Reports .

Notification Channels

Notification Channels provide a mechanism to define the methods that Zebrium will use to send notifications
from RCA reports. The supported types of notification channels include email, as well as Mattermost, Slack,
Microsoft Teams, and Webex Teams notifications.

Notification Channels

Notification Channels

After you have created one or more notification channels, you can link any number of these to any RCA report
created by the AI/ML engine. Linking a set of notification channels to a RCA report will send notifications of future
RCA reports of the same type to those channels.

For more information, see Enabling Notification Channels.

7

8

Observability Dashboard Integrations

You can integrate the Zebrium root cause service into your existing observability dashboards. For example, if you
see symptoms of a potential problem in your metrics dashboard, you can have the root cause indicators for the
problem surfaced right below that, as in the following image:

To enable this, go to the Integrations & Collectors page (Settings () > Integrations & Collectors), select your
preferred observability dashboard, and follow the instructions for setting up that dashboard.

For more information, see Configuring Observability Dashboard Integrations.

Incident Management Integrations

You can configure an integration between Zebrium and your third-party Incident Management application to
automatically add Root Cause (RCA) reports to your incidents in the third-party application. Each Zebrium RCA
report includes a summary, word cloud, and a set of log events display symptoms and root cause, along with a
link to the full report in the Zebrium user interface.

After you complete the configuration, you can can view details of root cause and direct the incident to the
appropriate team. All of these features lead to faster Mean Time to Repair (MTTR) and less time manually hunting
for root cause.

Observability Dashboard Integrations

Integrations Using Webhooks

For more information, see Configuring Incident Management Integrations.

Integrations Using Webhooks

Zebrium provides support for using webhooks so you can build your own custom integrations.

9

10

Zebrium provides the following webhooks:

l Outgoing Root Cause Report Webhook

l Incoming Root Cause Report Incoming Webhook

For more information, see Creating Integrations Using Webhooks.

Zebrium On Prem

In additional to the standard option of a cloud configuration for Zebrium, you also have the option for a Zebrium
on-premises (On Prem) configuration that is not located in the cloud.

For more information, see Zebrium On Prem.

Zebrium On Prem

Chapter

2
Getting Started with Zebrium

Overview

This chapter covers how Zebrium works and how to get started using Zebrium.

This chapter covers the following topics:

How Zebrium Works 12

Consuming Root Cause Reports 13

Customizing Your Zebrium Results 15

Evaluating Zebrium 15

11

12

How Zebrium Works

When skilled engineers troubleshoot software, they typically ask the following questions:

1. Where are the problems or events occurring? The events could be clusters of errors, warnings, stack
traces, or other indicators of bad outcomes.

2. Were there unusual events upstream that could help explain these bad outcomes? This might be
configuration changes, a new deployment, user actions, and so on.

In modern software, these events are often generated by different micro-services or software components, so you
might have to switch between many log streams and then mentally correlate the events across them.

The Zebrium AI/ML engine emulates the workflow of a skilled engineer by performing the following actions:

1. Automatically build a catalog of all of the event types generated by the software.

2. Track the patterns of each event type in each log stream, such as the logs generated by a specific container,
pod, or host.

3. Automatically identify unusual and "bad" events.

4. Identify unusually correlated clusters of rare and bad events that appear to be due to the same incident. The
AI/ML engine scores each such collection based on a combination of how rare the underlying events are,
and how bad the events are, such as how many warnings or errors are generated.

5. "Fingerprint" each cluster of such events as a unique type of issue. The events that rise above a specified
threshold can be considered a potential Root Cause report, and they are summarized using Natural
Language Processing (NLP) for Machine Learning.

When the AI/ML engine detects one of these "abnormal" clusters, it generates a suggestion, which appears on
the Alerts page (the home page) of the Zebrium user interface:

A suggestion is a summary report that contains the following main elements:

l AI-generated title. This title is generated using the GPT-3 language model, which is trained on a large
volume of public data. As a result, the titles might not always be accurate and should not be relied upon
alone to make a decision about a suggestion.

How Zebrium Works

Consuming Root Cause Reports

l Word Cloud. A set of relevant words chosen by the AI/ML engine from the log lines contained in the alert.

l Root Cause (RCA) Report Summary. The report contains the actual cluster of anomalous log lines that
was identified by the AI/ML engine. Up to eight of these log lines are shown in the summary view. You can
click anywhere in the summary to view the full RCA report.

l Alert Key. One or two log lines, denoted with a key icon (), that are used to identify the suggestion if this
type of suggestion occurs again. The alert keys make up an alert rule.

IMPORTANT: Suggestions are generated when the AI/ML engine finds a cluster of correlated anomalies in
your logs that resembles a problem. However, this does not mean that all suggestions relate
to actual important problems. This is especially true during the first few days of using Zebrium,
as the AI/ML engine learns the normal patterns in your logs.

When you start getting suggestions on the Alerts page, you can review the word clouds and event logs that
display in the summary views for the Root Cause reports for the suggestions. As a best practice, identify a specific
timeframe when a possible problem occurred, and then start looking at the reports that have the most interesting
or relevant information related to the possible root cause of the problem.

You can choose to "accept" or "reject" a suggestion. For more information, see Assessing Suggestions.

You can also decide on the action to take if the same kind of alert type occurs again, such as sending a
notification to Slack, email, or another type of notification. For more information, see Enabling Notification
Channels.

If you currently use a monitoring tool from ScienceLogic, Datadog, New Relic, Elastic, Dynatrace or
AppDynamics, you can configure an observability dashboard integration that lets you view Zebrium suggestions
on your existing monitoring dashboards. For more information, see Configuring Observability Dashboard
Integrations.

Consuming Root Cause Reports

You can consume the AI/ML engine-generated Root Cause reports in one of the following ways:

13

14

1. Recommended. Connect Zebrium to one or more of your observability dashboards, such as
ScienceLogic, DataDog, New Relic, Elastic Stack, Grafana, Dynatrace, or AppDynamics. After you
configure an observability dashboard, data from the Root Cause reports from Zebrium will display on that
dashboard, and you can visually correlate the reports with any spikes or alerts occurring at the same time:

For more details, or to take action on one of these reports, click the URL to go directly to the detailed Root
Cause report in the Zebrium user interface. For more information, seeWorking with Suggestions and
Root Cause Reports.

2. Connect Zebrium to your incident management tool, such as OpsGenie, PagerDuty, VictorOps, or
Slack. After you configure the incident management tool, an RCA report is automatically created and sent
back to the incident management tool.

l In some cases (Opsgenie, OpsRamp, and VictorOps), Zebrium can create an incident in the
incident management tool when a Root Cause report is autonomously detected by the AI/ML
engine.

l In other cases (Opsgenie and PagerDuty), a bi-directional integration is supported, so that the
incident management tool will query Zebrium any time a new incident is created, such as by
another monitoring tool. In this scenario, Zebrium automatically responds by adding the right Root
Cause report back into the timeline of the incident in the incident management tool.

Consuming Root Cause Reports

Customizing Your Zebrium Results

3. Evaluate the feed of auto-detect incident Root Cause reports on the Alerts page in the Zebrium user
interface, particularly around times where you know things went wrong. You can also force the AI/ML
engine to do a deep scan and create a report on demand by clicking the [Scan for RC] button on the
Settingsmenu ().

For more information, seeWorking with Suggestions and Root Cause Reports.

Customizing Your Zebrium Results

You can customize your Zebrium results in the following ways:

l Changing the sensitivity threshold. You can edit the threshold to make the AI/ML engine more sensitive
to catching subtle issues, or making it less sensitive to minimize noise. Note that in the latter case, the AI/ML
engine will still detect the less significant issues and create reports for them, but will not display them until
settings are changed.

l Filtering the results: page displays a list of filtering and search options at the top of the page. You can use
these filters to manage the number of suggestions and alerts that display on the Alerts page. For example,
by default only the first occurrence of each incident type is visible on dashboards and alert channel, unless
you create filters that specify that the incident deserves an alert or suggestion. For more information about
filtering, see Using the Filters on the Alerts Page in Zebrium.

In most cases, the default settings will work well. However, Zebrium provides several controls to adjust the
sensitivity of its AI/ML engine so you can tune the signal-to-noise ratio to best suit your environment. Zebrium also
provides ways to group related log feeds so that the AI/ML engine only correlates anomalies across related
components of an application instance (the components that together define a failure domain).

For more information about changing the default sensitivity settings and managing deployments, contact
support@zebrium.com.

Evaluating Zebrium

The best way to try Zebrium is on a system that is experiencing an actual problem. If there are no real problems,
Zebrium will not find anything useful.

As an alternative, you can try Zebrium in an environment where you can simulate a real problem. You can also
use this step-by-step guide to set up a demonstration online shopping application and cause a failure by using an
open source chaos tool.

Signing Up for a New Account

To sign up for a new account and start sending your logs to Zebrium, watch this five-minute "Getting Started"
video: https://youtu.be/QwIbihOOW5k.

The video covers how to :

15

mailto:support@zebrium.com
https://www.zebrium.com/blog/how-to-try-zebrium-using-a-realistic-demo-app
https://youtu.be/QwIbihOOW5k

16

1. Sign up for a new account by visiting https://www.zebrium.com/ and clicking the blue [Get Started Free]
button.

2. Installing the Kubernetes log collector by using the customized Helm command found on theWelcome
page. After you have configured the log collector, Zebrium can being reviewing your logs.

NOTE: You will need to set your Timezone and Service Group (zebrium.deployment) when installing
the collector.

What does Zebrium Do with Your Logs?

As logs are received by Zebrium, the Zebrium AI/ML engine automatically structures and categorizes each type of
log event. This allows the AI/ML engine to identify anomalous log events. Many factors are used for anomaly
detection, but the two most important are the rareness and the severity of each log line.

The AI/ML engine then looks for abnormal clusters of correlated anomalies across all the logs within a Service
Group, also known as a failure domain. These clusters usually occur because of an actual problem.

If the AI/ML engine finds one of these clusters, it generates a Suggestion. The suggestion contains a payload that
includes the cluster of log lines.

Other than the log events that are contained in alerts, all other log data is discarded after a few hours.

Evaluating Zebrium

https://www.zebrium.com/

Chapter

3
Configuring Log Collectors and File Uploads

Overview

When you are setting up your Zebrium system, one of the first tasks you need to do is configure a method for
gathering log data to send to Zebrium so the AI/ML engine can begin to analyze the log data.

When you are setting up your Zebrium system, one of the first tasks you need to do is configure a method for
gathering log data to send to Zebrium so the AI/ML engine can begin to analyze the log data.

You would typically configure one or more log collectors to gather logs and send those logs to Zebrium for
automated incident detection. For example, the following dialog explains how to set up a Linux log collector:

You can also use a file uploadmethod using ze, the Zebrium command-line interface for uploading log events
from files or streams.

Zebrium lets you collect data from logs in a variety of ways, from a number of different sources. The following
pages explain how you can collect data from these sources, as well as file uploads:

l Kubernetes

l Linux

l File Upload (ze Command)

l CloudWatch

l Docker (including ECS)

l Logstash

l Syslog Forwarder

17

Kubernetes Collector

Kubernetes Collector

This topic explains how to use zlog-collector, the Zebrium log collector for Kubernetes.

Installing the Helm Chart

To install the Helm chart with the release name zebrium, run the following commands:

helm repo add zebrium http://charts.zebrium.com

helm upgrade -i zlog-collector zebrium/zlog-collector --namespace zebrium

--create-namespace --set

zebrium.collectorUrl=<YOUR_ZE_API_URL>,zebrium.authToken=YOUR_ZE_API_AUTH_

TOKEN,zebrium.deployment=

<YOUR_DEPLOYMENT_NAME>,zebrium.timezone=<KUBERNETES_HOST_TIMEZONE>

where <KUBERNETES_HOST_TIMEZONE> is the time zone setting on Kubernetes host, such as UTC or
America/Los_Angeles. If this option is not provided, the default value of UTC will be used.

Uninstalling the Helm Chart

To uninstall the Helm chart with the release name zebrium, run the following command:

helm delete zlog-collector -n zebrium

Additional Information

Log Path Mapping

Log path mapping is the process of detecting semantic items in log file paths (ids, configs and tags) then including
them in the Zebrium log data. This is enabled by providing a JSON mapping file to the log collector, as described
in the repo at https://www.github.com/zebrium/ze-fluentd-plugin.

To use this functionality with the supplied Helm chart a customValues.yaml file should be completed and
supplied to the Helm install command line with:

helm install ... -f customValues.yaml ...

A prototype example_logPathMappings.yaml file is provided in the repo under the example directory, with the
following format:

18

https://www.github.com/zebrium/ze-fluentd-plugin

19

overridePMFConfig: true

zebrium:

pathMapFile: "pathMapFile.json"

customPMFConfig: {

"mappings": {

"patterns":["/var/log/remote_logs/(?<host>[^/]+)/.*"],

"tags": [],

"ids" : [

"host"],

"configs": []

}

}

Custom Namespace to Service Group Mapping

Custom Namespace to Service Group Matching is the process of dynamically assigning a service group to a log
stream based on the resources namesapce. This is enabled by providing a JSON mapping file to the log
collector.

To use this functionality with the supplied Helm chart, a customValues.yaml file should be completed and
supplied to the Helm install command line with the following command:

helm install ... -f customValues.yaml ...

A prototype example_ns_svcgrp.yaml file is provided in the repository under the example directory, with the
following format:

overrideSVCGRPConfig: true

zebrium:

svcgrpMapFile: "svcgrpMapFile.json"

customSVCGRPConfig: {

"mynamespace1" : "svcgrp1",

"mynamespace2" : "svcgrp1",

"mynamespace3" : "svcgrp3"

}

Values

Key
Typ
e

Default Description

daemonset.dnsPolicy strin
g

"ClusterFirst"

daemonset.nodeSelector obje
ct

{}

Kubernetes Collector

Kubernetes Collector

Key
Typ
e

Default Description

daemonset.priorityClassName strin
g

""

daemonset.tolerateAllTaints bool true

daemonset.tolerations list [] set ‘daemonset.tolerations
[0].operator=Equal,daemonset.
tolerations
[0].effect=NoSchedule,daemon
set.tolerations [0].key=node-
role.kubernetes.io/master’

extraEnv list []

image.name strin
g

"zebrium/zlog-collector"

image.pullPolicy strin
g

"Always"

image.tag strin
g

"latest"

resources.limits.cpu strin
g

"1000m"

resources.limits.memory strin
g

"1Gi"

resources.requests.cpu strin
g

"20m"

resources.requests.memory strin
g

"500Mi"

ruby.gcHeapOldObjectLimitFactor float 1.2

secret.enabled bool true

services.automountServiceAccountT
oken

bool true

services.automountServiceAccountT
okenSupported

bool false

updateStrategy strin
g

"OnDelete"

zebrium.authToken strin
g

""

zebrium.autoupdate strin
g

"1"

zebrium.bufferChunkLimitRecords int 40000

zebrium.bufferChunkLimitSize strin
g

"8MB"

zebrium.bufferRetryMaxTimes int 360

20

21

Key
Typ
e

Default Description

zebrium.bufferRetryTimeout strin
g

"1h"

zebrium.bufferRetryWait strin
g

"10s"

zebrium.bufferTotalLimitSize strin
g

"64GB"

zebrium.clusterName strin
g

"" Name of the Kubernetes Cluster
that the zlog-collector is
deployed into

zebrium.collectorUrl strin
g

""

zebrium.deployment strin
g

"default"

zebrium.disableEc2MetaData strin
g

"true"

zebrium.ec2ApiClientTimeoutSecs strin
g

"1"

zebrium.excludeNamespaceRegex strin
g

"" Regex String to Exclude
Namespaces, such as: ^(?!.*
(bar foo)) would exclude all
namespaces except foo and bar

zebrium.excludePath strin
g

"[\"/var/log/boot.log\",
\"/var/log/lastlog\"]"

zebrium.excludePodRegex strin
g

"" Regex String to exclude pods,
such as: ^fluentbit.*
would exclude all fluentbit pods
from collection

zebrium.flushInterval strin
g

"30s"

zebrium.flushThreadCount strin
g

"4"

zebrium.handleHostAsConfig bool false

zebrium.k8sApiSecretName strin
g

""

zebrium.logFile strin
g

""

zebrium.logLevel strin
g

"info"

zebrium.name strin
g

"zlog-collector"

zebrium.nodeLogsPath strin "/var/log/*.log,/var/lo

Kubernetes Collector

Kubernetes Collector

Key
Typ
e

Default Description

g g/syslog,
/var/log/messages,/var/
log/secure"

zebrium.pathMapFile strin
g

""

zebrium.svcgrpMapFile strin
g

""

zebrium.tailFromHead strin
g

"true"

zebrium.timezone strin
g

"UTC"

zebrium.useHostEtcHostnameFile bool false

zebrium.verifyK8sApiSSL bool true

zebrium.verifySSL strin
g

"true"

22

Linux Collector

Linux Collector

The Zebrium Fluentd output plugin, ze-fluentd-plugin, sends the logs you collect with Fluentd on Linux to
Zebrium for automated anomaly detection. You can access the plugin at the Zebrium github repository, which is
located at https://github.com/zebrium/ze-fluentd-plugin.

For instructions on deploying the Zebrium Fluentd collector for Docker environments, see the instructions in
Docker Container Log Collectors.

System Requirements

The following Linux operating system distributions are supported:

l Ubuntu 16.04/18.04/20.04

l CentOS or Red Hat Enterprise Linux 7/8

l Amazon Linux 2

Installing the Collector

1. If the environment uses a proxy server, seeOperation with a Proxy Server, below.

2. Get the Zebrium API server URL and authentication token from Zebrium.

3. Determine what deployment name to use.

4. Run the following command in a shell on the host:

curl https://raw.githubusercontent.com/zebrium/ze-fluentd-

plugin/master/install_collector.sh | ZE_LOG_COLLECTOR_URL=<ZAPI_URL>

ZE_LOG_COLLECTOR_TOKEN=<AUTH_TOKEN> ZE_HOST_TAGS="ze_deployment_

name=<deployment_name>" /bin/bash

The default system log file paths are defined by the ZE_LOG_PATHS environment variable. Its default value is:

"/var/log/*.log,/var/log/syslog,/var/log/messages,/var/log/secure"

The ZE_USER_LOG_PATHS environment variable can be used to add more user specific log file paths. For
example, to add app log files at /app1/log/app1.log and /app2/log/*.log, you can set ZE_USER_LOG_
PATHS to:

"/app1/log/app1.log,/app2/log/*.log"

Upgrading the Collector

The upgrade command is similar to the installation command:

23

https://github.com/zebrium/ze-fluentd-plugin

24

curl https://raw.githubusercontent.com/zebrium/ze-fluentd-

plugin/master/install_collector.sh | ZE_LOG_COLLECTOR_URL=<ZAPI_URL> ZE_

LOG_COLLECTOR_TOKEN=<AUTH_TOKEN> ZE_HOST_TAGS="ze_deployment_

name=<deployment_name>" OVERWRITE_CONFIG=1 /bin/bash

Please note that setting OVERWRITE_CONFIG to 1 will cause /etc/td-agent/td-agent.conf to be upgraded to
the latest version.

Uninstalling the Collector

To uninstall:

curl https://raw.githubusercontent.com/zebrium/ze-fluentd-

plugin/master/install_collector.sh | ZE_OP=uninstall /bin/bash

Installing on Hosts with Existing td-agent Configuration

You can add the Zebrium output plugin on a host with existing td-agent configuration without running the
Zebrium log collector installer.

1. Download the Zebrium output plugin from https://github.com/zebrium/ze-fluentd-
plugin/releases/download/1.37.2/fluent-plugin-zebrium_output-1.37.2.gem.

2. Run the following command in the same directory where fluent-plugin-zebrium_output-1.37.2.gem is
saved:

sudo td-agent-gem install fluent-plugin-zebrium_output

Linux Collector

https://github.com/zebrium/ze-fluentd-plugin/releases/download/1.37.2/fluent-plugin-zebrium_output-1.37.2.gem
https://github.com/zebrium/ze-fluentd-plugin/releases/download/1.37.2/fluent-plugin-zebrium_output-1.37.2.gem

Linux Collector

3. Add Zebrium output configuration to the /etc/td-agent/td-agent.conf file.
The following is an example configuration that duplicates log messages and sends one copy to Zebrium:

<match **>

@type copy

Zebrium log collector

<store>

@type zebrium

ze_log_collector_url "ZE_LOG_COLLECTOR_URL"

ze_log_collector_token "ZE_LOG_COLLECTOR_TOKEN"

ze_host_tags "ze_deployment_name=#

{Socket.gethostname},myapp=test2"

@log_level "info"

<buffer tag>

@type file

path "/var/td-agent/zebrium"

flush_mode "interval"

flush_interval "60s"

</buffer>

</store>

<store>

@type OTHER_OUTPUT_PLUGIN

...

</store>

</match>

Configuration for td-agent

The configuration file for td-agent is at /etc/td-agent/td-agent.conf. The following parameters must be
configured for your instance:

Parameter Description Note

ze_log_collector_
url

Zebrium log host
URL

Provided by Zebrium after your account has been created.

ze_log_collector_
token

Authentication token Provided by Zebrium after your account has been created.

path Log files to read Both files and file patterns are allowed. Files should be separated by
comma. The default value is
'"/var/log/*.log,/var/log/syslog,/var/log/messages,/var/log/secure"'

ze_host_tags Host meta data This parameter is optional. You can pass meta data in key-value
pairs, the format is: "key1=value1,key2=value2". We suggest at least
set one tag for deployment name: "ze_deployment_name=<your_
deployment_name>"

25

26

Parameter Description Note

ze_host_in_
logpath

Log path component
for remote host
name

This parameter is optional. For situations where a remote host name is
embedded in the log file directory path structure, e.g.
"/var/log/remote/<host>/...", this can be used as the originating
host for the log by setting this parameter to the path component to be
used for the hostname. The value should be an integer, 1-based. In
this example the configuration would be "ze_host_in_logpath=4".

ze_forward_tag Tag to specify log-
forwarded sources

This parameter is optional. It can be used to indicate sources that are
being used for remote log forwarding, by specifying a specific fluentd
"tag" to one or more sources. The default tag value is "ze_forwarded_
logs".

ze_path_map_file Path mapping file This parameter is optional. It allows embedded semantic data (ids,
tags,configs) in logfile paths to be parsed and added to Zebrium log
data. Set to the full path of a JSON file containing mapping
information. Default is empty string. See Log Path Mapping, below.

User Log Paths

User log paths can be configured via /etc/td-agent/log-file-map.conf. During log collector service startup, if
/etc/td-agent/log-file-map.conf exists, log collector service script writes log paths defined in /etc/td-
agent/log-file-map.conf to /etc/td-agent/conf.d/user.conf. Please note any user log paths configured at
installation time via ZE_USER_LOG_PATHS must be added to /etc/td-agent/log-file-map.conf to avoid being
overwritten.

{

"mappings": [

{

"file": "/app1/log/error.log",

"alias": "app1_error"

},

{

"file": "/app2/log/error.log",

"alias": "app2_error"

},

{

"file": "/var/log/*.log",

"exclude": "/var/log/my_debug.log,/var/log/my_test.log"

}

]

}

Linux Collector

Linux Collector

Fil tering Specif ic Log Events

If you wish to exclude certain sensitive or noisy events from being sent to Zebrium, you can filter them at the
source collection point by doing the following:

1. Add the following in /etc/td-agent/td-agent.conf after other @include:

@include conf.d/log_msg_filters.conf

2. Create a config file /etc/td-agent/conf.d/log_msg_filters.conf that contains the following:

<filter TAG_FOR_LOG_FILE>

@type grep

<exclude>

key message

pattern /<PATTERN_FOR_LOG_MESSAGES>/

</exclude>

</filter>

3. Restart the td-agent with the following command:
sudo systemctl restart td-agent

Example

Below is an example log_msg_filters.conf file for filtering out specific messages from a Vertica log file at
/fast1/vertica_catalog/zdb/v_zdb_node0001_catalog/vertica.log.

In this example, the Fluentd tag for file is node.logs.<FILE_NAME_REPLACE_/_WITH_DOT> (replace all
slashes with dots in the file path):

<filter node.logs.fast1.vertica_catalog.zdb.v_zdb_node0001_cata-

log.vertica.log>

@type grep

<exclude>

key message

pattern /^[^2]|^.[^0]|TM Merge|Authenticat|[Ll]oad *[Bb]alanc[ei]|\

[Session\]

<INFO>|\[Catalog\] <INFO>|\[Txn\] <INFO>|Init Session.*<LOG>/

</exclude>

</filter>

27

28

Log Path Mapping

Log path mapping allows semantic information (like "tags", "ids", and "configs") to be extracted from log paths and
passed to the Zebrium backend. For example, this can include log-file specific host information or business-
related tags that are embedded in the path of the log file can be extracted.

Log path mapping is configured using a JSON file, with format:

{

"mappings": {

"patterns": [

"regex1", ...

],

"tags": [

"tag_name", ...

],

"ids": [

"id_name",...

],

"configs": [

"config_name",...

]

}

}

Set "patterns" to regular expressions to match the log file path. Each regex named capture in a matching regular
expression will be compared to the "tags", "ids", and "configs" sections and added to the corresponding record
section(s). Use the ze_path_map_file configuration parameter to specify the path to the JSON file.

Environment Variables

If the environment is using a proxy server to access the Internet then standard variables (e.g. http_proxy) should
be configured prior to installation. For more information, seeOperation with a Proxy Server.

Usage

Start and Stop Fluentd

The Fluentd agent can be started or stopped with the following command:

sudo systemctl <start | stop> td-agent

Linux Collector

Linux Collector

Testing Your Installation

Once the collector has been deployed in your environment, your logs and anomaly detection will be available in
the Zebrium UI.

Troubleshooting

In the event that Zebrium requires the collector logs for troubleshooting, the logs are located here:

1. Collector installation log: /tmp/zlog-collector-install.log.*

2. Collector runtime log: /var/log/td-agent/td-agent.log

In case of an HTTP connection error, please check the spelling of the Zebrium host URL. Also check that any
network proxy servers are configured appropriately.

Please contact Zebrium at support@zebrium.com if you need any assistance.

Operation with a Proxy Server

If the agent environment requires a non-transparent proxy server to be configured this should be done at two
points:

l The standard http_proxy and https_proxy environment variables must be set in the local environment when
the installer is run. This allows the installer to access the Internet to download necessary components.

l After installation is run the system service also needs to have the same environment variables available. This
allows the Zebrium agent to communicate with the log host to send logs.

Sett ing the Proxy Server in a systemd Environment

If the agent service is run from systemd and a proxy server is in use, the service needs to have the appropriate
proxy configuration added to systemd. This may not be needed if your system is already configured so that all
systemd services globally use a proxy.

To do this, after the installation is performed edit the file /etc/systemd/service/td-
agent.service.d/override.conf to add environment configuration lines for the proxy server, for example:

Environment=http_proxy=myproxy.example.com:8080

After this is done, run the following commands to reload the systemd daemon and start the service:

sudo systemctl daemon-reload

sudo systemctl restart td-agent

29

mailto:support@zebrium.com

File Upload (ze Command)

File Upload (ze Command)

ze is Zebrium’s command-line interface for uploading log events from files or streams.

Features

up (upload)

Upload log event data to your Zebrium instance from a file or stream (stdin) with appropriate meta data.

help

Display help on ze command usage.

help_adv

Display advanced help on ze command usage.

Getting Started

Prerequisi tes

l Perl

l Perl JSON module

l curl

l Collector token from Zebrium, available from the Log Collector Setup page in the Zebrium user interface

l URL to your instance of Zebrium, available from the Log Collector Setup page in the Zebrium user interface

Instal l ing ze

1. Download bin/ze from the Zebrium GitHub repository here: https://github.com/zebrium/ze-cli.

2. Move bin/ze to the appropriate bin directory in your PATH.

3. Make sure that the following ze command is executable:
chmod 755 <path_to_ze_command>

NOTE: ze requires the Perl JSON module.

To install the Perl JSON module on Linux (Ubuntu):

sudo apt-get install libjson-perl

To install the Perl JSON module on Mac OS:

30

https://github.com/zebrium/ze-cli

31

brew install cpanm

sudo cpanm install JSON

Configuration

No configuration is required. All options can be specified as command-line arguments. However, see the Setup
section below for information on configuring your .zerc file.

Setup

For convenience, the collector TOKEN and URL can be specified in your $HOME/.zerc file.

Your ZE_LOG_COLLECTOR_URL and ZE_LOG_COLLECTOR_TOKEN are available in the the Zebrium UI
under the Log Collector Setup page.

Example .zerc file:

url=<ZE_LOG_COLLECTOR_URL>

auth=<ZE_LOG_COLLECTOR_TOKEN>

Environment Variables

None

Usage

Run the following command for a complete list of command options:
ze help

Command Syntax and Options

ze up

\

[--url=<url>] [--auth=<token>]

\

[--file=<path>] [--log=<logtype>] [--host=<hostname>] [--svc-

grp=<service-group>]

--url - Zebrium Log Collector URL <ZE_LOG_COLLECTOR_URL> (omit to

look for url=<url> line in $HOME/.zerc)

--auth - Zebrium Log Collector Token <ZE_LOG_COLLECTOR_TOKEN>

(omit to look for auth=<token> line in $HOME/.zerc)

--file - Path to file being uploaded (omit to read from STDIN)

--log - Logtype of file being uploaded (omit to use base name

File Upload (ze Command)

File Upload (ze Command)

from file=<path> or 'stream' if STDIN)

--host - Hostname or other identifier representing the source of

the file being uploaded

--svcgrp - Service Group defines a failure domain boundary for anom-

aly correlation. This allows you to collect logs from multiple

applications or support cases and isolate the logs of one

from another so as not to mix these

in a Root Cause Report. This is referred to as a Service

Group in the Zebrium UI.

If omitted, Service Group will be set to "default".

Default is used to denote a service group that

represents shared-services. For example, a database that

is shared between two otherwise distinctly separate applications

would be considered a shared-service. In this example

scenario, you would set the Service Group for one application to "app01"

and to "app02" for the other application. For the data-

base logs, you would either omit the --svcgrp setting or you could

explicitly set it do "default" using --svcgrp=default.

With this configuration, Root Cause Reports will consider

correlated anomalies across:

"app01" log events and default (i.e. database logs)

and

"app02" log events and default (i.e. database logs)

but not across:

"app01" and "app02"

Advanced Options

Run the following command for a complete list of advanced options:

ze help_adv

Batch Uploads

The ze tool supports batch uploads. For more information, see Zebrium batch uploads and ze CLI.

32

33

Examples

1. Ingest three log files associated with the same support case "sr12345" (does not assume a .zerc
configuration file exists):

ze up --file=/casefiles/sr12345/messages.log --svcgrp=sr12345 --

host=node01 --log=messages --url=<ZE_LOG_COLLECTOR_URL> --auth=<ZE_

LOG_COLLECTOR_TOKEN>

ze up --file=/casefiles/sr12345/application.log --svcgrp=sr12345 --

host=node01 --log=application --url=<ZE_LOG_COLLECTOR_URL> --

auth=<ZE_LOG_COLLECTOR_TOKEN>

ze up --file=/casefiles/sr12345/db.log --svcgrp=sr12345 --host=db01 -

-log=db --url=<ZE_LOG_COLLECTOR_URL> --auth=<ZE_LOG_COLLECTOR_TOKEN>

2. Ingest a continuous tail of /var/log/messages. When reading from a stream, such as STDIN, rather than
from a file, ze requires the –log flag (assumes a .zerc configuration file exists):

tail -f /var/log/messages | ze up --log=varlogmsgs --svcgrp=monitor01

--help=mydbhost

File Upload (ze Command)

Zebrium Batch Uploads and ze Command-line Interface

Zebrium Batch Uploads and ze Command-line Interface

Zebrium batch uploads provide a way for grouping one or more related uploads so that they can be monitored
and managed later as a unit. Each batch has a unique ID used to identify the batch.

Batch Uploads vs Service Groups

Batch uploads are different from service groups:

l Service groups provide a semantic connection across the data in uploads when looking for incidents.

l Batch uploadsmanage the overall phases of uploading and processing data in related logs. For example:
monitoring if a batch is completed, how many lines of data have been ingested for, the time taken, and so
forth.

Integration into ze CLI

Batch uploads are integrated into the ze command-line interface (CLI) in the following main ways:

l A standalone upload, using the ze up CLI, automatically has a batch created for it. The batch ID is
displayed when the upload is finished so progress can be monitored using the ze batch state and ze batch
show CLIs, described below.

l A set of related uploads, using the ze up CLI, can be associated with a specific batch ID that has been
created earlier using the ze batch begin CLI. When all the logs for the batch are uploaded, the batch
should be completed using ze batch end, or if there are errors the batch can be canceled using ze batch
cancel. When ze batch end is used, all the logs for that batch are processed together by Zebrium.

ze batch CLI subcommand

The ze batch CLI subcommand allows batch uploads to be created, completed, cancelled and monitored. It has
the following syntax:

ze batch begin [--url=<url>] [--auth=<auth>] [--batch_ID=<batch_ID>]

ze batch end [--url=<url>] [--auth=<auth>] -batch_ID=<batch_ID>

ze batch cancel [--url=<url>] [--auth=<auth>] -batch_ID=<batch_ID>

ze batch state [--url=<url>] [--auth=<auth>] -batch_ID=<batch_ID>

ze batch show [--url=<url>] [--auth=<auth>] -batch_ID=<batch_ID>

34

35

Examples

Uploading a Large Log and Monitoring its Progress

Upload a log file, on success the new batch ID is displayed, usually with a Processing state, meaning the log has
been accepted by Zebrium and is being scanned for incidents:

ze up ... --file=myfile.log

State for batch upload baxyz1748ca is Processing

Sent sucessfully

Monitor the batch until processing completes:

watch ze batch state ... --batch_ID=baxyz1748ca

When the batch upload is completed, the state will change, typically to Done. For additional information, the ze
batch show option can be used:

ze batch show ... --batch_id=baxyz1748ca

Batch ID: baxyz1748ca

State: Done

Created: 2022-06-08T22:58:18Z

Completion Time: 2022-06-08T22:59:45Z

Expiration Time: 2022-06-10T22:59:45Z

Lines: 377943

Bundles Created: 2

Bundles Completed: 2

Upload time: 0:17 min:sec

Processing time: 1:20 min:sec

In this output, the expiration time refers to the batch upload metadata, not the uploaded logs or any detected
incidents.

Uploading Multiple Logs to be Processed Together

The ze batch begin and ze batch end subcommands can be used to create a batch upload that spans several
linked files. This allows them to be processed as a unit.

Begin a new batch:

ze batch begin ...

New batch upload ID: baxyz7357473aac1

Zebrium Batch Uploads and ze Command-line Interface

Zebrium Batch Uploads and ze Command-line Interface

Upload several logs as part of the same batch, using the --batch_ID option:

ze up --batch_ID=baxyz7357473aac1 ... --file=file1.log

ze up --batch_ID=baxyz7357473aac1 ... --file=file2.log

ze up --batch_ID=baxyz7357473aac1 ... --file=file3.log

End the batch:

ze batch end ... --batch_ID=baxyz7357473aac1

The batch upload can be monitored as in the previous example, using the ze batch state and ze batch show
subcommands.

Batch_upload.sh script

The batch_upload.sh script wraps multiple logs with a batch upload in a single step.

Download bin/batch_upload.sh from the Zebrium GitHub repository here: https://github.com/zebrium/ze-cli.

This example uploads all files from /var/log using a custom host option to ze:

batch_upload.sh -o '--host=myhost' /var/log/*.log

Use batch_upload.sh -h for full options.

NOTE: The upload URL and authentication must be supplied on the command line using -u and -a options
if you are not using a .zerc file. Do not use the ze --url or ze --auth options.

36

https://github.com/zebrium/ze-cli

37 Zebrium Batch Uploads and ze Command-line Interface

CloudWatch Collectors

CloudWatch Collectors

The Zebrium CloudWatch collector ze-cloudwatch (lambda function for Amazon Web Services) sends logs to
Zebrium for automated Anomaly detection. The Zebrium GitHub repository is located here:
https://github.com/zebrium/ze-cloudwatch.

Preparation

1. Download Zebrium CloudWatch Lambda function package from https://github.com/zebrium/ze-
cloudwatch/releases/download/1.47.0/zebrium_cloudwatch-1.47.0.zip.

2. If you have an existing Lambda function associated with the log group to be set up, you must go to AWS
CloudWatch page and delete the existing subscription filter, otherwise you will get this error message: “An
error occurred when creating the trigger: The log group host-log already has an enabled subscription filter
associated with it.”

3. If you do not have an existing role with Lambda execution permission, you should got to the AWS IAM
service to create a role for running Lambda functions.

Installation

You will need to create a new Lambda function and then edit the function details.

1. Create a new Lambda function by going to the to AWS Lambda page.

2. Select Author from scratch.

3. Provide the following base information:

l Function Name: zebrium-cloudwatch

l Runtime: Node.js.12.x

4. Click on Create function.

5. To edit the function details, go to the Code entry type drop-down menu and choose Upload a .zip file.

6. Upload the Zebrium Lambda function package file that you just downloaded.

7. Enter index.handler for Handler setting.

8. Choose Node.js.12.x for Runtime.

9. For Execution role, choose an existing role with Lambda execution permission.

10. Click on Designer and click on Add a trigger.

11. Type CloudWatch Logs and choose your log group.

12. Set the following environment variables:

l ZE_DEPLOYMENT_NAME: Deployment name (Required)

l ZE_HOST: Alternative Host Name (Optional)

38

https://github.com/zebrium/ze-cloudwatch
https://github.com/zebrium/ze-cloudwatch/releases/download/1.47.0/zebrium_cloudwatch-1.47.0.zip
https://github.com/zebrium/ze-cloudwatch/releases/download/1.47.0/zebrium_cloudwatch-1.47.0.zip

39

l ZE_LOG_COLLECTOR_URL: ZAPI URL

l ZE_LOG_COLLECTOR_TOKEN: Auth token

13. Click [Save] to save your new Lambda function. New logs should appear on Zebrium web portal in a
couple of minutes.

Configuration

No additional configuration is required.

Setup

No additional setup is required

Testing Your Installation

After the collector has been deployed in your CloudWatch environment, your logs and anomaly detection will be
available in the Zebrium user interface.

CloudWatch Collectors

Docker Container Log Collector

Docker Container Log Collector

The Zebrium Docker container log collector, ze-docker-log-collector, collects container logs and sends logs to
Zebrium for automated incident detection. Our github repository is located here: https://github.com/zebrium/ze-
docker-log-collector.

NOTE: A non-containerized Docker log collector based on Fluentd is also available here:
https://docs.zebrium.com/docs/setup/docker_fluentd.

Getting Started

Docker

Use the following command to create a Docker log collector container:

sudo docker run -d --name="zdocker-log-collector" --restart=always \

-v=/var/run/docker.sock:/var/run/docker.sock \

-e ZE_LOG_COLLECTOR_URL="<ZE_LOG_COLLECTOR_URL>" \

-e ZE_LOG_COLLECTOR_TOKEN="<ZE_LOG_COLLECTOR_TOKEN>" \

-e ZE_HOSTNAME="<HOSTNAME>" \

-e ZE_DEPLOYMENT_NAME="YOUR_DEPLOYMENT_NAME_HERE" \

zebrium/docker-log-collector:latest

The ZE_DEPLOYMENT_NAME label essentially defines a failure domain boundary for anomaly correlation. This
allows you to collect logs from multiple applications and isolate the logs of one application from another
application so as not to mix these in a Root Cause Report. This is referred to as Service Groups in the Zebrium
user interface.

Docker Compose

Use the following configuration file to deploy via docker-compose command:

version: '3.5'

services:

zdocker-log-collector:

image: zebrium/docker-log-collector:latest

restart: always

volumes:

- /var/run/docker.sock:/var/run/docker.sock

environment:

40

https://github.com/zebrium/ze-docker-log-collector
https://github.com/zebrium/ze-docker-log-collector
https://docs.zebrium.com/docs/setup/docker_fluentd

41

ZE_LOG_COLLECTOR_URL: "<ZE_LOG_COLLECTOR_URL>"

ZE_LOG_COLLECTOR_TOKEN: "<ZE_LOG_COLLECTOR_TOKEN>"

ZE_DEPLOYMENT_NAME: "<YOUR_DEPLOYMENT_NAME_HERE>"

ZE_HOSTNAME: "<HOSTNAME>"

AWS Elastic Container Service (ECS)

Add the following service to ECS on EC2 cluster configuration.

services:

zdocker-log-collector:

image: zebrium/docker-log-collector:latest

restart: always

volumes:

- /var/run/docker.sock:/var/run/docker.sock

environment:

ZE_LOG_COLLECTOR_URL: "<ZE_LOG_COLLECTOR_URL>"

ZE_LOG_COLLECTOR_TOKEN: "<ZE_LOG_COLLECTOR_TOKEN>"

ZE_DEPLOYMENT_NAME: "<YOUR_DEPLOYMENT_NAME_HERE>"

To collect container logs from all nodes in an ECS cluster, the zdocker-log-collector service must be configured
to run as an ECS daemon task.

To configure the daemon task:

1. Log in to the AWS console and navigate to the ECS Clusters section. Click into your cluster you run the
Agent on.

2. On the [Service] tab, click [Create].

3. For launch type, select EC2.

4. For service type, select DAEMON.

5. Type a service name and click [Next step].

6. For the Load balance type option, select None and click [Next step].

7. On the next page, click [Next step] without configuring Auto Scaling.

8. Review and click Create Service.

NOTE: ECS tasks must be configured to use the "json-file Log Driver for Zebrium" log collector to receive
container logs. If there is a special log configuration on ECS instances, such as using the UserData
section on an instance to set log configuration, those configurations might need to be modified or
deleted.

Docker Container Log Collector

Docker Container Log Collector

Environment Variables

The following environment variables are supported by the collector:

Environment Variables Description Default Value Note

ZE_LOG_COLLECTOR_URL Zebrium log host server
URL

None. Must be set
by user

Provided by Zebrium after
your account has been
created.

ZE_LOG_COLLECTOR_TOKEN Authentication token None. Must be set
by user

Provided by Zebrium after
your account has been
created.

ZE_HOSTNAME Hostname of docker
host

Empty. Optional If ZE_HOSTNAME is not
set, container hostname is
used as source host for
logs.

ZE_MAX_INGEST_SIZE Maximum size of post
request for Zebrium log
server

1048576 bytes.
Optional

Unit is in bytes

ZE_FLUSH_TIMEOUT Interval between
sending batches of log
data to Zebrium log
server.

30 seconds.
Optional

Unit is in seconds. Please
note Zebrium output
plugin sends data
immediately to log server
when accumulated data
reaches ZE_MAX_
INGEST_SIZE bytes.

ZE_FILTER_NAME Collect logs for
containers whose
names match filter
name pattern. These
can include wildcards,
for example,my_
container1*

Empty. Optional

ZE_FILTER_LABELS Collect logs for
containers whose labels
match the labels as
defined in ZE_FILTER_
LABELS. The format is:
label1:label1_
value,label2:label2_
value. These can
include wildcards, for
example,my_
label:xyz*

Empty. Optional

42

43

Testing your Installation

After the Docker log collector software has been deployed in your environment, your container logs and incident
detection will be available in the Zebrium user interface.

Docker Container Log Collector

Logstash Collector

Logstash Collector

Configuring Logstash to Send Log Data to Zebrium

In Zebrium, you will need to retrieve your Zebrium URL and Auth Token for to configuring the Logstash HTTP
Output plugin:

1. Log in to your Zebrium portal user account.

2. From the User menu area in Zebrium, click the Settings menu (hamburger) at top right.

3. Select Integrations & Collectors.

4. In the Log Collectors section, clickOther.

5. Make a note of the values in the ZE_LOG_COLLECTOR_URL and ZE_LOG_COLLECTOR_TOKEN fields,
as you will use them configuring Logstash.

Next, you will need to log into Logstash to complete the fields required by Zebrium.

Zebrium requires certain fields (keys) to be defined for each log event. These definitions are part of the "filter"
section in the logstash configuration.

There are four types of Zebrium fields that require definition in the Logstash filter configuration for proper Incident
detection in Zebrium. An example Logstash configuration is shown below the table:

Type Description Key Name Key Definition Requirement

Time Timestamp/ti
me zone of
each log
event.

@timestamp Timestamp of each log event
(rather than the time the event was
processed by Logstash if possible).

Required.

@ze_timezone Time zone of each log event. E.g.
"America/Los_Angeles"

Optional.
Note:
UTC is the
default.

Log
Generato
r

Indicates the
source of the
log event.

@ze_deployment_name Identifies the environment or
application domain. In the
Zebrium UI this is known as the
Service Group (see Note on
Service Groups below) E.g.
"production", "dev", "acme_
calendar_app"

Recommended.

@ze_host Host name identifier Required.

@ze_logtype The basename of the log
source. E.g. "access.log",
"syslog". In the Zebrium UI, it will
be the logtype. In the container
world, this would probably be
the app name.

Required.

44

45

Type Description Key Name Key Definition Requirement

Log
Events
Wrapped
in JSON

If the
application or
host log events
are simply
wrapped in a
JSON and
contain a field
like "message"
: "2020-10-23
04:17:37
mars INFO
systemd[1]:
Stopped
PostgreSQL
RDBMS.", then
these keys
need to be
defined.

@ze_msg If the JSON contains a field
representing a typical "log event"
<PREFIX INFORMATION>
<EVENT TEXT>, then this Zebrium
key should be set to the value of
that "log event". Zebrium's machine
learning with then structure this
field into an Event Type (etype)
used for Incident detection.

Required
(if your log
events are
wrapped
in JSON).

@ze_sev If @ze_msg does not contain a
severity, then this field can be used
to explicitly set the severity based
on some other criteria or field from
the payload.

Optional.

External
ID
Mapping

Map events in
Zebrium to
corresponding
events in
Elasticsearch

@ze_xid Assign a unique id (UUID) to
every log event so that events
in Zebrium can be mapped to
corresponding events in
Elasticsearch through a
common UUID.

Required (if using
Kibana/Elasticsearch
to view Zebrium
Incidents).

Service Groups

A Service Group defines a failure domain boundary for anomaly correlation. This allows you to collect logs from
multiple applications and isolate the logs of one from another so as not to mix these in a Root Cause Report. This
is referred to as a Service Group in the Zebrium user interface.

If you are uploading multiple logs from different services in the same application, you would specify the same
Service Group for each log event from that application. For example, if you have a database log, an application
log, and a middleware log for the Acme Calendar application. You would use an appropriate service group
when uploading all files from that application, such as acme_calendar_app.

Configuring Logstash Filters for Zebrium Required Fields (in Logstash)

1. Edit the appropriate Logstash configuration file to define the required Zebrium with Elastic Stack filter
definitions. All of these definitions are within the filter { } section of the configuration.

2. TIME FIELDS

l @timestamp should contain the timestamp from the log event (not the timestamp when processed by
Logstash). This is important for proper incident detection in Zebrium.

Logstash Collector

Logstash Collector

l Processing multi-line events should be enabled such that child log event lines are concatenated to the
parent event with newlines.

46

47

l The following shows an example configuration for meeting these requirements:

#---

-------#

Input Filter definition for processing multi-line events (if

needed) #

#---

-------#

codec => multiline {

pattern => "^%{TIMESTAMP_ISO8601}"

negate => true

what => "previous"

}

#---

---------------------------#

Grok and Date Filter for capturing log event timestamp in

@timestamp #

If it is not possible to easily capture the event timestamp as

@timestamp as shown here, #

it is OK to leave @timestamp as-is (i.e. use the logstash

generated timestamp) #

#---

---------------------------#

grok {

match => ["message", "(?m)%{TIMESTAMP_ISO8601:logdate}"] #

Note the multi-line capture pattern (?m)

}

date {

This will set @timestamp

match => ["logdate", "yyyy-MM-dd HH:mm:ss,SSS", "yyyy-

MM-dd HH:mm:ss"]

timezone => "America/Los_Angeles"

remove_field => ["logdate"]

}

#---------------------------------------#

Capture @ze_timezone

If not specified, UTC will be assumed

#---------------------------------------#

mutate {

Logstash Collector

Logstash Collector

add_field => { @ze_timezone => "America/Los_Angeles" } #

Specify timezone (IANA TZ Names)

if your log timestamps are missing the timezone info, otherwise

UTC is assumed (optional).

}

3. LOG GENERATOR FIELDS

#---#

Mutate Filter for capturing logtype, host and gid

PLEASE READ CAREFULLY - YOU MUST SUBSTITUTE THE

RIGHT-HAND SIDE OF THE ASSIGNMENTS WITH YOUR FIELD NAMES/VALUES

#---#

mutate {

add_field => { "@ze_deployment_name" => "%{my_deployment}" } #

assumes field "my_deployment" is part of the payload (recommended)

add_field => { "@ze_host" => "%{host}" } #

assumes field "host" is part of the payload (required)

add_field => { "@ze_logtype" => "%{logtype}" } #

assumes field "logtype" is part of the payload (required)

}

48

49

4. LOG EVENTS WRAPPED IN JSON FIELDS
This configuration is required if you have a "message" field in the JSON containing an unstructured log
event. In that case, we will structure the message and create an Event-Type automatically for Incident
Detection.

#---#

Required if your log events are wrapped in JSON

PLEASE READ CAREFULLY - YOU MUST SUBSTITUTE THE

RIGHT-HAND SIDE OF THE ASSIGNMENTS WITH YOUR FIELD NAMES/VALUES

#---#

mutate {

add_field => { "@ze_msg" => "%{message}" } # Capture the

unstructured log event from the message field - Zebrium will

automatically structure this into an etype (required)

add_field => { "@ze_sev" => "%{[log][severity]}" } # Capture the

severity explicitly since "message" field does not contain severity

(optional)

add_field => { "@ze_pfx" => "%{[log][process]}" } # Capture the

process name and add to the log event prefix so its part of the

automatic structuring (optional)

}

5. EXTERNAL ID MAPPING FIELD

NOTE: This is not part of a mutate filter.

uuid {

target => "@ze_xid" # Generate a Unique ID and assign to @ze_xid

}

6. SAVE YOUR CONFIGURATION FILE.

Configuring Log Event Output to Zebrium (in Logstash)

1. Edit the appropriate Logstash configuration file to define the required Zebrium with Elastic Stack output
definition.

Logstash Collector

Logstash Collector

2. Add the following Output Filter definition for Zebrium and substitute ZE_LOG_COLLECTOR_URL and ZE_
LOG_COLLECTOR_TOKEN with the values from step 5 of Configuring Logstash to Send Log Data to
Zebrium, above.

output {

if <SOME_CONDITION_IS_TRUE> {

http {

format => "json_batch"

http_method => "post"

url => "<ZE_LOG_COLLECTOR_URL>/log/api/v2/ingest?log_

source=logstash&log_format=json_batch"

headers => ["authtoken", "<ZE_LOG_COLLECTOR_TOKEN>"]

}

}

}

3. SAVE YOUR CONFIGURATION FILE.

Reload Logstash Configuration

Reload your Logstash configuration to pick up all changes. Data will now be ingesting into Zebrium.

Complete Example for filebeat and winlogbeat Data

It is highly recommended you read this carefully and follow the sample provided.

input {

beats {

port => 5044

}

}

filter {

#--#

Add the UUID to all events before

cloning a copy for the zebrium only fields

#--#

uuid {

target => "@ze_xid" # Generate a Unique ID and assign to @ze_xid

}

#---#

50

51

Make a clone of the message so we only send

Zebrium add-ons to Zebrium and not to other

existing outputs like elastic

#---#

clone {

clones => ['zebrium']

}

#------------------------------------#

Add Zebrium specifics to the clone

#------------------------------------#

if([type] == 'zebrium') {

#--#

Common attributes across filebeats, winlogbeats

#--#

mutate {

add_field => { "[@metadata][zebrium]" => true }

}

mutate {

add_field => { "@ze_deployment_name" => "mydeployment01" }

}

if([host][hostname]) {

mutate {

add_field => { "@ze_host" => "%{[host][hostname]}" }

}

} else if ([host][name]) {

mutate {

add_field => { "@ze_host" => "%{[host][name]}" }

}

}

if([@ze_host]) {

mutate {

gsub => ["@ze_host", "^([^\.]+)", "\1"] # Use hostname without

fully qualified domain

}

} else {

mutate {

add_field => { "@ze_host" => "unknown" }

}

}

Logstash Collector

Logstash Collector

#------------------------------#

winlogbeat specific captures

#------------------------------#

if([agent][type] and [agent][type] == "winlogbeat") {

if([log][level]) {

mutate {

add_field => { "@ze_sev" => "%{[log][level]}" }

}

}

if([message]) {

mutate {

add_field => { "@ze_msg" => "%{[message]}" }

add_field => { "@ze_time" => "%{@timestamp}" }

}

}

if([event][provider]) {

mutate {

add_field => { "@ze_logtype" => "%{[event][provider]}" }

}

} else if([event][module]) {

mutate {

add_field => { "@ze_logtype" => "%{[event][module]}" }

}

} else {

mutate {

add_field => { "@ze_logtype" => "winlogbeat" }

}

}

if [@ze_logtype] and [@ze_logtype] =~ "^Microsoft\-Windows\-" {

Sometimes we see provider start with Microsoft-Windows-, so get

rid the that extraneous string and pickup the reaminder as the logtype

mutate {

gsub => ["@ze_logtype", "^Microsoft\-Windows\-(.*)$", "\1"]

}

}

}

#----------------------------#

filebeat specific captures

#----------------------------#

52

53

if([agent][type] and [agent][type] == "filebeat") {

if([message]) {

mutate {

add_field => { "@ze_msg" => "%{[message]}" }

}

}

if([log][file][path]) {

grok {

match => ["[log][file][path]","%{GREEDYDATA}[\\/]%{GREEDYDATA:-

logtype}\.log"]

}

mutate {

add_field => { "@ze_logtype" => "%{logtype}" }

remove_field => ["logtype"]

}

mutate {

Sometimes the log filename starts with the hostname, remove

that so all logs of the same type are grouped together

gsub => ["@ze_logtype", "^%{@ze_host}([^\d]+).*$", "\1"]

}

} else {

mutate {

add_field => { "@ze_logtype" => "filebeatlog" }

}

}

}

} # END OF ZEBRIUM

}

output {

SEND ZEBRIUM DATA TO ZEBRIUM ONLY

if [@metadata][zebrium] {

http {

format => "json_batch"

http_method => "post"

url => "<ZE_LOG_COLLECTOR_URL>/log/api/v2/ingest?log_

source=logstash&log_format=json_batch"

headers => ["authtoken", "<ZE_LOG_COLLECTOR_TOKEN>"]

proxy => "<proxy>"

}

Logstash Collector

Logstash Collector

THEN SEND DATA AS WAS DONE BEFORE ADDING ZEBRIUM

} else if [@metadata][pipeline] {

elasticsearch {

hosts => ["https://localhost:9200"]

index => "%{[@metadata][beat]}-%{[@metadata][version]}"

pipeline => "%{[@metadata][pipeline]}"

ssl => true

ssl_certificate_verification => true

cacert => '/etc/logstash/certs/ca.crt'

user => elastic

password => "${ES_PW}"

}

} else {

elasticsearch {

hosts => ["https://localhost:9200"]

index => "%{[@metadata][beat]}-%{[@metadata][version]}"

pipeline => beats

ssl => true

ssl_certificate_verification => true

cacert => '/etc/logstash/certs/ca.crt'

user => elastic

password => "${ES_PW}"

}

}

}

54

Syslog Forwarder

Syslog Forwarder

The Zebrium Syslog Forwarder accepts both syslogs and raw logs and forwards them to Zebrium for automated
Anomaly detection.

Our github repository is located here: https://github.com/zebrium/ze-log-forwarder.

Preparation

1. By default, the syslog forwarder container uses TCP and UDP port 5514 for syslog, and TCP port 5170 for
TCP forwarding. Please make sure clients can reach host IP on those ports.

2. For syslog forwarding, make sure the host firewall does not block port 5514 for both TCP and UDP. For TCP
forwarding, make sure TCP port 5170 is open.

3. Install Docker software if it is not installed.

Forward Syslog

Instal lation

1. To support syslog over TCP and UDP, run the following command as root, and be sure to replace items in
<BRACKETS> with real values:

docker run -d --name="zlog-forwarder" --restart=always \

-p 5514:5514/tcp \

-p 5514:5514/udp \

-e ZE_LOG_COLLECTOR_URL="<ZE_LOG_COLLECTOR_URL>" \

-e ZE_LOG_COLLECTOR_TOKEN="<ZE_LOG_COLLECTOR_TOKEN>" \

-e ZE_DEPLOYMENT_NAME="<DEPLOYMENT_NAME>" \

zebrium/log-forwarder:latest

2. To support syslog over TLS and UDP, create or copy the root certificate, the host certificate, and the host
private key files to a directory on the host that will be running log-forwarder container.

55

https://github.com/zebrium/ze-log-forwarder

56

3. Run the following command as root:

docker run -d --name="zlog-forwarder" --restart=always \

-p 5514:5514/tcp \

-p 5514:5514/udp \

-v <USER_SERVER_CERTS_KEY_DIR>:/fluentd/tls

-e ZE_SYSLOG_PROTOCOL="tls" \

-e ZE_LOG_COLLECTOR_URL="<ZE_LOG_COLLECTOR_URL>" \

-e ZE_LOG_COLLECTOR_TOKEN="<ZE_LOG_COLLECTOR_TOKEN>" \

-e ZE_DEPLOYMENT_NAME="<DEPLOYMENT_NAME>" \

zebrium/log-forwarder:latest

Client Configuration

1. Use the host IP as the syslog server IP address, and port 5514 for syslog port.

2. To configure rsyslog:

l To use UDP, add the following to the end of the rsyslog configuration file *.* @<LOG_
FORWARDER_HOST_IP>:5514

l To use TCP, add the following to the end of the rsyslog configuration file *.* @@<LOG_
FORWARDER_HOST_IP>:5514

l To use TLS:

o Copy client_configs/rsyslog/25-zebrium.conf to /etc/rsyslog.d/.

o Open the file, replace CLIENT_SSL_CERT_PATH with the real client SSL certificate path, change
SERVER_HOST to the hostname running log-forwarder container, and change SERVER_
DOMAIN_NAME to the domain of the host running the log-forwarder container.

o Restart the rsyslog service.

Setup

No additional setup is required

Forward Log via TCP

Instal lation

Run the following command as root, and be sure to replace items in <BRACKETS> with real values:

docker run -d --name="zlog-forwarder" --restart=always \

-p 5170:5170/tcp

-e ZE_LOG_COLLECTOR_URL="<ZE_LOG_COLLECTOR_URL>" \

-e ZE_LOG_COLLECTOR_TOKEN="<ZE_LOG_COLLECTOR_TOKEN>" \

-e ZE_DEPLOYMENT_NAME="<DEPLOYMENT_NAME>" \

Syslog Forwarder

Syslog Forwarder

-e ZE_TCP_HOSTNAME="<TCP_FORWARDER_HOSTNAME>" \

-e ZE_TCP_LOGBASE="tcp_forwarder" \

-e ZE_TIMEZONE="<TIME_ZONE>" \

zebrium/log-forwarder:latest

where <TIME_ZONE> is timezone of the log messages, such as "UTC" or "EDT".

Setup

No additional setup is required

Testing your installation

After the log forwarder software has been deployed in your environment, your logs and anomaly detection will be
available in the Zebrium user interface.

57

Chapter

4
Working with Suggestions and

Root Cause Reports

Overview

This chapter covers the following topics:

Suggestions in Zebrium 59

Managing Suggestions in the Zebrium User Interface 60

Root Cause Reports 64

Assessing Suggestions 68

Key Use Cases for Suggestions and Root Cause Reports 70

58

59

Suggestions in Zebrium

Zebrium Root Cause as a Service (RCaaS) uses unsupervised machine learning on logs to automatically find
the root cause of software problems. It does not require manual rules or training, and it typically achieves
accuracy within 24 hours.

As Zebrium ingests logs, the Zebrium artificial-intelligence machine-learning (AI/ML) engine analyzes the logs,
looking for abnormal log line clusters that resemble problems, such as abnormally correlated rare and error
events from across all log streams.

When the AI/ML engine detects one of these "abnormal" clusters, it generates a suggestion, which appears on
the Alerts page (the home page) of the Zebrium user interface:

A suggestion is a summary report that contains the following main elements:

l AI-generated title. This title is generated using the GPT-3 language model, which is trained on a large
volume of public data. As a result, the titles might not always be accurate and should not be relied upon
alone to make a decision about a suggestion.

l Word Cloud. A set of relevant words chosen by the AI/ML engine from the log lines contained in the alert.

l Root Cause (RCA) Report Summary. The report contains the actual cluster of anomalous log lines that
was identified by the AI/ML engine. Up to eight of these log lines are shown in the summary view. You can
click anywhere in the summary to view the full RCA report.

l Alert Key. One or two log lines, denoted with a key icon (), that are used to identify the suggestion if this
type of suggestion occurs again. The alert keys make up an alert rule.

IMPORTANT: Suggestions are generated when the AI/ML engine finds a cluster of correlated anomalies in
your logs that resembles a problem. However, this does not mean that all suggestions relate
to actual important problems. This is especially true during the first few days of using Zebrium,
as the AI/ML engine learns the normal patterns in your logs.

Suggestions in Zebrium

Managing Suggestions in the Zebrium User Interface

When you start getting suggestions on the Alerts page, you can review the word clouds and event logs that
display in the summary views for the Root Cause reports for the suggestions. As a best practice, identify a specific
timeframe when a possible problem occurred, and then start looking at the reports that have the most interesting
or relevant information related to the possible root cause of the problem.

You can choose to "accept" or "reject" a suggestion. For more information, see Assessing Suggestions.

You can also decide on the action to take if the same kind of alert type occurs again, such as sending a
notification to Slack, email, or another type of notification. For more information, see Enabling Notification
Channels.

If you currently use a monitoring tool from ScienceLogic, Datadog, New Relic, Elastic, Dynatrace or
AppDynamics, you can configure an observability dashboard integration that lets you view Zebrium suggestions
on your existing monitoring dashboards. For more information, see Configuring Observability Dashboard
Integrations.

Managing Suggestions in the Zebrium User Interface

The Alerts page is also the Zebrium home page, and you can get to this page by clicking the Ze icon () at the
top left of any page in the Zebrium user interface:

This page displays a list of filtering and search options at the top of the page. You can use these filters to manage
the number of suggestions and alerts that display on the Alerts page. There is also a Search bar for text or
regular expression (regex) searches, and a toggle for Core Events and All Events. For more information about
filtering, see Using the Filters on the Alerts Page in Zebrium.

60

61

Below the filters is a Timeline widget that displays a set of icons organized by time. These icons represent all
known suggestions, accepted alerts, and custom alerts for a specific period of time. For more information about
the Timeline widget, see Using the Timeline Widget on the Alerts Page.

The Root Cause (RCA) reports that correspond to the items in the Timeline widget display in a summary view
below the widget. If you click an icon in the Timeline widget, the RCA report for that icon moves to the top of the
summary view below the widget. For more information about RCA reports, see Root Cause Reports.

Using the Filters on the Alerts Page in Zebrium

At the top of the Alerts page, the [Time Range] button () lets you change the time frame of the alerts. The
default time frame for displaying alerts is the last 7 days.

In addition, you can click the [Filtering] button to select filters that will control which RCA reports display on the
Alerts page. The Selected Filter dialog appears:

You can filter by log types (which typically match container names), service groups, hosts, tags, and more. Any
RCA reports that match these attributes will be shown in the filtered view.

Most of the filters on the Selected Filter dialog are self-explanatory. However, you should pay attention to the
following filters, especially if you are not seeing the reports you want to see on the Alerts page:

l Alert Occurrences. By default, only the first occurrence of an alert will be shown in the list, so that if the
same type of alert occurs more than once, you will only see its first instance. You can change this if you wish
to see all alert occurrences, the most recent alert occurrences, or other options.

l Alert Rule State. You can filter by some or all custom alerts, suggestions, accepted alerts, or rejected alerts.

l Significance. The AI/ML engine assigns a value of Low, Medium, or High to each alert, based on how likely
that alert is related to a problem. By default, only alerts with a significance of Medium and High are shown
on the Alerts page, so if you want to also see alerts with Low significance, select Low or greater for this filter.

Managing Suggestions in the Zebrium User Interface

Managing Suggestions in the Zebrium User Interface

You can further filter the log events by typing a text string or a PCRE2-compliant regular expression into the
Search field at the top of the page. Regular expression filters should use the syntax "/regex/". You can also
change the search scope by toggling between Core Events and All Events on the Search field.

TIP: You can also highlight any desired alphanumeric strings within the visible log events by typing text or a
regular expression in the Highlight Events that Match field at the bottom right of the Alerts page. This
field also displays on the RCA Report pages.

If you do not see a report in a time of interest where you believe a problem occurred, the AI/ML engine might
have suppressed it by the existing Significance filter settings. You can also force the AI/ML engine to do a deep
scan and create a report on demand by clicking the [Scan for RC] button on the Settingsmenu () and
specifying a time of interest.

Using the Timeline Widget on the Alerts Page

The Timeline widget displays at the top of the Alerts page, and it lets you control which RCA report summaries
display in the lower portion of the page:

NOTE: The Timeline widget displays a list of the currently active filters at the top of the widget. For more
information about filtering, see Using the Filters on the Alerts Page in Zebrium.

The main section of the Timeline widget contains a time-based chart with different icons that represent the
following Zebrium elements:

l Suggestion (). A yellow diamond represents a potential problem found by the AI/ML engine. If you go to
the RCA Report page for that suggestion, you can choose to accept or reject that suggestion.

l Accepted Alert (). A green circle represents a suggestion that you or another Zebrium user has accepted.

l Custom Alert (). A blue triangle represents a custom alert, which you or another user defined by writing a
regular expression in Zebrium that searches for a specific pattern.

l Rejected Alert (). A red triangle represents a suggestion that you or another Zebrium user has rejected as
not relevant to your environment.

When you click an icon in the Timeline widget, the summary view for the corresponding RCA report for that
suggestion or alert moves the top of list below the Timeline widget. Click anywhere in the summary view to open
its RCA Report page.

62

63

When you hover over an icon in the chart, a pop-up window appears with date and time information about that
specific suggestion, along with a title and word cloud that contains suggestions and information about the likely
root cause:

The Timeline widget also includes the following graphical elements:

l Spike. A gray vertical line appears on the widget if too many suggestions or alerts exist for a specific time for
the user interface to show them all:

You can click and drag the spike to the left or right to zoom in so you can see all of the suggestions for that
specific time. Click [Back] to go back to the default view settings.

l Log Lines timeline. Hover over this gray line to view a pop-up window that displays the number of log lines
that have been ingested within this time interval.

l Rare Events timeline. Hover over this red line to view a pop-up window that displays the number of events
marked as rare, such as possible issues or problems, that have been ingested within this time interval. Rare
events are often the most diagnostic anomalies in the logs.

TIP: Click the [Refresh] button to get the most recently updated data for this page.

Managing Suggestions in the Zebrium User Interface

Root Cause Reports

When you suspect a problem, you can drill down and view the RCA report from the timeline or the report
summary view. The RCA Report page for that suggestion or alert appears. For more information, see Root
Cause Reports.

Root Cause Reports

On the Alerts page, you can click anywhere in the summary view for a suggestion to open the Root Cause
Report page. This page displays a more complete list of log events compiled by the AI/ML engine to describe this
particular problem:

A typical Root Cause Report page contains the following elements:
l If this is a suggestion, the top pane states "Suggested by AI/ML", and you have the option of accepting or

rejecting the suggestion:

o If you accept the suggestion, Zebrium will create a rule for the settings for that suggestion in the
future.

o If you reject the suggestion, Zebrium will no longer show a suggestion with the same settings as that
suggestion in the widget.

For more information, see Assessing Suggestions.

64

65

l At the top right of the page is a panel that shows the number of occurrences of this type of event, a drop-
down for each occurrence, and a sine wave depicting the time of each occurrence.

l The next pane down on the left contains a toggle for Core Events or All Events:

o Core Events display by default, and they are the set of events that the AI/ML engine determined were
the most likely events to explain the problem. Typically, the "core" list in an RCA report will contain
somewhere between five and 25 log events.

o All Events includes an much more expanded list of events that includes other surrounding
anomalous log events, warnings, and errors surrounding this core list of events.

l On the same pane, you can also toggle between Wrap () and No Wrap () for displaying the logs in
the pane below. You can also click [Raw Event Text] to view the log contents as text in a new dialog, in
case you need to copy large amounts of text.

Root Cause Reports

Root Cause Reports

l The large pane on the left contains the list of log events that make up the report. You can think of these as
the key log lines that explain a problem. You will usually see a combination root cause indicator and
symptom log lines. There are typically 10-100 log lines in a report that span multiple log types.

The columns in each log line show the event timestamp, a severity level, if available, the log type or
service, and the text of the log. In addition, the following icons might appear to the left of some of the log
events in the pane:

o Alert Key (). One or two log events in the report might display this icon, which signifies that the
AI/ML engine is using these event logs as a "signature" or alert rule to detect if the same type of alert
occurs again in the future. Click the key icon () to view the definition of the key. To ensure accurate
detection in the future, verify and edit the Alert Keys on the Settingsmenu () > Alert Rules
& Settings page to match the one or two log events that best characterize this type of problem.

o Log line of interest (). This icon appears next to any log events in the report that the AI/ML engine
has identified as a possible event to explore. This is just an informational icon.

NOTE: You can hover over a log event to access the Actions button, which lets you perform
additional actions related to that log event. For more information, see Additional Actions on
the RCA Report Page.

l The bottom pane on the left lists the numbers of events that are currently being displayed. This number
changes if you click a word in the word cloud, or if you type text or a regular expression in the Highlight
Events that Match field.

l In the group of smaller panes to the right, the top pane displays the significance of the alert assigned by the
AI/ML engine, from Low to High. The pane also includes the name of the Service Group impacted by the
event.

66

67

l The next pane displays the word cloud, which displays a set of keywords that the AI/ML engine selected
from the report. For each word, the font size denotes how rare it is (smaller is more rare), and the color
denoting how "bad" the underlying events were. For example, a word for a critical event displays in red.

TIP: Click a word in the cloud to filter the list of log events related to that word.

l Under the word cloud is a histogram that lists the number of events over time. You can click each gray
rectangle in the histogram to see the number of events in each time period. Below the histogram are
vertical rows of colored dots that represent the log events from the list on the left, arranged by micro-
service and host name. The horizontal location of the dots are chronological, based on the histogram at
the top of the pane. When you click a dot, the corresponding log event is highlighted on the left.

Additional Actions on the RCA Report Page

On the RCA Report page, you can hover over a log event to access the Actions button, which lets you perform
the following actions related to that log event:

l Peek. Peek mode shows the surrounding log lines from the log type (log stream) itself, and you can drill
down on logs from a particular host or pod. This is similar to looking at the log file for a single log
generator. To exit Peek mode, click the [Unpeek] button.

Root Cause Reports

Assessing Suggestions

l Annotations. You can add notes relevant to this event log. A note icon displays to the right of the event log,
with a red badge listing the number of notes for that log.

l Related Incidents. Searches for other incidents that include this event. You can view the RCA report
summaries for the related events for more information about the event.

l Include this event type in future alerts. Adds this event type to future alerts.

l Exclude this event type in future alerts. Excludes this event type from future alerts.

l Create a custom alert rule using this event type. Lets you create a custom alert rule using this event type.

l Advanced: These options let you create and use custom, include, and exclude regular expressions for this
log event.

On the RCA Report page for an Accepted Alert, you can perform the following activities by clicking the [Actions]
button at the top of the page:

l Edit Alert Rule Metadata. Opens the Edit Alert Metadata dialog so you can update the metadata of the
alert rule.

l Edit Alert Rule. Opens the Edit Alert Rule Keys pane so you can change the alert keys, if needed.

l Send One Time Alert. Lets you send a one-time alert to the notification channel you specify here. For more
information, see Enabling Notification Channels.

l Reject this Alert. Changes the status of the accepted alert to rejected. For more information, see Rejecting a
Suggestion.

l Revert to Suggested. Changes the status of the accepted alert to a suggestion.

Assessing Suggestions

On a regular schedule, you should assess (or disposition) your suggestions in Zebrium by accepting or rejecting
them, as this will help improve the accuracy of the suggestions you will see in the future.

Accepting a Suggestion

You should Accept a suggestion if it relates to a real problem. If you accept the suggestion, Zebrium creates a
rule for the settings for that suggestion in the future. Accepting a suggestion turns it into a Accepted Alert and
creates an Accepted Alert Rule.

NOTE: If you accept a suggestion but no longer want to use it as a rule, you can revert it to make the rule
back into a suggestion again.

To accept a suggestion:

68

69

1. On the RCA Report page for the suggestion, click [Accept]. The Edit Alert Rule Metadata dialog
appears:

2. Complete the following fields:

o Title. Type a unique name for this rule. Required.

o Owner. Type your name of the name of the owner of this rule.

o Send Alert To. Alerts will be sent to all dashboards that you have configured, along with any
notification channel you specify here. You can set up notification channels in the Integrations and
Collectors page. For more information, see Enabling Notification Channels. This field is required,
but you can also click [Select No one] as an option.

o Feedback. Select a value from the drop-down, from Poor to Excellent.

o Alert Priority. Set the priority from P1 to P5. Required.

o Manual Tags. Select a tag as needed.

o Alert Volume. Select whether you want to alert at most once per day, once per hour, or once per
minute.

o Tracking URL. Add a URL to use for tracking this rule.

o Summary. Add any more information related to this rule.

Assessing Suggestions

Key Use Cases for Suggestions and Root Cause Reports

3. Click [Save & Edit Alert Rule], the Edit Alert Rule Keys pane appears:

4. You can use the currently selected keys, or you can edit one or both keys.

5. To edit the alert keys, click a key from the top list to remove it. Click a key from the second list of keys to use
that key instead.

6. Click [Save] and then click [View Alert List] to return to the Alerts page.

Rejecting a Suggestion

To reject a suggestion:
1. On the RCA Report page for the suggestion, click [Reject]. A dialog appears with the options to Ignore or
Reject.

2. Click [Ignore] if you are not sure if it is a good suggestion, which gives other members of your team the
option of reviewing the suggestion. The suggestion will still appear on the Alerts page, but will not generate
a suggestion in the future.

3. Click [Reject] if you are sure that the suggestion is not helpful. Zebrium will hide the suggestion on the
Alerts page, and will not notify you of future occurrences of the same suggestion type.

NOTE: You can restore a rejected alert by filtering for Rejected Alerts, navigating to the RCA report page
for that alert, and clicking [Restore & Accept]. The alert is restored and marked as accepted, and
Zebrium creates a rule based on the selected event keys. You can edit the alert metadata as needed
before saving it.

Key Use Cases for Suggestions and Root Cause Reports

This section covers the main use cases and concepts related to using Zebrium, along with some tips and best
practices.

70

71

Automated Root Cause Analysis Only

When you know a problem has occurred, you can look at Zebrium alerts around the time of the problem. As long
as details of the problem are present in the logs, you should find that the AI/ML engine has generated a useful
alert containing a report that explains the root cause of the problem. In this mode, the AI/ML engine typically
identifies the root cause more than 90% of the time.

For more information, see https://www.zebrium.com/cisco-validation.

Proactive Detection and Root Cause Analysis

The AI/ML engine constantly scans logs for clusters of correlated anomalies that resemble problems. When it
detects a potential problem, it proactively generates a suggestion. Be aware that while some suggestions will
relate to important issues or problems, others will not be useful at all. As a result, do not think of suggestions in
the same way that you normally think about alerts in other tools.

Instead of paging an operator with each new suggestion, as a best practice you should review suggestions at a
convenient time periodically. When reviewing a suggestion, you can choose to:

l Accept the suggestion. This creates an alert rule that will detect if the same thing happens in the future.

l Reject the suggestion. This tells the AI/ML engine not to create such an alert in the future.

l Ignore the suggestion without doing anything more; you will need to click the [Reject] button for the
suggestion first. Future occurrences will be filtered out by default.

TIP: Spending a few minutes each day reviewing suggestions from Zebrium will help to improve the signal-to-
noise ratio of future suggestions.

Deterministic Detection of Known Problems

After you accept a suggestion, you can use it to deterministically notify you if the same problem occurs again. This
is like having a robot that can generate alert rules for you.

You can also build your own custom rules to detect already known problems. When custom rules trigger, the
AI/ML engine automatically generates a report with additional anomalies from the logs that can help to explain
the root cause.

Getting the Best Results from Zebrium

The AI/ML engine will start working within a few minutes of logs arriving, detecting root causes for problems that
occur in your environment, and presenting them as suggestions within the Zebrium user interface. The signal-to-
noise ratio improves with time, and typically achieves a good level in about 24 hours.

If you are not satisfied with the quality of the results, there are a few things you can do. The next few topics
address this situation.

Key Use Cases for Suggestions and Root Cause Reports

https://www.zebrium.com/cisco-validation

Key Use Cases for Suggestions and Root Cause Reports

Ingest Complete Logs That Contain a Real Problem

Sometimes users connect Zebrium to a software environment that is in a steady state, where nothing bad
happens. In such cases, the logs do not actually contain any unusual events or significant errors. Naturally, in
such cases, the AI/ML engine will not be able to generate a useful Root Cause report.

Also, sometimes users will upload a subset of the logs, or even a single log file, which also degrades the ability of
the AI/ML engine to create meaningful root cause reports. For good results, connect Zebrium to a software
environment where real problems occur, or where you can deliberately break things.

You can achieve equivalent results by uploading static log files from a real problem, but in this case, be sure to
ensure that the log collection is complete; anything that a human would need for troubleshooting should be
included. Also, make sure that the files are tagged with correct metadata, and that the logs cover a time range of
24 hours or more before the problem occurred.

Be Mindful of Elapsed Time

By default, Zebrium has a few settings that govern whether, and how well, a root cause report is created.

For instance, the AI/ML engine needs some history to build an event catalog, to learn normal patterns, and to
learn the dependencies between log streams. If you connect Zebrium to a brand-new environment, for best
results you should let it learn for about 24 hours before attempting tests. It is possible to get reasonable results
much quicker, such as one to two hours after setup, but be prepared for noisier results.

Also, if the same kind of problem keeps occurring within a day, the AI/ML engine might consider it "typical", and
not create a root cause report for it at all.

A common issue users encounter is that they induce the same problem more than once, and do not realize that
default filter settings will only show the first occurrence of the problem. For more information, see Using the
Filters on the Alerts Page in Zebrium.

Review Service Group Setup

Service groups are a way to inform the AI/ML engine about the failure domains within your log streams. Only log
streams or files coming from services, containers, and hosts that could affect each other should be placed in the
same service group. If you see log events in a RCA report that originate from completely unrelated services, you
can partition them by changing your log collector settings to place them in different service groups. Aside from
assigning a Service Group label per daemonset, you can also map sets of k8s labels (like apps, or namespaces)
into a particular Service Group by editing the YAML file for the log collector.

Review RCA Settings

A handful of the AI/ML engine settings are visible on the Report Settings page (Settings () > Root Cause
Settings.

72

73

The most common setting to consider adjusting is the Root Cause Significance setting. Think of this like a filter
level; the higher the significance setting, the more selective the AI/ML engine will be in alerting. Significance is a
cumulative score for each suggested alert, based on the rareness and "badness" (log severity level) of the
constituent log events within that alert. The higher the significance setting, the more rare and bad the Root Cause
events have to be to show up in an alert feed.

"Badness" is derived from the log severity level, but there are additional hidden settings that can optionally scan
the log text, as well as add your own keywords or strings that have a special meaning for your software stack.

There are other settings that might be useful in rare cases, such as excluding a particular log type entirely if it is
not useful from a diagnostics perspective.

Use Integrations to Separate High-priority Alerts

The AI/ML engine creates RCA reports when it identifies clusters of rare events and bad events, such as events
with higher log severity, like warning or error, that are highly unlikely to occur by random chance. Nevertheless,
all such clusters may not be due to high priority (P1 or P2) issues, and therefore may not need immediate
attention.

One way to distinguish the high priority issues from others is to set up inbound integrations with tools such as
PagerDuty, OpsGenie, and VictorOps. When an incident is created in one of these tools, due to an alert from
some other observability tool, for example, the integration signals the AI/ML engine to analyze logs from the
same environment and respond with a RCA report. The report is automatically appended to the incident, such as
in the timeline or notes fields.

As a result, Zebrium RCA reports can be matched up with incident priorities that were already assigned based on
other rules:

Key Use Cases for Suggestions and Root Cause Reports

Key Use Cases for Suggestions and Root Cause Reports

You can also use inbound integrations to route alerts rather than incidents to Zebrium. In this case Zebrium will
not be able to update any incident fields, because it does not receive incident notifications. However, Zebrium
will use the alerts as triggers to generate RCA reports, which will be sent to the outbound channels that are
already configured.

Note that the AI/ML engine will continue to proactively detect alerts , even when there is no signal from a third-
party tool like PagerDuty or OpsGenie, but these proactive alerts can now be routed to lower priority alert
queues.

74

75

Manage Alert Destinations

There are multiple ways to manage and segregate alerts. The easiest way is to set up notification channels for
every combination of deployments or service groups that you would like to route uniquely.

Notification Channels provide a mechanism to define the methods that Zebrium will use to send notifications
from RCA reports. The supported types of notification channels include email, as well as Mattermost, Slack,
Microsoft Teams, and Webex Teams notifications.

After you have created one or more notification channels, you can link any number of these to any RCA report
created by the AI/ML engine. Linking a set of notification channels to a RCA report will send notifications of future
RCA reports of the same type to those channels.

For more information, see Enabling Notification Channels.

Key Use Cases for Suggestions and Root Cause Reports

Key Use Cases for Suggestions and Root Cause Reports

Use Routing Rules to Classify and Route Alerts

An even more powerful way to manage and route alerts is to set up routing rules on the Alert Rules & Settings
page (Settings () > Alert Rules & Settings), on the the [ML Routing Rules] tab:

This allows you to set up rules regarding service group, event labels (such as the Kubernetes app or pod name),
as well as string matches in the actual log event. Each routing rule lets you automatically triage alerts and RCA
reports, and send them to the appropriate destination.

For example, you might want to create a "Networking" tag for alerts that involves logs from Kubernetes pods that
affect networking services, or contain key words related to network issues, and send them to an email alias or
Slack channel for the networking team:

76

77

Example: Ensure that the AI/ML Engine Highlights Signif icant Events When They
Happen Nearby

As an example, let’s say that your engineers know that a specific log event is useful from a troubleshooting
perspective. If that event occurs in the vicinity of an auto-detected alert, you might want to ensure that it gets
pulled into the core event list of any alert.

If you want this outcome, go to the Alert Rules & Settings page (Settings () > Alert Rules & Settings), click the
[Include Rules] tab, and define the pattern to match these events.

For example, the rule below will make sure any events coming from the Postgres log stream that contain the
keyword "restart" will be pulled into an RCA report if the AI/ML engine detects unusual events within the vicinity of
this restart event:

Key Use Cases for Suggestions and Root Cause Reports

Key Use Cases for Suggestions and Root Cause Reports

Example: Ensure the AI/ML Engine Ignores Spam Events When They Happen
Nearby

This configuration does the opposite of the previous feature. Let’s say your engineers know that a specific log
event is spam and low value from a troubleshooting perspective. If you want to keep it from showing up in RCA
reports, simply specify the event label and pattern match to tell the AI/ML engine to exclude these events:

If you want this outcome, go to the Alert Rules & Settings page (Settings () > Alert Rules & Settings), click the
[Exclude Rules] tab, and define the pattern to exclude this kind of event:

78

Chapter

5
Configuring Observability Dashboard

Integrations

Overview

You can integrate the Zebrium root cause service into your existing observability dashboards. For example, if you
see symptoms of a potential problem in your metrics dashboard, you can have the root cause indicators for the
problem surfaced right below that, as in the following image:

To enable this, go to the Integrations & Collectors page (Settings () > Integrations & Collectors), select your
preferred observability dashboard, and follow the instructions for setting up that dashboard.

Zebrium offers the following Dashboard Integrations:

l AppDynamics

l Datadog Dashboard Widget

l Datadog Events and Metrics

l Dynatrace

l Elastic Stack

l Grafana Plugin

l New Relic

l ScienceLogic

79

AppDynamics

AppDynamics

Features

l Automatically adds Root Cause Reports as Monitor Events in AppDynamics. This allows you to see the
details of root cause on any AppDynamics dashboard.

l Each Zebrium RC Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium UI.

l Leads to faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Observability Dashboard Integrations is to use the Zebrium Auto-
Detectmode as an accurate mechanism for explaining the reason something went wrong. In this mode, you
continue to use your existing rules, alerts and metrics as the primary source of problem detection. You can then
review Zebrium RC Report findings directly in your AppDynamics Dashboards alongside other metrics to explain
the reason behind problems you were alerted on.

Augmentmode is useful when you have Health Rule Violation or Anomaly-based Policy triggers defined in
AppDynamics and you want a Root Cause Report automatically generated at the time of the alert. In this mode,
Zebrium uses an AppDynamics webhook as a notification channel and will update your Dashboard with Root
Cause Reports that coincide with the triggering monitor so they’re immediately visible to you as you work the
issue.

The two modes of operation are independent. You can configure Auto-Detect and/or Augment modes
depending on your operational use-case.

Auto-Detect (Recommended): Send Root Cause Detections to your
AppDynamics Dashboards

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

2. Root Cause Report summaries are sent to AppDynamics using the event API and Root Cause details are
visible on your AppDynamics Dashboards.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Dashboard.

80

81

CLICK HERE to send Root Cause Detections to your AppDynamics Dashboards

Augment (Advanced Users): Receive Signals from AppDynamics Health Rule
Violations

1. Any AppDynamics Health Rule Violation or Anomaly based Policy can trigger a webhook request for Root
Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the event and creates a Root
Cause Report.

3. Root Cause Report summaries are sent to AppDynamics using the event API and Root Cause details are
visible on your AppDynamics Dashboards.

4. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Dashboard.

CLICK HERE to receive Signals from AppDynamics Health Rule Violations

AppDynamics

Sending Root Cause Detections to AppDynamics Dashboards

Sending Root Cause Detections to AppDynamics Dashboards

Integration Overview

1. Configure API access for creating Root Cause Reports as Monitor Events.

2. Create an AppDynamics Integration in Zebrium using the information from step 1.

Integration Details

STEP 1: Configure API Access for Creating Root Cause Reports as Monitor
Events

To configure API Access:

1. From theGear icon, click on Administration.

2. Click on the [API Clients] tab and click Create.

3. Enter a Client Name and make a note of that name for later use when configuring Zebrium.

4. Enter a Description.

5. Generate a Secret and make a note of the secret for later use when configuring Zebrium.

6. Add minimum Roles required to create a Monitor Event.

7. Click [Save].

STEP 2: Create an AppDynamics Integration in Zebrium to Send Detections to
AppDynamics

The following prerequisites are needed for the Zebrium configuration:

l Controller URL for the application being monitored (from the My AppDynamics Accounts page)

l Account Name (from the My AppDynamics Accounts page).

l Application ID for the application being monitored (this number can be found in your browser URL when
viewing the Application).

l API Client Name (from step 3 under Configuring API Access, above).

l Client Secret (from step 5 under Configuring API Access, above).

To create the AppDynamics Integration in Zebrium:

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theObservability Dashboards section and click on AppDynamics.

4. Click the [Create a New Integration] button.

82

83

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click the [Enabled] button.

11. Enter all the information listed above in the Prerequisites.

12. Click [Save].

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

Sending Root Cause Detections to AppDynamics Dashboards

mailto:support@zebrium.com

Receiving Signals from AppDynamics Health Rule Violations

Receiving Signals from AppDynamics Health Rule Violations

Integration Overview

1. Configure API access for creating Root Cause Reports as Monitor Events.

2. Create an AppDynamics Integration in Zebrium to receive signals from AppDynamics.

3. Create an HTTP Request Template in AppDynamics to send signals to Zebrium.

Integration Details

STEP 1: Configure API Access for Creating Root Cause Reports as Monitor
Events

1. From theGear icon, click on Administration.

2. Click on the [API Clients]tab and click Create.

3. Enter a Client Name and save for later use when configuring Zebrium.

4. Enter a Description.

5. Generate a Secret and save for later use when configuring Zebrium.

6. Add minimum Roles required to create a Monitor Event.

7. Click [Save].

STEP 2: Create an AppDynamics Integration in Zebrium to Receive Signals from
AppDynamics

Prerequisites needed for Zebrium configuration:

l Controller URL for the application being monitored (from the My AppDynamics Accounts page)

l Account Name (from the My AppDynamics Accounts page).

l Application ID for the application being monitored (this number can be found in your browser URL when
viewing the Application).

l API Client Name (from step 3 under Configuring API Access, above).

l Client Secret (from step 5 under Configuring API Access, above).

To create the AppDynamics Integration:

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theObservability Dashboards section and click on AppDynamics.

4. Click the [Create a New Integration] button.

84

85

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Receive Signals] tab.

10. Click the [Enabled] button.

11. Enter all the information listed above in the Prerequisites.

12. Click [Save].

13. Copy the Webhook URL and make a note of it for the next procedure.

14. Click [OK].

STEP 3: Create HTTP Request Template in AppDynamics to send Signals to
Zebrium

1. Click the [Alert & Respond] tab at the top of the window.

2. Click on HTTP Request Templates from the navigation pane on the left side.

3. Click [New].

4. Enter aName for the template.

5. Under Request URL, select POST as the method.

6. Enter the Inbound Webhook URL from STEP 2.

7. Select UTF-8 encoding.

8. Under Authentication, selectNONE as the type.

9. Under Payload, select application/json as theMIME Type.

10. Select UTF-8 as the Payload Encoding.

11. In the Payload Text Box enter:
{ "event_time" : "${latestEvent.eventTime}", "event_type" : "zebrium"

}

12. Enter desired Response Handling Criteria and Settings.

13. Click [Test].

14. Successful configuration will return: Response Status: 200 OK Response Payload: Processed signal:
success.

15. You can now create an Action to send an HTTP Request using the template you just created and use these
Actions in your Health Rule Policies for your monitored Application.

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

Receiving Signals from AppDynamics Health Rule Violations

mailto:support@zebrium.com

Datadog Dashboard Widget

Datadog Dashboard Widget

Please navigate to Integrations in your Datadog user interface and search for Zebrium to find complete
documentation on installing the Zebrium dashboard widget for Datadog.

For more information, contact Zebrium at support@zebrium.com.

86

mailto:support@zebrium.com

Datadog Events and Metrics

Datadog Events and Metrics

NOTE: In addition to the integrations described below, Zebrium also provides a custom Datadog
Dashboard Widget. Select Integrations in your Datadog user interface and search for Zebrium for
more details. For more information, contact Zebrium at support@zebrium.com.

Features

l Automatically adds Root Cause Reports as Events in Datadog. This allows you to see details of root cause
on any Datadog dashboard.

l Automatically adds Log count metrics in Datadog.

l Each Zebrium RC Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium user interface.

l Leads to faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Observability Dashboard integrations is to use the Zebrium Auto-
Detectmode as an accurate mechanism for explaining the reason something went wrong. In this mode, you
continue to use your existing rules, alerts and metrics as the primary source of problem detection. You can then
review Zebrium RC Report findings directly in your Datadog Dashboards alongside other metrics to explain the
reason behind problems you were alerted on.

Augment mode is useful when you have monitors defined in Datadog and you want a Root Cause Report
automatically generated at the time of the alert. In this mode, Zebrium uses a Datadog webhook as a notification
channel and will update your Dashboard with Root Cause Reports that coincide with the triggering monitor so
they’re immediately visible to you as you work the issue.

The two modes of operation are independent. You can configure Auto-Detect and/or Augment modes
depending on your operational use-case.

Auto-Detect (recommended): Send Root Cause Detections to your Datadog
Dashboards

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

2. Root Cause Report summaries are sent to Datadog using the event API and Root Cause details are visible
on your Datadog Dashboards.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Dashboard.

4. Log metrics are also sent to Datadog via the series API for visualization on your Datadog Dashboards.

87

mailto:support@zebrium.com

88

CLICK HERE to send Root Cause Detections to your Datadog Dashboards

Augment (advanced users): Receive Signals from Datadog Triggered Monitors

1. Any Datadog Monitor can trigger a webhook request for Root Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the event and creates a Root
Cause Report.

3. Root Cause Report summaries are sent to Datadog using the event API and Root Cause details are visible
on your Datadog Dashboards.

4. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Dashboard.

CLICK HERE to receive Signals from Datadog Triggered Monitors

Datadog Events and Metrics

Sending Root Cause Detections to your Datadog Dashboards

Sending Root Cause Detections to your Datadog Dashboards

NOTE: In addition to the integrations described below, Zebrium also provides a custom Datadog
Dashboard Widget. Select Integrations in your Datadog user interface and search for Zebrium for
more details. For more information, contact Zebrium at support@zebrium.com.

Integration Overview

1. Create an API Key in Datadog.

2. Create a Datadog Integration in Zebrium using the information from step 1.

3. Add Zebrium Root Cause Report events and Log metrics to your Datadog Dashboard.

Integration Details

STEP 1: Create an API Key in Datadog

1. From the Main Navigation panel in Datadog, hover over your Datadog Login Name and select
Organization Settings.

2. Click on API Keys.

3. Click the [+ New Key] button.

4. Enter aName for the API Key and click Create Key.

5. Copy and save the Key for use in STEP 2, below.

STEP 2: Create a Datadog Integration in Zebrium to Send Detections to
Datadog

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theObservability Dashboards section and click on Datadog Events and Metrics.

4. Click [Create a New Integration].

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click [Enabled].

89

mailto:support@zebrium.com

90

11. Enter the API Key created in STEP 1, above.

12. Click [Save].

STEP 3: Add Zebrium Root Cause Report Detections and Log Count Metrics to
Your Datadog Dashboards

Zebrium sends events and metrics to Datadog as follows:

1. Events are sent each time a Zebrium Root Cause Report Detection occurs.

2. Metrics are sent for counts of all log events, error log events and anomaly log events

Visualizing Zebrium Data in Datadog

The following image displays a sample chart visualization showing:

1. A Root Cause Finder panel that displays a vertical bar whenever a Zebrium detection occurs. This allows
you to easily see detections that are aligned with other metrics on your dashboards.

2. A Root Cause Reports Summary panel that list summary information for each Zebrium detection.

Sending Root Cause Detections to your Datadog Dashboards

Sending Root Cause Detections to your Datadog Dashboards

The following image displays the definition of the Root Cause Finder panel:

91

92

The following image displays the definition of the Root Cause Reports Summary panel:

Important Metric Names

Metric Name Description

zebrium.logs.all.count Count of all log events received in a one-minute duration (per service_group
and deployment).

zebrium.logs.anomalies.count Count of anomaly log events received in a one-minute duration (per service_
group and deployment).

zebrium.logs.errors.count Count of error log events received in a one-minute duration (per service_group
and deployment).

ze_service_group Zebrium service group name for the corresponding metric or event.

ze_deployment Zebrium deployment name for the corresponding metric or event.

ze_significance Significance of the Root Cause Report (low, medium or high).

Sending Root Cause Detections to your Datadog Dashboards

Sending Root Cause Detections to your Datadog Dashboards

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

93

mailto:support@zebrium.com

Receiving Signals from Datadog Triggered Monitors

Receiving Signals from Datadog Triggered Monitors

Integration Overview

1. Create an API Key in Datadog.

2. Create a Datadog Integration in Zebrium using the information from step 1.

3. Create a Webhook Integration in Datadog using the information from step 2.

4. Add Webhook notifications to your Triggered Monitors in Datadog.

5. Add Zebrium Root Cause Reports to your Datadog Dashboard.

Integration Details

STEP 1: Create an API Key in Datadog

1. From the Main Navigation panel, hover over your Datadog Login Name and selectOrganization
Settings.

2. Click on API Keys.

3. Click the [+ New Key] button.

4. Enter aName for the API Key and click Create Key.

5. Copy and save the Key for use in STEP 2, below.

STEP 2: Create a Datadog Integration in Zebrium to Receive Signals from Datadog

1. From the User menu area in Zebrium, click the Settingsmenu (hamburger) .

2. Select Integrations.

3. Scroll to theObservability Dashboards section and click on Datadog Events and Metrics.

4. Click the [Create a New Integration] button.

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Receive Signals] tab.

10. Click the [Enabled] button.

11. Enter the API Key created in STEP 1, above.

12. Click [Save].

13. Copy theWebhook URL and save it for use in STEP 3, below. Click [OK].

94

95

STEP 3: Create a Webhook Integration in Datadog

1. From the Main Navigation panel, navigate to Integrations/Integrations.

2. Locate the Webhooks integration card and click Configure.

3. Click on the New button located in the Webhooks **section and enter a **Name and the URL saved in STEP
2.

4. In the Payload section, add: "alert_transition": "$ALERT_TRANSITION" after "event_type": "$EVENT_TYPE",

5. Click [Save].

STEP 4: Add Webhook notif ications to your Triggered Monitors in Datadog

1. From the Main Navigation panel, navigate to Monitors/Manage Monitors.

2. Click on the Monitor you wish to trigger Root Cause Reports.

3. Choose Edit from the gear icon on the Monitor page.

4. Add the webhook (from STEP 3) in the Notify your team list.

5. Click Save.

STEP 5: Add Zebrium Root Cause Report Detections to any of your Datadog
Dashboards

Zebrium sends events to Datadog as follows:

l Events are sent each time a Zebrium Root Cause Report Detection occurs.

Visualizing Zebrium Data in Datadog

The following image displays a sample chart visualization showing:

1. A Root Cause Finder panel that displays a vertical bar whenever a Zebrium detection occurs. This allows
you to easily see detections that are aligned with other metrics on your dashboards.

2. A Root Cause Reports Summary panel that list summary information for each Zebrium detection.

Receiving Signals from Datadog Triggered Monitors

Receiving Signals from Datadog Triggered Monitors

The following image displays the definition of the Root Cause Finder panel:

96

97

The following image displays the definition of the Root Cause Reports Summary panel:

Important Metric Names

Metric Name Description

zebrium.logs.all.count Count of all log events received in a one-minute duration (per service_group
and deployment).

zebrium.logs.anomalies.count Count of anomaly log events received in a one-minute duration (per service_
group and deployment).

zebrium.logs.errors.count Count of error log events received in a one-minute duration (per service_group
and deployment).

ze_service_group Zebrium service group name for the corresponding metric or event.

ze_deployment Zebrium deployment name for the corresponding metric or event.

ze_significance Significance of the Root Cause Report (low, medium or high).

Receiving Signals from Datadog Triggered Monitors

Receiving Signals from Datadog Triggered Monitors

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

98

mailto:support@zebrium.com

Dynatrace

Dynatrace

Features

l Automatically adds Root Cause Reports as Events in Dynatrace. This allows you to see details of root cause
on any Dynatrace dashboard.

l Automatically adds Log count metrics in Dynatrace.

l Each Zebrium RC Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium user interface.

l Leads to faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Observability Dashboard integrations is to use the Zebrium Auto-
Detectmode as an accurate mechanism for explaining the reason something went wrong. In this mode, you
continue to use your existing rules, alerts and metrics as the primary source of problem detection. You can then
review Zebrium RC Report findings directly in your Dynatrace Dashboards alongside other metrics to explain the
reason behind problems you were alerted on.

Augmentmode is useful when you have monitors defined in Dynatrace and you want a Root Cause Report
automatically generated at the time of the alert. In this mode, Zebrium uses a Dynatrace webhook as a
notification channel and will update your Dashboard with Root Cause Reports that coincide with the triggering
monitor so they’re immediately visible to you as you work the issue.

The two modes of operation are independent. You can configure Auto-Detect and/or Augment modes
depending on your operational use-case.

Auto-Detect (recommended): Send Root Cause Detections to Dynatrace
Dashboards

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

2. Root Cause Report summaries are sent to Dynatrace using the events API and Root Cause details are visible
on your Dynatrace Dashboards.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Dashboard.

4. Log metrics are also sent to Dynatrace via the metrics API for visualization on your Dynatrace Dashboards.

99

100

CLICK HERE to send Root Cause Detections to your Dynatrace Dashboards

Augment (advanced users): Receive Signals from Dynatrace Triggered Monitors

1. Any Dynatrace Monitor can trigger a webhook request for Root Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the event and creates a Root
Cause Report.

3. Root Cause Report summaries are sent to Dynatrace using the events API and Root Cause details are visible
on your Dynatrace Dashboards.

4. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Dashboard.

CLICK HERE to receive Signals from Dynatrace Triggered Monitors

Dynatrace

Sending Root Cause Detections to Dynatrace Dashboards

Sending Root Cause Detections to Dynatrace Dashboards

Please Contact Zebrium for Early Access to this feature.

101

Receiving Signals from Dynatrace Triggered Monitors

Receiving Signals from Dynatrace Triggered Monitors

Please Contact Zebrium for Early Access to this feature.

102

Elastic Stack

Elastic Stack

Features

l Automatically adds Root Cause Reports as Detection metrics in Elastic. This allows you to see details of root
cause on any Kibana dashboard.

l Automatically adds Log metrics into Elastic.

l Each Zebrium RC Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium user interface.

l Leads to faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Observability Dashboard integrations is to use the Zebrium Auto-
Detectmode as an accurate mechanism for explaining the reason something went wrong. In this mode, you
continue to use your existing rules, alerts and metrics as the primary source of problem detection. You can then
review Zebrium RC Report findings directly in your Kibana Dashboards alongside other metrics to explain the
reason behind problems you were alerted on.

Auto-Detect: Send Root Cause Detections to your Kibana Dashboards

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

2. Root Cause Report summaries are sent to Elastic via the Zebeat log shipper as metrics and Root Cause
details are visible on your Kibana Dashboards.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Dashboard.

4. Log metrics are also sent to Elastic via the Zebeat log shipper for visualization on your Kibana Dashboards.

CLICK HERE to send Root Cause Detections to your Kibana Dashboards

103

Sending Root Cause Detections to Your Kibana Dashboards

Sending Root Cause Detections to Your Kibana Dashboards

Integration Overview

1. Create a secure access token in Zebrium for the Zebeat collector.

2. Create Zebeat Override File and Deploy in your Kubernetes Environment using helm.

3. Create a visualization in your Kibana Dashboard using the Root Cause Report and log data provided by
Zebeat.

Integration Details

STEP 1: Create a Secure Access Token in Zebrium

1. From the User menu area, click the Settingsmenu (hamburger).

2. Select Access Tokens.

3. Click [+ Add Access Token] button.

4. Enter aName for the token.

5. Select Viewer for the Role.

6. Select the Deployment for the token.

7. Click the [Add] button.

8. Copy the Access Token that was just created and save for use in STEP 2.

104

105

STEP 2: Create Zebeat Override File and Deploy in your Kubernetes
Environment

Create the Zebeat Override File:
1. Go to the Zebeat github repository at https://github.com/zebrium/helm-charts/tree/main/charts/zebeat.

2. Navigate to the examples directory.

3. Zebeat can send Root Cause Report data to Logstash or Elasticsearch directly. Choose one of the logstash
or elasticsearch .yaml files as a template for the zebeat override.yaml file you will use when deploying the
Zebeat chart.

4. Copy the contents of the .yaml file template to your local disk as override.yaml so you can customize for
your environment.

5. Edit your local copy of the override.yaml file and make the following updates:

l In the host parameter of themetricbeat.modules section, add the FQHN for your Zebrium instance
where you generated the Access Token in STEP 1, above. For Zebrium SaaS, this will typically be:
https://cloud.zebrium.com.

l In the access_tokens.yaml parameter of the accessTokens section, add the FQHN for your
Zebrium instance and the Access Token generated in STEP 1.

l In the output.elasticsearch or output.logstash section, add the appropriate host for your Elastic
deployment and any necessary credentials.

l Save the override.yaml file.

Deploy Zebeat in your Kubernetes Environment

To install the chart with the release name zebrium, run the following commands:

helm repo add zebrium http://charts.zebrium.com

helm upgrade -i zebeat zebrium/zebeat --namespace zebrium --create-

namespace -f override.yaml

STEP 3: Create Visualizations in your Dashboard

Zebeat provides two metric sets for visualizing Zebrium RCaaS data in Elastic:

1. Detections provides Root Cause Report data.

2. Logs provides metrics on Log Event counts.

Visualizing in Kibana

The following image displays a sample chart visualization showing:
1. The sum Detections from the detectionsmetric set using detections.alwaysone.count plotted as a bar

chart with a Y-axis on the right-hand side.

Sending Root Cause Detections to Your Kibana Dashboards

https://github.com/zebrium/helm-charts/tree/main/charts/zebeat

Sending Root Cause Detections to Your Kibana Dashboards

2. Sum of Anomalies from the logsmetricset using logs.anomalies.count plotted as a line chart with a Y-axis
on the left-hand side.

Below is a sample Search visualization showing the following Root Cause Report details:
1. detections.title. NLP Summary.

2. detections.word_cloud.w. List of Word Cloud strings.

3. detections.report_url. Link for viewing full Root Cause Report details in the Zebrium portal.

4. detections.significance. Significance of the Root Cause analysis determined by Zebrium ML (low,
medium, high).

5. detections.service_group. Service group where Root Cause detection was found.

Important Metric Names

Metric Name Description

logs.all.count Count of all log events received in a one-minute duration (per service_group)

logs.anomalies.count Count of anomaly log events received in a one-minute duration (per service_
group)

logs.errors.count Count of error log events received in a one-minute duration (per service_group)

detections.alwaysone.count Set to 1 each time there is a Zebrium Root Cause Report detection

detections.title Title of the Root Cause Report (usually an NLP summary)

detections.word_cloud.w List of words in the word cloud of the Root Cause Report (per service_group)

detections.report_url URL of the Root Cause Report

106

107

Metric Name Description

detections.significance Significance of the Root Cause Report (low, medium or high)

zebrium.service_group Zebrium service group name for the corresponding metric or detection

Sample Payloads for Detections and Logs Metricsets

Detections Metricset Payload

{

"_index": ".ds-metricbeat-8.3.0-2022.04.07-000001",

"_id": "u-aUGYABqSxIAr_l5fTX",

"_version": 1,

"_score": 1,

"_source": {

"@timestamp": "2022-04-11T16:56:53.000Z",

"event": {

"module": "zebrium",

"duration": 292227850,

"dataset": "detections"

},

"metricset": {

"name": "detections",

"period": 10000

},

"ecs": {

"version": "8.0.0"

},

"host": {

"name": "zebeat-67d8d6457b-8rblk"

},

"agent": {

"type": "metricbeat",

"version": "8.3.0",

"ephemeral_id": "5c5a0778-b163-4187-916e-5fc1b730fbde",

"id": "6c216ce2-16cc-4313-802d-2203a604159c",

"name": "zebeat-67d8d6457b-8rblk"

},

"service": {

"address": "https://cloud.zebrium.com",

"type": "zebrium"

Sending Root Cause Detections to Your Kibana Dashboards

Sending Root Cause Detections to Your Kibana Dashboards

},

"zebrium": {

"customer": "xyz16",

"deployment": "trial",

"service_group": "shop"

},

"detections": {

"report_url": "https://cloud.zebrium.com:443/root-cause/re-

port?deployment_id=

xyz16_trial&itype_id=0ba3b7a6-5bfb-561a-591b-5324d08b86bd&inci_

id=00062545-dd50-0000-

0000-51900000f40e&ievt_level=2",

"occurrence": {

"count": 1

},

"word_cloud": [

{

"w": "mongodb",

"b": 7,

"s": 8

},

{

"b": 8,

"s": 7,

"w": "sock-chaos-runner"

},

{

"w": "carts",

"b": 7,

"s": 7

},

{

"s": 6,

"w": "exception",

"b": 6

},

{

"b": 6,

"s": 3,

"w": "sock-shop"

108

109

},

{

"s": 6,

"w": "org",

"b": 5

},

{

"b": 5,

"s": 5,

"w": "socket"

},

{

"s": 5,

"w": "dispatcherservlet",

"b": 2

}

],

"alwaysone": {

"count": 1

},

"includes_default": true,

"title": "The kubelet was unable to create the order due to timeout

from one of the services.",

"significance": "medium"

}

},

"fields": {

"zebrium.service_group": [

"shop"

],

"detections.includes_default": [

true

],

"zebrium.deployment": [

"trial"

],

"zebrium.customer": [

"xyz16"

],

"service.type": [

Sending Root Cause Detections to Your Kibana Dashboards

Sending Root Cause Detections to Your Kibana Dashboards

"zebrium"

],

"agent.type": [

"metricbeat"

],

"detections.occurrence.count": [

1

],

"logstash_stats.timestamp": [

"2022-04-11T16:56:53.000Z"

],

"event.module": [

"zebrium"

],

"detections.word_cloud.b": [

7,

8,

7,

6,

6,

5,

5,

2

],

"agent.name": [

"zebeat-67d8d6457b-8rblk"

],

"host.name": [

"zebeat-67d8d6457b-8rblk"

],

"beats_state.timestamp": [

"2022-04-11T16:56:53.000Z"

],

"beats_state.state.host.name": [

"zebeat-67d8d6457b-8rblk"

],

"timestamp": [

"2022-04-11T16:56:53.000Z"

],

"detections.report_url": [

110

111

"https://cloud.zebrium.com:443/root-cause/report?deployment_

id=xyz16_trial&itype_id=

0ba3b7a6-5bfb-561a-591b-5324d08b86bd&inci_id=00062545-dd50-0000-0000-

51900000f40e&ievt_level=2"

],

"detections.word_cloud.w": [

"mongodb",

"sock-chaos-runner",

"carts",

"exception",

"sock-shop",

"org",

"socket",

"dispatcherservlet"

],

"detections.title": [

"The kubelet was unable to create the order due to timeout from one

of the services."

],

"kibana_stats.timestamp": [

"2022-04-11T16:56:53.000Z"

],

"detections.alwaysone.count": [

1

],

"metricset.period": [

10000

],

"detections.word_cloud.s": [

8,

7,

7,

6,

3,

6,

5,

5

],

"agent.hostname": [

"zebeat-67d8d6457b-8rblk"

Sending Root Cause Detections to Your Kibana Dashboards

Sending Root Cause Detections to Your Kibana Dashboards

],

"metricset.name": [

"detections"

],

"event.duration": [

292227850

],

"@timestamp": [

"2022-04-11T16:56:53.000Z"

],

"agent.id": [

"6c216ce2-16cc-4313-802d-2203a604159c"

],

"ecs.version": [

"8.0.0"

],

"service.address": [

"https://cloud.zebrium.com"

],

"agent.ephemeral_id": [

"5c5a0778-b163-4187-916e-5fc1b730fbde"

],

"agent.version": [

"8.3.0"

],

"event.dataset": [

"detections"

],

"detections.significance": [

"medium"

]

}

}

Logs Metricset Payload

{

"_index": ".ds-metricbeat-8.3.0-2022.04.07-000001",

"_id": "Xi5MG4ABTsyT1lUpY2dd",

"_version": 1,

112

113

"_score": 1,

"_source": {

"@timestamp": "2022-04-12T00:52:00.000Z",

"event": {

"dataset": "logs",

"module": "zebrium",

"duration": 144691043

},

"metricset": {

"name": "logs",

"period": 10000

},

"service": {

"address": "https://cloud.zebrium.com",

"type": "zebrium"

},

"zebrium": {

"service_group": "default",

"customer": "xyz16",

"deployment": "trial"

},

"logs": {

"errors": {

"count": 0

},

"anomalies": {

"count": 0

},

"all": {

"count": 27

}

},

"ecs": {

"version": "8.0.0"

},

"host": {

"name": "zebeat-67d8d6457b-8rblk"

},

"agent": {

"version": "8.3.0",

Sending Root Cause Detections to Your Kibana Dashboards

Sending Root Cause Detections to Your Kibana Dashboards

"ephemeral_id": "5c5a0778-b163-4187-916e-5fc1b730fbde",

"id": "6c216ce2-16cc-4313-802d-2203a604159c",

"name": "zebeat-67d8d6457b-8rblk",

"type": "metricbeat"

}

},

"fields": {

"zebrium.service_group": [

"default"

],

"zebrium.deployment": [

"trial"

],

"zebrium.customer": [

"xyz16"

],

"service.type": [

"zebrium"

],

"agent.type": [

"metricbeat"

],

"logstash_stats.timestamp": [

"2022-04-12T00:52:00.000Z"

],

"event.module": [

"zebrium"

],

"agent.name": [

"zebeat-67d8d6457b-8rblk"

],

"host.name": [

"zebeat-67d8d6457b-8rblk"

],

"beats_state.timestamp": [

"2022-04-12T00:52:00.000Z"

],

"logs.anomalies.count": [

0

],

114

115

"beats_state.state.host.name": [

"zebeat-67d8d6457b-8rblk"

],

"timestamp": [

"2022-04-12T00:52:00.000Z"

],

"kibana_stats.timestamp": [

"2022-04-12T00:52:00.000Z"

],

"metricset.period": [

10000

],

"agent.hostname": [

"zebeat-67d8d6457b-8rblk"

],

"logs.errors.count": [

0

],

"metricset.name": [

"logs"

],

"event.duration": [

144691043

],

"@timestamp": [

"2022-04-12T00:52:00.000Z"

],

"agent.id": [

"6c216ce2-16cc-4313-802d-2203a604159c"

],

"ecs.version": [

"8.0.0"

],

"service.address": [

"https://cloud.zebrium.com"

],

"agent.ephemeral_id": [

"5c5a0778-b163-4187-916e-5fc1b730fbde"

],

"agent.version": [

Sending Root Cause Detections to Your Kibana Dashboards

Sending Root Cause Detections to Your Kibana Dashboards

"8.3.0"

],

"event.dataset": [

"logs"

],

"logs.all.count": [

27

]

}

}

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

116

mailto:support@zebrium.com

Grafana Plugin

Grafana Plugin

Features

l Automatically adds Root Cause Reports in Grafana. This allows you to see details of root cause on any
Grafana dashboard.

l Automatically adds Log metrics in Grafana.

l Each Zebrium RC Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium user interface.

l Leads to faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Observability Dashboard integrations is to use the Zebrium Auto-
Detectmode as an accurate mechanism for explaining the reason something went wrong. In this mode, you
continue to use your existing rules, alerts and metrics as the primary source of problem detection. You can then
review Zebrium RC Report findings directly in your Grafana Dashboards alongside other metrics to explain the
reason behind problems you were alerted on.

Auto-Detect: View Root Cause Detections to your Grafana Dashboards

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

2. Root Cause Report summaries and Log metrics are visible on your Grafana Dashboards using the Zebrium
plugin.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Dashboard.

CLICK HERE to View Root Cause Detections in your Grafana Dashboards

117

Viewing Root Cause Detections in your Grafana Dashboards

Viewing Root Cause Detections in your Grafana Dashboards

Integration Overview

1. Create a secure access token in Zebrium for the Zebrium Datasource.

2. Download Plugins from GitHub.

3. Sign and Install Plugins.

4. Setup the Zebrium Datasource.

5. Install the Zebrium Root Cause Finder on a dashboard.

Prerequisites

l File and Web access to a Grafana Server running at minimum version 8.0. We recommend first
downloading and installing a local copy of Grafana Server to test the setup procedures, before installing the
plugins on your production Grafana instance. You can install a local copy of Grafana web server from here:
https://grafana.com/grafana/download/8.3.6?pg=get&plcmt=selfmanaged-box1-cta1.

l Grafana Toolkit installed on your system. To install, run the npm command:
npm i @grafana/toolkit

l Web access to your Zebrium instance.

Current Zebrium Plugins

l Zebrium Root Cause Finder. Plots counts of all log events, error events and rare events overlaid with
detections found by Zebrium’s machine learning.

l Zebrium Data Source. Provides the API access layer for Zebrium panel plugins.

Integration Details

STEP 1: Download Plugins from GitHub

Use the following path to download the Zebrium Grafana plugins:

https://github.com/zebrium/grafana-plugin/releases

NOTE: This is a private repository in the current phase. For access, please contact Zebrium at
support@zebrium.com.

118

https://grafana.com/grafana/download/8.3.6?pg=get&plcmt=selfmanaged-box1-cta1
mailto:support@zebrium.com

119

STEP 2: Sign and Instal l Plugins

1. Stop your Grafana Server.

2. Move the plugins you downloaded from GitHub under your Grafana Server plugins directory. For example,
if your Grafana Server is installed on the path /Grafana-8.3.6, you wuld install the downloaded plugins in
/Grafana-8.3.6/data/plugins.

3. Make sure that the Grafana Toolkit is installed on this system. If it isn’t, run the npm command:
npm i @grafana/toolkit

4. Follow the Grafana signing instructions for signing a private plugin:
https://grafana.com/docs/grafana/latest/developers/plugins/sign-a-plugin/.

5. You must sign each plugin separately and you must sign them as a private plugin:

o cd /<PATH TO GRAFANA SERVER>/data/plugins/ze-datasource and sign as a
private plugin.

o cd /<PATH TO GRAFANA SERVER>/data/plugins/ze-detections and sign as a
private plugin.

6. Restart your Grafana Server. For example, if your server is in /Grafana-8.3.6, switch to that directory and
run ./bin/grafana-server web.

7. Check the Grafana server logs to verify that the new plugins have been registered:

STEP 3: Create a Secure Access Token in Zebrium

1. From the User menu area, click the Settingsmenu (hamburger).

2. Select Access Tokens.

3. Click the [+ Add Access Token] button.

4. Enter aName for the token.

5. Select Viewer for the Role.

6. Select the Deployment for the token.

7. Click the [Add] button.

8. Copy the Access Token that was just created and save it for use in STEP 4.

STEP 4: Set up the Zebrium Datasource

1. Open the Grafana server in a web browser. If you have installed a local Grafana Server, it is normally found
at http://localhost:3000.

2. On the left toolbar, find the Configuremenu (gear icon) and select data source.

3. Click [Add a Datasource].

4. Scroll through the list of data sources and select Zebrium Data Source.

Viewing Root Cause Detections in your Grafana Dashboards

https://grafana.com/docs/grafana/latest/developers/plugins/sign-a-plugin/

Viewing Root Cause Detections in your Grafana Dashboards

5. On the Settings page, enter the API endpoint. This is the FQDN for your Zebrium instance where you
generated the Access Token in STEP 3. For Zebrium SaaS, this will typically be:
https://cloud.zebrium.com.

6. Also on the Settings page, enter the access token you created from STEP 3.

7. Click [Save & test].

8. Verify that you see the message Successfully connected to Zebrium. If you don’t, review your entries above.

STEP 5: Instal l Zebrium Root Cause Finder on a Dashboard

1. Open the Grafana server in a web browser. If you have installed a local Grafana Server, it is normally found
at http://localhost:3000.

2. On the left toolbar, find the Createmenu (plus icon) and select dashboard.

3. On this new dashboard, click [Add an Empty Panel]. The panel setup screen appears.

4. In the upper right, open the list of visualizations and select the Zebrium Root Cause Finder plugin.

5. In the query panel, select Zebrium Data Source.

6. For API Name, enter detections.

7. For [Service Group], enter All to pull counts and detection data from all of your service groups.
Alternatively, enter the name of a single service group to pull data from just that service group.

120

121

8. Give your panel a name; we suggest Zebrium Root Cause Finder. Then save your Dashboard and give it a
name.

9. Verify that the Zebrium Root Cause Finder visualization shows up in the panel you just added:

Viewing Root Cause Detections in your Grafana Dashboards

Viewing Root Cause Detections in your Grafana Dashboards

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

122

mailto:support@zebrium.com

New Relic

New Relic

Features

l Automatically adds Root Cause Reports as Events in New Relic. This allows you to see details of root cause
on any New Relic dashboard.

l Automatically adds Log metrics in New Relic.

l Each Zebrium RC Report includes a clear summary, word cloud and a set of log events showing symptoms
and root cause. Plus a link to the full report in the Zebrium user interface.

l Leads to faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Observability Dashboard integrations is to use the Zebrium Auto-
Detectmode as an accurate mechanism for explaining the reason something went wrong. In this mode, you
continue to use your existing rules, alerts and metrics as the primary source of problem detection. You can then
review Zebrium RC Report findings directly in your New Relic Dashboards alongside other metrics to explain the
reason behind problems you were alerted on.

Augment mode is useful when you have alerts defined in New Relic and you want a Root Cause Report
automatically generated at the time of the alert. In this mode, Zebrium uses a New Relic webhook as a
notification channel and will update your Dashboard with Root Cause Reports that coincide with the triggering
alert so they’re immediately visible to you as you work the issue.

The two modes of operation are independent. You can configure Auto-Detect and/or Augment modes
depending on your operational use-case.

Auto-Detect (recommended): Send Root Cause Detections to your New Relic
Dashboards

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

2. Root Cause Report summaries are sent to New Relic using the events API and Root Cause details are visible
on your New Relic Dashboards.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Dashboard.

4. Log metrics are also sent to New Relic via the metric API for visualization on your New Relic Dashboards.

123

124

CLICK HERE to send Root Cause Detections to your New Relic Dashboards

Augment (advanced users): Receive Signals from New Relic Alert Policies

1. Any New Relic Alert Policy can trigger a webhook request for Root Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the Incident and creates a
Root Cause Report.

3. Root Cause Report summaries are sent to New Relic using the event API and Root Cause details are visible
on your New Relic Dashboards.

4. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Dashboard.

CLICK HERE to receive Signals from New Relic Alert Policies

New Relic

Adding Zebrium Root Cause Reports to New Relic Dashboards

Adding Zebrium Root Cause Reports to New Relic Dashboards

Integration Overview

1. Create an API Key in New Relic.

2. Create a New Relic Integration in Zebrium using the information from STEP 1.

3. Add Zebrium Root Cause Report events and Log metrics to your New Relic Dashboard.

Integration Details

STEP 1: Create an API Key in New Relic

1. From the Settings drop-down, select API keys.

2. Click Create a key.

3. Choose the appropriate Account and make a note of the Account ID for use in STEP 2.

4. Select Ingest - License as the Key type.

5. Enter aName for the API key and click Create a key.

6. Copy and save the Key for use in STEP 2.

STEP 2: Create a New Relic Outbound Integration in Zebrium

1. From the User menu area, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theObservability Dashboards section and click onNew Relic.

4. Click the [Create a New Integration] button.

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click the [Enabled] button.

11. Enter the Account ID from STEP 1, above.

12. Enter the API Key from STEP 1, above.

13. Click [Save].

125

126

STEP 3: Add Zebrium Root Cause Report Detections and Log Metrics to your
New Relic Dashboards

We recommend adding a few charts to your existing New relic dashboards so that you can see details of Zebrium
root cause reports alongside your other observability data.

The image below shows a sample New Relic dashboard with the following Zebrium charts:
l A count of Zebrium Root Cause Report Detections

l A Zebrium Root Cause Finder chart with a green vertical bar wherever a detection occurs. This is useful
when used on other dashboards as you can visually correlate what you are seeing in other data with what
Zebrium has automatically detected.

l A chart showing log anomaly counts

l A chart containing a list of root cause report summaries

Sample New Relic Zebrium dashboard:

Adding Zebrium Root Cause Reports to New Relic Dashboards

Adding Zebrium Root Cause Reports to New Relic Dashboards

The following images show the definitions for each of the charts above.
Count of Zebrium Root Cause Report Detections:

127

128

Root cause finder showing where detections occur:

Adding Zebrium Root Cause Reports to New Relic Dashboards

Adding Zebrium Root Cause Reports to New Relic Dashboards

Chart of log anomaly counts:

129

130

List of root cause report summaries:

Important Metric Names

Metric Name Description

zebrium.logs.all.count Count of all log events received in a one-minute duration (per service_group).

zebrium.logs.anomalies.count Count of anomaly log events received in a one-minute duration (per service_
group).

zebrium.logs.errors.count Count of error log events received in a one-minute duration (per service_
group).

Zebrium Detections Event Payload

Zebrium Detections are sent to New Relic as Custom Events with eventType ofNrAiIncidentExternal.

Here is a sampleNrAiIncidentExternal payload for a Zebrium detection with descriptions of each field:

{

"aggregationTag.ze_deployment": "this is the deployment name",

"aggregationTag.ze_first_occurrence": "set to true if this is the

Adding Zebrium Root Cause Reports to New Relic Dashboards

Adding Zebrium Root Cause Reports to New Relic Dashboards

first occurrence of this type of incident",

"aggregationTag.ze_inci_id": "00062722-5f20-0000-0000-5190000353ee",

"aggregationTag.ze_service_group": "this is the zebrium service

group name",

"aggregationTag.ze_significance": "significance of the detection:

low, medium or high",

"deepLinkUrl": "this is the URL in the Zebrium UI for this root

cause report",

"description": "this is usually the NLP summary for the root cause

report",

"entityName": "zebrium_detections",

"source": "zebrium_detections",

"state": "trigger",

"timestamp": 1651647986000,

"title": "Zebrium Detected Root Cause Report",

"version": 1

}

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

131

mailto:support@zebrium.com

Augmenting New Relic with Root Cause Reports using Alert Policies

Augmenting New Relic with Root Cause Reports using Alert
Policies

Integration Overview

1. Create an API Key in New Relic.

2. Create a New Relic Inbound Integration in Zebrium using the information from STEP 1.

3. Create a Webhook Notification Channel in New Relic using the information from STEP 2.

4. Add Webhook notifications to your Alert Policies in New Relic.

5. Add Zebrium Root Cause Reports to your New Relic Dashboard.

Integration Details

STEP 1: Create an API Key in New Relic

1. From the Settings drop-down, select API keys.

2. Click Create a key.

3. Choose the appropriate Account and make a note of the Account ID for use in STEP 2.

4. Select Ingest - License as the Key type.

5. Enter aName for the API key and click Create a key.

6. Copy and save the Key for use in STEP 2.

STEP 2: Create a New Relic Inbound Integration in Zebrium

1. From the User menu area, click on the Settingsmenu (hamburger).

2. Select Inbound Integrations.

3. Click the [+ Create Inbound Integration] button.

4. SelectNew Relic as the Inbound Integration Type and click Create.

5. Enter aName for this integration.

6. Select the Deployment for the integration.

7. Select the Service Group(s) for the integration.

8. Enter the Account ID from STEP 1, above.

9. Enter the API Key from STEP 1, above.

10. Click [Create].

11. Copy the Webhook that was just created and save it for use in STEP 3.

132

133

STEP 3: Create a Webhook Notif ication Channel in New Relic

1. Click the [Alerts & AI] tab.

2. From the Main Navigation panel, click Channels.

3. Click the [+ New notification channel] button.

4. SelectWebhook as the channel type.

5. Enter a Channel name for this Webhook.

6. Enter the Base URL generated by Zebrium in STEP 2.

7. Leave the Basic Auth, Custom Headers, and Use Custom Payload fields empty.

8. Click Create channel.

STEP 4: Add Webhook Notif ications to your Alert Policies in New Relic

1. Click the [Alerts & AI] tab.

2. From the Main Navigation panel, click on Alert conditions (Policies).

3. Click on any Alert Policy you wish to trigger a Root Cause Report request.

4. Click the [Notification channels] tab.

5. Click on Add notification channels.

6. Click onWebhook.

7. Select the Webhook notification channel created in STEP 3.

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

Augmenting New Relic with Root Cause Reports using Alert Policies

mailto:support@zebrium.com

ScienceLogic

ScienceLogic

Features

l Automatically adds Root Cause Reports as Events in ScienceLogic SL1.

l Each Zebrium RCA Report includes a summary, word cloud, and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium user interface.

l Leads to faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Observability Dashboard integrations is to use the Zebrium Auto-
Detectmode as an accurate mechanism for explaining the reason something went wrong. In this mode, you
continue to use your existing rules, alerts, and metrics as the primary source of problem detection. You can then
review Zebrium RC Report findings directly on your ScienceLogic SL1 Events page (or Events Console in the
classic user interface) alongside other metrics to explain the reason behind problems you were alerted on.

Augmentmode is useful if you use run book automation to create a ticket based on an event from your alerts. In
this mode, Zebrium will update the ticket directly with any Root Cause Reports around the time of the event so
they’re immediately visible to you as you work the case.

The two modes of operation are independent. You can configure Auto-Detect and/or Augment modes
depending on your operational use case.

Auto-Detect (recommended): Send Root Cause Detections to your SL1 Events
Page

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

2. Root Cause Report Summaries are sent to ScienceLogic as Events, and Root Cause details are visible on
your SL1 Events page.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Event Console.

CLICK HERE to Send Root Cause Detections to your ScienceLogic Event Console

Augment (advanced users): SL1 Tickets with Root Cause Reports

1. Any SL1 action policy can trigger a webhook request for Root Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the event and creates a Root
Cause Report.

3. The report is sent to SL1 and updates the ticket associated with the event with Root Cause details.

134

135

4. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Events page or ticket.

CLICK HERE to receive Signals from ScienceLogic Run Book Automation

ScienceLogic

Sending Root Cause Detections to the SL1 Events Page

Sending Root Cause Detections to the SL1 Events Page

Integration Overview

1. In ScienceLogic SL1, choose an existing Device ID (DID) or create a new virtual device used to associate
Root Cause reports from Zebrium.

2. Set up a user with restricted access to minimally required API access hooks.

3. Setup an event policy for the "Auto-Detected Root Cause Report" alert sent by Zebrium.

4. Create a ScienceLogic Integration in Zebrium using the information from STEPS 1 and 2.

Integration Details

STEP 1: Choose an Exist ing or Create a New Device

Because Zebrium is using logs from an application that may be spread across many hosts, containers, network
devices, and more, there is no direct association of Root Cause Reports to a single hardware device. Instead,
Zebrium associates Root Cause Reports to a "device" that represents the set of services that make up the
application.

If you already have such a "device", like a Cloud Application, then Zebrium needs its Device ID (DID).

If you do not have an existing device that is appropriate to use, you can create a virtual device for this purpose.

Use an Existing Device

1. In SL1, go to the Devices page (). If you are using the classic user interface, go to Registry > Devices
> Device Manager.

2. Locate the desired device from the list and make a note of the numeric Device ID (DID) in the ID column (or
the DID column in the classic user interface). You will use the DID when configuring the Zebrium
Integration.

Create a New Virtual Device

1. In SL1, go to the Device Manager page (Devices > Device Manager). If you are using the classic user
interface, go to Registry > Devices > Device Manager.

2. Click [Actions] and select Create Virtual Device. The Create Virtual Device modal appears.

136

137

3. Complete the following fields:

o Device Name. Name of the virtual device. Can be any combination of alphanumeric characters, up
to 32 characters in length.

o Organization. Organization to associate with the virtual device. Select from the drop-down list of all
organizations in SL1.

o Device Class. Select ScienceLogic | Integration Service as the device class to associate with the
virtual device.

o Collector. Specifies which instance of SL1 will perform auto-discovery and gather data from the
device. Select the collector from the drop-down list of all collectors in SL1.

4. Click [Add] and close the modal.

5. Go to Devices page or the Device Manager page (Devices > Device Manager) and locate the newly
created virtual device from the list.

6. Make a note of the numeric Device ID (DID) in the ID column (or the DID column in the classic user
interface). You will use the DID when configuring the Zebrium Integration.

STEP 2: Create a User with Restr icted API Access

Define a New Access Key for API Access

1. In SL1, go to the Access Keys page (System > Manage > Access Keys).

2. Click [Key Manager]. The Key/Hook Alignment Editor dialog appears.

3. Complete the following fields:

o Name. Name of the key, such as API Access for Zebrium.

o Key Category. Select API Access.

o Key Description. Enter an appropriate description for the key.

4. In the Hook Alignment section, select each of the following unaligned access hooks on the left-hand side
and click » to move the selected hook to the Aligned Access Hooks on the right:

Event Note:Add/Rem

Events/Event:View

Ticket:Notes:Add

Ticket:View

5. Click [Save].

Define a New User Policy using the New Access Key

1. In SL1, go to the User Policies page (Registry > Accounts > User Policies).

2. Click [Create]. A Create New User Policy dialog appears.

Sending Root Cause Detections to the SL1 Events Page

Sending Root Cause Detections to the SL1 Events Page

3. In the Privilege Keys section, select the access key that you created in the previous procedure. You might
need to scroll down to the API Access section.

4. Complete the remaining fields according to your accepted policies.

5. Click [Save].

Define a New User using the New User Policy

1. In SL1, go to the User Accounts page (Registry > Accounts > User Accounts).

2. Click [Create]. A Create New Account dialog appears.

3. Complete the following fields:

o Require Password Reset. Make sure Next Login is unchecked.

o Account Type. Select Policy Membership.

o Policy Membership. Select the new user policy created in the previous procedure.

4. Complete the remaining fields according to your accepted policies.

5. Make a note of the Username and Password for use in the next STEP.

6. Click [Save].

STEP 3: Create an Event Policy for the Zebrium Alert

1. Go to the Event Policies page (Events > Event Policies). If you are using the classic user interface, go to
Registry > Events > Event Manager.

2. Click [Create Event Policy]. If you are using the classic user interface, click [Create].

3. In the Policy Name field at top left, type a name for the policy.

4. On the [Policy Description] tab, type a description of the policy, such as "Zebrium alert".

5. On the [Match Logic] tab (or the [Policy] tab in the classic user interface), select API fo the Event Source.

6. In theMatch Logic drop-down, select Regular Expression (or [Regex Match] in the classic user interface).

7. Do not selectMulti Match.

8. SelectMessage Match.

9. In the firstMatch String field, type the following:
^Zebrium\s+(Detected|created).*

10. On the [Event Message] tab (or the [Policy] tab in the classic user interface), enter%M in the Event
Message field.

11. Click [Save].

STEP 4: Create a ScienceLogic Integration in Zebrium

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theObservability Dashboards section and select ScienceLogic.

138

139

4. Click the [Create a New Integration] button.

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click the [Enabled] button.

11. Enter the Username and Password from STEP 2, above.

12. Enter the Device ID from STEP 1, above.

13. Enter the fully qualified Appliance URL to your instance of ScienceLogic (/api/<api_endpoint> will be
added automatically by the integration).

14. Click [Save].

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

Sending Root Cause Detections to the SL1 Events Page

mailto:support@zebrium.com

Receiving Signals from a ScienceLogic Run Book Automation

Receiving Signals from a ScienceLogic Run Book Automation

Integration Overview

1. In ScienceLogic SL1, create a user with restricted access to minimally required API access hooks.

2. Set up webhook credentials and a HTTP action policy for sending a webhook to Zebrium.

3. Create a ScienceLogic Integration in Zebrium using the information from STEPS 1 and 2.

4. Set up a run book automation to augment tickets with Root Cause Reports.

Integration Details

STEP 1: Create a User with Restr icted API Access

Define a new Access Key for API Access
1. In SL1, go to the Access Keys page (System > Manage > Access Keys).

2. Click [Key Manager]. The Key/Hook Alignment Editor dialog appears.

3. Complete the following fields:

o Name. Name of the key, such as API Access for Zebrium.

o Key Category. Select API Access.

o Key Description. Enter an appropriate description for the key.

4. In the Hook Alignment section, select each of the following unaligned access hooks on the left-hand side
and click » to move the selected hook to the Aligned Access Hooks on the right:

Event Note:Add/Rem

Events/Event:View

Ticket:Notes:Add

Ticket:View

5. Click [Save].

Define a New User Policy using the New Access Key

1. In SL1, go to the User Policies page (Registry > Accounts > User Policies).

2. Click [Create]. A Create New User Policy dialog appears.

3. In the Privilege Keys section, select the access key that you created in the previous procedure. You might
need to scroll down to the API Access section.

4. Complete the remaining fields according to your accepted policies.

5. Click [Save].

140

141

Define a New User using the New User Policy

1. In SL1, go to the User Accounts page (Registry > Accounts > User Accounts).

2. Click [Create]. A Create New Account dialog appears.

3. Complete the following fields:

o Require Password Reset. Make sure Next Login is unchecked.

o Account Type. Select Policy Membership.

o Policy Membership. Select the new user policy created in the previous procedure.

4. Complete the remaining fields according to your accepted policies.

5. Make a note of the Username and Password for use in the next STEP.

6. Click [Save].

STEP 2: Set Up Webhook Credentials and HTTP Action Policy

Create Credentials

1. Go to the Credentials page (System > Manage > Credentials).

2. Click the [Actions] button and select Create SOAP/XML Host Credential.

3. Complete the following fields:

o Profile Name. Enter an appropriate name.

o Context Encoding. Select text/xml.

o Method. Select [POST].

o HTTP Version. Select [HTTP/1.1].

o URL. Because this is a required field, you will need to type a placeholder URL in this field, such as
https://text.com. You will update the URL field with the actual URL after you create a ScienceLogic
Integration in STEP 3, below.

o HTTP Auth User and HTTP Auth Password. Create a user name and password and save for use in
STEP 3.

4. Click [Save]

5. On the Credentials page, locate the newly created credential from the list and note the numeric Credential
ID from the ID column. You will use this number in the next step when you create a run nook HTTP action.

Create a HTTP Request Action

1. Go to the Actions page (Registry > Run Book > Actions).

2. Click [Create]. The Action Editor page appears.

Receiving Signals from a ScienceLogic Run Book Automation

Receiving Signals from a ScienceLogic Run Book Automation

3. Complete the following fields:

o Action Name. Enter an appropriate name.

o Action Type. SelectMake an HTTP Request (2.0).

4. In the Input Parameters, enter:

{

"credential_id" : REPLACE_WITH_CREDENTIAL_ID_FROM_STEP_2_ABOVE,

"dynapp_guid": "",

"url_override" : "",

"relative_url": "",

"payload": "{\"event_timestamp_first\": \"%d\", \"event_

id\":\"%e\", \"event_message\" : \"%M\", \"event_counter\" : \"%c\"

}",

"command_label": "zebrium_rca"

}

5. Click [Save].

STEP 3: Create a ScienceLogic Integration in Zebrium to Receive Signals from
ScienceLogic

1. From the User menu area in Zebrium, click the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theObservability Dashboards section and click on ScienceLogic.

4. Click the [Create a New Integration] button.

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Receive Signals] tab.

10. Click the [Enabled] button.

11. Enter the Username and Password created in STEP 1 above.

12. Enter the fully qualified Appliance URL to your instance of ScienceLogic (/api/<api_endpoint> will be
added automatically by the integration).

13. Enter the Username and Password for Webhook Basic Authentication from STEP 2 above.

14. Click [Save].

15. Copy the webhook URL and save for use in STEP 4 and click [OK].

16. Return to the webhook credential you created in STEP 2 and add the Webhook to the URL field.

142

143

STEP 4: Set Up Run Book Automation to Augment Tickets with Root Cause
Reports

You will now be able to use the Zebrium Signal Webhook HTTP Request Action, created in STEP 2, in your run
book automation to instruct Zebrium to Augment an SL1 Ticket with a Root Cause Report.

The following is an example snippet from an Automation Policy Aligned Actions section:

1. Create Ticket [21]: My Ticket Template

2. Make an HTTP Request [102]: Zebrium Signal Webhook

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

Receiving Signals from a ScienceLogic Run Book Automation

mailto:support@zebrium.com

Chapter

6
Configuring Incident Management

Integrations

Overview

You can configure an integration between Zebrium and your third-party Incident Management application to
automatically add Root Cause (RCA) reports to your incidents in the third-party application. Each Zebrium RCA
report includes a summary, word cloud, and a set of log events display symptoms and root cause, along with a
link to the full report in the Zebrium user interface.

After you complete the configuration, you can can view details of root cause and direct the incident to the
appropriate team. All of these features lead to faster Mean Time to Repair (MTTR) and less time manually hunting
for root cause.

Zebrium supports Incident Management integrations with the following third-party applications:

l Opsgenie

l OpsRamp

l PagerDuty

l VictorOps

144

Opsgenie

Opsgenie

Features

l Automatically adds Root Cause (RCA) Reports to Incidents in Opsgenie. This allows you to see details of
root cause and direct the incident to the appropriate team.

l Each Zebrium RCA report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium UI.

l Leads to faster Mean Time to Repair (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Incident Management integrations is to use the Zebrium Augment
mode as an accurate mechanism for explaining the reason something went wrong. In this mode, you continue to
use your existing rules as the primary source of problem detection and Incident creation. You can then review
Zebrium RC Report findings directly in your Incident that was created by Opsgenie to explain the reason behind
Incident.

Auto-Detectmode is useful when you want to direct all Root Cause Reports to Opsgenie for routing and
dispositioning. Or, when you want to send only specific Root Cause Reports to Opsgenie after first reviewing in
the Zebrium UI.

The two modes of operation are independent. You can configure Augment and/or Auto-Detect modes
depending on your operational use-case.

Augment: Receive Signals from Opsgenie Incidents

1. Any Opsgenie Incident can trigger a webhook request for Root Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the Incident and creates a
Root Cause Report.

3. Root Cause Report summaries are sent to Opsgenie using the notes API and Root Cause details are visible
in your Opsgenie Incident.

4. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Incident.

CLICK HERE to receive Signals from Opsgenie Incidents

Auto-Detect: Send Root Cause Detections to Opsgenie as Incidents

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

145

146

2. Root Cause Report summaries are sent to Opsgenie using the webhook interface so Root Cause details are
visible as Incidents in Opsgenie.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Incident.

CLICK HERE to send Root Cause Detections to Opsgenie as Incidents

Opsgenie

Receiving Signals from Opsgenie

Receiving Signals from Opsgenie

Integration Overview

1. Configure API Access for Zebrium in Opsgenie

2. Create an Opsgenie Integration in Zebrium to Receive Signals from Opsgenie

3. Add the Zebrium Webhook to Opsgenie

Integration Details

STEP 1: Configure API Access for Zebrium in Opsgenie

1. From the [Settings] tab, click API key management in the left-hand navigation panel.

2. Click the [Add new API key] button.

3. Enter a name for the API, such as "Zebrium Incident Detection".

4. Enable Read Access and Create and Update Access. Delete Access can be disabled.

5. Make sure that Enabled is checked.

6. Copy the API Key and save it for later use when configuring Zebrium.

7. To view or manage your configured API Keys, go to the [Settings] tab and click API key management in
the left-hand navigation panel.

STEP 2: Create an Opsgenie Integration in Zebrium to Receive Signals from
Opsgenie

1. From the User menu area in Zebrium, click the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to the Incident Management section and clickOpsgenie.

4. Click the [Create a New Integration] button.

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the Receive Signals tab.

10. Click the [Enabled] button.

11. Select the Region of your Opsgenie portal.

12. Enter the API Key that you created in STEP 1, above.

13. Click [Save].

147

148

14. Copy theWebhook URL and save it for use in STEP 3.

15. Click [OK].

STEP 3: Add the Zebrium Webhook to Opsgenie

1. Go to theOpsgenie Integration page and click the Zebrium integration to modify or add a new
Zebrium Integration.

2. Make sure that the Send alert details to Zebrium for Opsgenie Alerts option is enabled.

3. In the Zebrium URL text box, paste the Zebrium Webhook URL from STEP 2, above.

4. Click [Save Integration].

How to Uninstall

Disable API Access

1. From the [Settings] tab in Opsgenie, click API key management in the left-hand navigation panel.

2. Click the trash can on the desired API Key.

3. Click [OK] after confirming you wish to proceed.

Delete the Zebrium Integration

1. From the User menu area in Zebrium, click the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to the Incident Management section and click onOpsgenie.

4. Click the red X on the desired Zebrium integration.

5. Click [OK] after confirming you wish to proceed.

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

Receiving Signals from Opsgenie

mailto:support@zebrium.com

Sending Root Cause Detections to Opsgenie as Incidents

Sending Root Cause Detections to Opsgenie as Incidents

This integration automatically sends a Root Cause (RCA) Report to Opsgenie so that the appropriate team is
notified when a Zebrium Incident is auto-detected.

Integration Overview

1. Add the Zebrium Integration to your Opsgenie Team

2. Create an Opsgenie Integration in Zebrium to Send Root Cause Detections to Opsgenie as Incidents

Integration Details

STEP 1: Add the Zebrium Integration to your Opsgenie Team

1. In Opsgenie, click on the [Teams] tab to access your Team dashboard.

2. Click the desired Team for the integration.

3. Click the Integrations section from the left-hand navigation pane.

4. Click the [Add integration] button.

5. Click the [Add] button under the Zebrium integration icon.

6. Make a note of theWebhook URL in the Zebrium section of the Integration Setup page.

7. In the Settings section, update theName as desired.

8. Make sure that the Enabled checkbox is selected.

9. Click Save Integration.

STEP 2: Create an Opsgenie Integration in Zebrium to Send Root Cause
Detections to Opsgenie as Incidents

1. From the User menu area in Zebrium, click the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to the Incident Management section and clickOpsgenie.

4. Click the [Create a New Integration] button.

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click the [Enabled] button.

11. Select the Region of your Opsgenie portal.

149

150

12. Enter theOpsgenie Webhook URL that you created in STEP 1, above.

13. Click [Save].

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

Sending Root Cause Detections to Opsgenie as Incidents

mailto:support@zebrium.com

OpsRamp

OpsRamp

Features

l Automatically adds Root Cause Reports to Incidents in OpsRamp. This allows you to see details of root
cause and direct the incident to the appropriate team.

l Each Zebrium RCA Report includes a summary, word cloud, and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium user interface.

l Leads to faster Mean Time to Repair (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Incident Management integrations is to use the Zebrium Augment
mode as an accurate mechanism for explaining the reason something went wrong. In this mode, you continue to
use your existing rules as the primary source of problem detection and Incident creation. You can then review
Zebrium RC Report findings directly in your Incident that was created by OpsRamp to explain the reason behind
Incident.

Auto-Detectmode is useful when you want to direct all Root Cause Reports to OpsRamp for routing and
dispositioning. Or, when you want to send only specific Root Cause Reports to OpsRamp after first reviewing in
the Zebrium user interface.

The two modes of operation are independent. You can configure Augment and/or Auto-Detect modes
depending on your operational use-case.

Augment: Receive Signals from OpsRamp Incidents

1. Any OpsRamp Incident can trigger a webhook request for Root Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the Incident and creates a
Root Cause Report.

3. Root Cause Report summaries are sent to OpsRamp using the notes API and Root Cause details are visible
in your OpsRamp Incident.

4. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Incident.

CLICK HERE to receive Signals from OpsRamp Incidents

Auto-Detect: Send Root Cause Detections to OpsRamp as Incidents

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

151

152

2. Root Cause Report summaries are sent to OpsRamp using the webhook interface so Root Cause details
are visible as Incidents in OpsRamp.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Incident.

CLICK HERE to send Root Cause Detections to OpsRamp as Incidents

OpsRamp

Receiving Signals from OpsRamp

Receiving Signals from OpsRamp

Please contact Zebrium for Early Access to this feature.

153

Sending Root Cause Detections to OpsRamp as Incidents

Sending Root Cause Detections to OpsRamp as Incidents

This integration automatically sends an Root Cause Reports to OpsRamp when a Zebrium Incident is auto-
detected so that the appropriate team is notified.

Integration Overview

1. Add the Zebrium Integration to OpsRamp

2. Create an OpsRamp Integration in Zebrium to Send Root Cause Detections to OpsRamp as Incidents

Integration Details

STEP 1: Add the Zebrium Integration to OpsRamp

1. Click the [Setup] tab and select Integrations/Integrations from the main navigation panel.

2. ClickOther under the Available Integrations section.

3. Click Custom Integration.

4. Enter aName and Description for this integration.

5. Set Category to Custom.

6. Enter a Logo if desired.

7. Click [Install].

8. Set Authentication Type toOAUTH2.

9. Set Role to Client Administrator.

10. Click [Save].

11. Copy the Tenant ID and save it for later use when configuring the Zebrium Outbound Integration.

12. Copy the Key and save it for later use when configuring the Zebrium Outbound Integration.

13. Copy theOne Time Secret and save it for later use when configuring the Zebrium Outbound Integration.

14. Copy the Access Token URLportion (from https through token) and save it for later use when configuring
the Zebrium Outbound Integration.

15. Copy the Incident Create URL portion (from https through incidents) and save it for later use when
configuring the Zebrium Outbound Integration.

STEP 2: Create an OpsRamp Integration in Zebrium to Send Root Cause
Detections to OpsRamp as Incidents

1. From the User menu area in Zebrium, click the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to the Incident Management section and clickOpsRamp.

154

155

4. Click the [Create a New Integration] button.

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click the [Enabled] button.

11. Enter the Access Token URL that you saved from STEP 1, above.

12. Enter the Incident Create URL that you saved from STEP 1, above.

13. Enter the Tenant ID that you saved from STEP 1, above.

14. Enter the API Key that you saved from STEP 1, above.

15. Enter the API Secret that you saved from STEP 1, above.

16. Click [Save].

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

Sending Root Cause Detections to OpsRamp as Incidents

mailto:support@zebrium.com

PagerDuty

PagerDuty

Features

l Automatically adds Root Cause Reports to Incidents in PagerDuty. This allows you to see details of root
cause and direct the incident to the appropriate team.

l Each Zebrium RCA Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium UI.

l Leads to faster Mean Time to Repair (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Incident Management integrations is to use the Zebrium Augment
mode as an accurate mechanism for explaining the reason something went wrong. In this mode, you continue to
use your existing rules as the primary source of problem detection and Incident creation. You can then review
Zebrium RC Report findings directly in your Incident that was created by PagerDuty to explain the reason behind
Incident.

Auto-Detect mode is useful when you want to direct all Root Cause Reports to PagerDuty for routing and
dispositioning. Or, when you want to send only specific Root Cause Reports to PagerDuty after first reviewing in
the Zebrium user interface.

The two modes of operation are independent. You can configure Augment and/or Auto-Detect modes
depending on your operational use-case.

Augment: Receive Signals from PagerDuty Incidents

1. Any PagerDuty Incident can trigger a webhook request for Root Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the Incident and creates a
Root Cause Report.

3. Root Cause Report summaries are sent to PagerDuty using the notes API and Root Cause details are visible
in your PagerDuty Incident.

4. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Incident.

CLICK HERE to receive Signals from PagerDuty Incidents

Auto-Detect: Send Root Cause Detections to PagerDuty as Incidents

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

156

157

2. Root Cause Report summaries are sent to PagerDuty using the webhook interface so Root Cause details are
visible as Incidents in PagerDuty.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Incident.

CLICK HERE to send Root Cause Detections to PagerDuty as Incidents

PagerDuty

Receiving Signals from PagerDuty

Receiving Signals from PagerDuty

Integration Overview

1. Configure API Access for Zebrium in PagerDuty

2. Create an PagerDuty Integration in Zebrium to Receive Signals from PagerDuty

3. Add the Zebrium Webhook to PagerDuty

Integration Details

STEP 1: Configure API Access for Zebrium in PagerDuty

1. From the Integrationsmenu, select API Access.

2. Click the [Create New API Key] button.

3. Enter a description, such as "Zebrium Incident Detection".

4. Make sure that the Read-only API Key option is not selected.

5. Click [Create Key].

6. Copy the API Key and save it for later use when configuring Zebrium. The key will not be visible in
PagerDuty again.

STEP 2: Create a PagerDuty Integration in Zebrium to Receive Signals from
PagerDuty

1. From the User menu area in Zebrium, click the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to the Incident Management section and click PagerDuty.

4. Click the [Create a New Integration] button.

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the Receive Signals tab.

10. Click the [Enabled] button.

11. Select the Region of your Opsgenie portal.

12. Enter the API Key that you created in STEP 1, above.

13. Click [Save].

158

159

14. Copy theWebhook URL and save it for use in STEP 3.

15. Click [OK].

STEP 3: Add the Zebrium Webhook to PagerDuty

1. From the Integrationsmenu, selectGeneric Webhooks (v3).

2. Click the [+ Add New Webhook] button.

3. In theWEBHOOK URL area, paste the Zebrium Webhook URL that was copied in STEP 2 when
configuring access for PagerDuty in Zebrium.

4. In the SCOPE TYPE drop-down, select Service.

5. In the SCOPE drop-down, select the desired service to which you want to add the Zebrium webhook.

6. Enter a DESCRIPTION, such as "Zebrium Signal".

7. In the EVENT SUBSCRIPTION field, select incident.triggered. Clear all other checkboxes.

8. Click the [Add Webhook] button.

How to Uninstall

Disable API Access in PagerDuty

1. From the Integrationsmenu, select API Access.

2. Click Disable or Remove on the API Access Key you want to delete.

3. Click the [Save] button after confirming you wish to proceed.

Delete the Zebrium Integration

1. From the User menu area in Zebrium, click the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to the Incident Management section and click PagerDuty.

4. Click the red X on the Zebrium integration you want to delete.

5. Click [OK] after confirming you wish to proceed.

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

Receiving Signals from PagerDuty

mailto:support@zebrium.com

Sending Root Cause Detections to PagerDuty as Incidents

Sending Root Cause Detections to PagerDuty as Incidents

Please contact Zebrium for Early Access to this feature.

160

VictorOps

VictorOps

Features

l Automatically adds Root Cause Reports to Incidents in VictorOps. This allows you to see details of root
cause and direct the incident to the appropriate team.

l Each Zebrium RCA Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium user interface.

l Leads to faster Mean Time to Repair (MTTR) and less time manually hunting for root cause.

How it Works

Our recommended mode of operation for Incident Management integrations is to use the Zebrium Augment
mode as an accurate mechanism for explaining the reason something went wrong. In this mode, you continue to
use your existing rules as the primary source of problem detection and Incident creation. You can then review
Zebrium RC Report findings directly in your Incident that was created by VictorOps to explain the reason behind
Incident.

Auto-Detectmode is useful when you want to direct all Root Cause Reports to VictorOps for routing and
dispositioning. Or, when you want to send only specific Root Cause Reports to VictorOps after first reviewing in
the Zebrium user interface.

The two modes of operation are independent. You can configure Augment and/or Auto-Detect modes
depending on your operational use-case.

Augment: Receive Signals from VictorOps Incidents

1. Any VictorOps Incident can trigger a webhook request for Root Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the Incident and creates a
Root Cause Report.

3. Root Cause Report summaries are sent to VictorOps using the notes API and Root Cause details are visible
in your VictorOps Incident.

4. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Incident.

CLICK HERE to receive Signals from VictorOps Incidents

Auto-Detect: Send Root Cause Detections to VictorOps as Incidents

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause Reports
highlighting details of any problems with over 95% accuracy.

161

162

2. Root Cause Report summaries are sent to VictorOps using the webhook interface so Root Cause details
are visible as Incidents in VictorOps.

3. If you need to drill down further to look at correlated logs across your entire app, it’s just one click from your
Incident.

CLICK HERE to send Root Cause Detections to VictorOps as Incidents

VictorOps

Receiving Signals from VictorOps

Receiving Signals from VictorOps

Please contact Zebrium for Early Access to this feature.

163

Sending Root Cause Detections to VictorOps as Incidents

Sending Root Cause Detections to VictorOps as Incidents

This integration automatically sends a Root Cause Reports to VictorOps when a Zebrium Incident is auto-
detected so that the appropriate team is notified.

Integration Overview

1. Create an Incoming Webhook in VictorOps.

2. Create a VictorOps Integration in Zebrium to Send Root Cause Detections to VictorOps as Incidents.

Integration Details

STEP 1: Create an Incoming Webhook in VictorOps

1. Follow the VictorOps (Splunk On-call) guides to create an incoming Webhook.

2. Save the webhook integration and note theWebhook URL for use in STEP 2, below.

STEP 2: Create a VictorOps Integration in Zebrium to Send Root Cause
Detections to VictorOps as Incidents

1. From the User menu area in Zebrium, click the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to the Incident Management section and click VictorOps.

4. Click the [Create a New Integration] button.

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click the [Enabled] button.

11. Enter theWebhook URL that you saved in STEP 1, above.

12. Click [Save].

Support

If you need help with this integration, please contact Zebrium at support@zebrium.com.

164

mailto:support@zebrium.com

Chapter

7
Enabling Notification Channels

Overview

Notification Channels provide a mechanism to define the methods that Zebrium will use to send notifications
from RCA reports. The supported types of notification channels include email, as well as Mattermost, Slack,
Microsoft Teams, and Webex Teams notifications.

After you have created one or more notification channels, you can link any number of these to any RCA report
created by the AI/ML engine. Linking a set of notification channels to a RCA report will send notifications of future
RCA reports of the same type to those channels.

Supported notification channels include:

l Email

l Mattermost

l Slack

l Microsoft Teams

l Webex Teams

165

Email Notifications

Email Notifications

Features

l You can configure Zebrium to automatically send Root Cause Reports to email recipients. This allows you to
see details of root cause in your email client.

l Each Zebrium RC Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium UI.

l This means faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

Integration Details

Create an Email Integration in Zebrium to Send Detections to Email Recipients

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theNotifications section and click on Email.

4. Click [Create a New Integration].

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click [Enabled].

11. Enter the Email Address List. Add one email recipient per line.

12. Click [Save].

166

Mattermost Notifications

Mattermost Notifications

Features

l Automatically send Root Cause Reports to Mattermost channels. This allows you to see details of root cause
in your Mattermost client.

l Each Zebrium RC Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium UI.

l This means faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

Integration Overview

1. Create an Incoming Webhook in Mattermost

2. Create a Mattermost Integration in Zebrium using the information from STEP 1.

Integration Details

STEP 1: Create an Incoming Webhook in Mattermost

1. In Mattermost, go toMain Menu> Integrations> Incoming Webhook.

2. Click Add Incoming Webhook and add name and description for the webhook.

3. Select the channel to receive webhook payloads, then click Add to create the webhook.

4. Copy and save theWebhook URL for use in STEP 2.

STEP 2: Create a Mattermost Integration in Zebrium to Send Detections to
Mattermost

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theNotifications section and click onMattermost.

4. Click [Create a New Integration].

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click [Enabled].

167

168

11. Enter theWebhook URL created in STEP 1, above.

12. Click [Save].

Mattermost Notifications

Slack Notifications

Slack Notifications

Features

l Automatically send Root Cause Reports to Slack channels. This allows you to see details of root cause in
your Slack client.

l Each Zebrium RC Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium UI.

l This means faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

Integration Overview

1. Create an Incoming Webhook in Slack

2. Create a Slack Integration in Zebrium using the information from STEP 1.

Integration Details

STEP 1: Create an Incoming Webhook in Slack

1. In a web browser, navigate to https://api.slack.com and log in to your workspace.

2. Click Your Apps, then the [Create New App] button, and then From Scratch.

3. Enter an App Name, select the appropriateWorkspace, and then click [Create App].

4. Click Incoming Webhooks.

5. Set Activate Incoming Webhooks toOn.

6. Click Add New Webhook to Workspace.

7. Select the desired Channel and click [Allow].

8. Copy and save theWebhook URL for use in STEP 2.

STEP 2: Create a Slack Integration in Zebrium to Send Detections to Slack

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theNotifications section and click on Slack.

4. Click [Create a New Integration].

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

169

https://api.slack.com/

170

9. Click the [Send Detections] tab.

10. Click [Enabled].

11. Enter theWebhook URL created in STEP 1, above.

12. Click [Save].

Slack Notifications

Microsoft Teams Notifications

Microsoft Teams Notifications

Features

l Automatically send Root Cause Reports to Microsoft Teams channels. This allows you to see details of root
cause in your Microsoft Teams client.

l Each Zebrium RC Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium UI.

l This means faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

Integration Overview

1. Create an Incoming Webhook in Microsoft Teams

2. Create a Microsoft Teams Integration in Zebrium using the information from STEP 1.

Integration Details

STEP 1: Create an Incoming Webhook in Microsoft Teams

1. In Microsoft Teams, go to the Channel that you want to receive notifications.

2. Click the ellipsis button (…) at the top right to open the configuration menu, and then select Connectors.

3. Click Add/Configure Incoming Webhook, add theName, and then click [Create].

4. Copy and save theWebhook URL for use in STEP 2, below.

5. Click [Done].

STEP 2: Create a Microsoft Teams Integration in Zebrium to Send Detections to
Microsoft Teams

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theNotifications section and click onMicrosoft Teams.

4. Click [Create a New Integration].

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click [Enabled].

171

172

11. Enter theWebhook URL created in STEP 1, above.

12. Click [Save].

Microsoft Teams Notifications

Webex Teams Notifications

Webex Teams Notifications

Features

l Automatically send Root Cause Reports to Webex Teams spaces. This allows you to see details of root cause
in your Webex Teams client.

l Each Zebrium RC Report includes a summary, word cloud and a set of log events showing symptoms and
root cause. Plus a link to the full report in the Zebrium UI.

l This means faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

Integration Overview

1. Create an Incoming Webhook in Webex Teams

2. Create a Webex Teams Integration in Zebrium using the information from STEP 1

Integration Details

STEP 1: Create an Incoming Webhook in Webex Teams

1. In Webex Teams, navigate to the Space where you want to receive notifications.

2. Click theGear icon and select Add Integrations and Bots… to navigate to theWebex App Hub page.

3. Search for "webhooks" using the Search apps field on theWebex App Hub page.

4. Click on Incoming webhooks.

5. Scroll down and enter theWebhook name.

6. Select the desired Space.

7. Click [Add].

8. Copy and save theWebhook URL for use in STEP 2.

STEP 2: Create a Webex Teams Integration in Zebrium to Send Detections to
Webex Teams

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theNotifications section and click onWebex Teams.

4. Click [Create a New Integration].

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

173

174

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click [Enabled].

11. Enter theWebhook URL created in STEP 1, above.

12. Click [Save].

Webex Teams Notifications

Chapter

8
Creating Integrations Using Webhooks

Overview

Zebrium provides support for using webhooks so you can build your own custom integrations.

Zebrium provides the following webhooks:

l Outgoing Root Cause Report Webhook

l Incoming Root Cause Report Incoming Webhook

Root Cause Report Outgoing Webhook

Root Cause Report outgoing webhooks are sent when data is ingested and the AI/ML engine detects an incident
comprised of anomalous events.

The frequency of Root Cause Report outgoing webhooks depend on data ingest and detection of root cause
reports.

For more information, see Root Cause Report Outgoing Webhook.

Root Cause Report Incoming Webhook

Signal incoming webhooks provide a generic mechanism for requesting Root Cause analysis for a specific time.
This can be useful for integrating with third-party of custom solutions for which a specific integration is not
currently available from Zebrium.

For more information, see Root Cause Report Incoming Webhook.

175

Root Cause Report Outgoing Webhook

Root Cause Report Outgoing Webhook

Features

l This section provides detailed information on webhook support provided by Zebrium so you can build your
own custom integrations.

l Root Cause Report webhook payloads are sent when data is ingested and our machine learning detects an
incident comprised of anomalous events.

l Frequency of Incident webhook depends on data ingest and detection of anomalies.

Integration Overview

1. Determine the destination endpoint and authentication requirements that will receive the Root Cause Report
Outgoing Webhook.

2. Create a Root Cause Report Outgoing Webhook Integration in Zebrium using the information from STEP 1.

Integration Details

STEP 1: Determine the Destination Endpoint

The destination endpoint is the endpoint URL that will receive and process the content of the Root Cause Report
Outgoing Webhook.

The authentication method for the endpoint can be one of the following:

l None

l Basic authentication

l Token (or Bearer) authentication

The authentication method and its associated configuration parameters will be used in STEP 2.

STEP 2: Create a Root Cause Report Outgoing Webhook Integration in
Zebrium.

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theWebhooks section and click onOutgoing RCA.

4. Click [Create a New Integration].

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

176

177

8. Select the Service Group(s) for the integration.

9. Click the [Send Detections] tab.

10. Click [Enabled].

11. Enter theWebhook URL that will receive and handle the POST request.

12. Select the required Authentication Method for the endpoint and complete the necessary configuration
using the information from STEP 1, above.

13. Click [Save].

Webhook Payload Format

See Root Cause Report Outgoing Webhook Payload for a detailed description of the webhook payload.

Root Cause Report Outgoing Webhook

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

Payload

Name Type Description

account string Zebrium account name for this customer_name

customer_name string Customer name of Zebrium instance

deployment_name string Name of the deployment where incident was raised

event_type string Always: “zebrium_incident”

first_
occurrence

boolean First time this incident has been seen

incident_bad_
level

number Numeric scale from 0-9 indicating the badness of the core
events in the RC report (9 being very bad)

incident_desc_
alt

string Unused

incident_desc string Description of incident assigned by GPT3 or the user

incident_epoch integer UTC epoch of incident start

incident_epoch_
ts

timestamp (yyyy-mm-
ddThh:mm:ss.nnnnnnZ)

UTC timestamp of incident start

incident_
feedback

number 1-5 Likert rating given to this incident type

incident_
fevent_gen

string Log generator name of the first event in the incident (Zebrium
On-Prem only)

incident_
fevent_host

string Host of first event in the incident (Zebrium On-Prem only)

incident_
fevent_log

string Log name of first event in the incident (Zebrium On-Prem
only)

incident_
fevent_ts

string Timestamp of the first event in the incident (Zebrium On-
Prem only)

incident_group string Name of the incident group where incident was raised

incident_hosts string Comma separated list of hosts participating in this incident
(Zebrium On-Prem only)

incident_id uuid Unique identifier for the incident

incident_jira_
url

url encoded string URL to the Jira Issue linked to this incident type

incident_like url encoded string API URL to "like" the incident

incident_local_
offset

string Local time offset from UTC as depicted in the log event

incident_local_ timestamp (yyyy-mm- Local time of incident start

178

179

Name Type Description

timestamp ddThh:mm:ss.nnnnnn)

incident_logs string Comma separated list of logs participating in the incident
(Zebrium On-Prem only)

incident_mute url encoded string API URL to "mute" the incident

incident_name string Title of incident assigned by GPT3 (abbreviated version) or
the user

incident_owner string Owner assigned to this incident

incident_
priority

string Priority assigned to this incident (P1/P3)

incident_rare_
level

number Numeric scale from 0-9 indicating the rareness of the core
events in the RC report (9 being very rare)

incident_
repeat_ct

number Number of times this incident type has been seen

incident_
repeat_idx

number Time ordered occurrence of this incident type

incident_short_
name

string System generated name for the incident type

incident_spam url encoded string API URL to tag incident as "spam"

incident_state string State of the incident (open, muted)

incident_
summary

string Unused

incident_
summary_
feedback

number Unused

incident_
touches_agent

boolean Incident is related to a log or metrics collector vs. application

incident_
touches_k8s

boolean Incident is related to Kubernetes infrastructure

incident_type uuid Unique identifier for the incident type

incident_url url encoded string URL to view incident in the Zebrium UI

incident_
wevent_gen

string Log generator name of the worst event in the incident
(Zebrium On-Prem only)

incident_
wevent_host

string Host of worst event in the incident (Zebrium On-Prem only)

incident_
wevent_log

string Log name of worst event in the incident (Zebrium On-Prem
only)

incident_
wevent_ts

string Timestamp of the worst event in the incident (Zebrium On-
Prem only)

incident_words word object list List of words (w) and their rareness/size (s) and badness (b)
used in the word cloud

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

Name Type Description

service_groups string list List of service groups touched by this incident

signal_
association

string How is Incident associated to the signal (related or nearby)

signal_
initiated

boolean Incident is associated with a signal request

signal_
timestamp

string Timestamp of the signal request

signal_type string What initiated the signal. Could be USER, OPSGENIE,
PAGERDUTY, SLACK

incident_
hallmark_event

event object Event determined to be the most severe indicator of the
incident (Unused)

incident_events event object list All events in the core RC Report (level 0-2)

key_events event object list Key events (level 0) in RC Report

interesting_
events

event object list Interesting events (level 1) in RC Report

nearby_events event object list Nearby events (level 3-5) in RC Report

Event Object

Name Type Description

app string Application name from meta data

container_
name

string Container name from meta data

epoch integer UTC epoch of event

epoch_ts timestamp (yyyy-mm-
ddThh:mm:ss.nnnnnnZ)

UTC timestamp of event

etype string Name of the event type

event_
context_level

integer Event level: 0=key, 1=interesting, 2=core, 3,4,5=nearby

event_meta_
data

set of name value pairs Name value pairs derived from event meta data

event_text string Log event text

event_uuid uuid Unique identifier for the event

hallmark boolean True if this event is the hallmark event

host string Host on which event originated

incident_
group

string Name of the incident group where anomaly was raised

local_offset string Local time offset from UTC as depicted in the log event

local_
timestamp

timestamp (yyyy-mm-
ddThh:mm:ss.nnnnnn)

Local timestamp of event

180

181

Name Type Description

log_name string Name of log basename (e.g. syslog, error)

namespace_
name

string Namespace name from meta data

root_cause boolean True if this event is the root cause event

severity_num integer Severity number as defined by syslog

severity string Severity text as see in the log (e.g. INFO)

ze_xid uuid Unique external identifier for the event if provided by the log
collector (otherwise empty)

Example Payload

{

"incident_id": "00000000-0000-0000-0000-000000000000",

"incident_type": "00000000-0000-0000-0000-000000000000",

"incident_epoch_ts": "2021-10-15T21:07:13.813857Z",

"incident_epoch": 1634332033813,

"incident_state": "open",

"incident_desc": "Notes let you document details of a report to help

colleagues understand your analysis in the future.",

"incident_repeat_ct": 2,

"incident_local_timestamp": "2021-10-15T21:07:13.813857Z",

"incident_local_offset": "+0000",

"incident_touches_k8s": false,

"incident_touches_agent": false,

"incident_name": "SAMPLE - You would normally see An NLP-generated title

here",

"incident_short_name": "cfcd2",

"incident_summary": "",

"incident_owner": "Zebrium",

"incident_feedback": 5,

"incident_summary_feedback": "",

"incident_jira_url": "https://www.zebrium.com",

"incident_priority": "P3",

"service_groups": [

"sample"

],

"signal_initiated": false,

"signal_type": "",

"signal_timestamp": "",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"signal_association": "",

"incident_repeat_idx": 2,

"first_occurrence": false,

"incident_hosts": "host1,host2,host3",

"incident_logs": "logtype1,logtype2,zoom_log",

"incident_fevent_host": "",

"incident_fevent_log": "",

"incident_fevent_ts": "",

"incident_fevent_gen": "",

"incident_wevent_host": "",

"incident_wevent_log": "",

"incident_wevent_ts": "",

"incident_wevent_gen": "",

"incident_bad_level": 5,

"incident_rare_level": 5,

"incident_words": [

{

"w": "critical",

"s": 10,

"b": 4

},

{

"w": "peek",

"s": 14,

"b": 4

},

{

"w": "characterize",

"s": 14,

"b": 1

},

{

"w": "rca",

"s": 14,

"b": 2

},

{

"w": "filter",

"s": 12,

"b": 4

182

183

},

{

"w": "zoom",

"s": 10,

"b": 1

},

{

"w": "correlated",

"s": 8,

"b": 4

},

{

"w": "enjoy",

"s": 6,

"b": 2

},

{

"w": "useful",

"s": 4,

"b": 4

},

{

"w": "wordcloud",

"s": 2,

"b": 4

},

{

"w": "related",

"s": 2,

"b": 2

},

{

"w": "reports",

"s": 2,

"b": 2

},

{

"w": "data",

"s": 2,

"b": 4

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

},

{

"w": "zebrium",

"s": 2,

"b": 2

},

{

"w": "raw",

"s": 2,

"b": 1

},

{

"w": "fast",

"s": 2,

"b": 2

}

],

"account": "zebrium465_trial",

"customer_name": "zebrium465",

"deployment_name": "trial",

"incident_group": "sample",

"event_type": "zebrium_incident",

"incident_url": "https://cloud.zebrium.com/root-cause/report?itype_

id=00000000-0000-0000-0000-000000000000&inci_id=00000000-0000-0000-0000-

000000000000&ievt_level=2",

"incident_like": "https://cloud.zebrium.com /ap-

i/v2/incident/setstate/00000000-0000-0000-0000-

000000000000/liked/B316BB07D18F63B61AF62416BCD7A73B960D48DD",

"incident_mute": "https://cloud.zebrium.com /ap-

i/v2/incident/setstate/00000000-0000-0000-0000-

000000000000/muted/B316BB07D18F63B61AF62416BCD7A73B960D48DD",

"incident_spam": "https://cloud.zebrium.com /ap-

i/v2/incident/setstate/00000000-0000-0000-0000-

000000000000/spam/B316BB07D18F63B61AF62416BCD7A73B960D48DD",

"incident_desc_alt": "Notes let you document details of a report to help

colleagues understand your analysis in the future.",

"incident_hallmark_event": {

"root_cause": false,

"hallmark": true,

"epoch_ts": "2021-10-15T21:07:29.833156Z",

184

185

"epoch": 1634332049833,

"etype": "line",

"log_name": "logtype2",

"severity_num": 2,

"event_uuid": "00000000-0000-0000-0000-000000000008",

"event_text": "[2021-10-15 21:07:29.833156] CRITICAL: This is the

second of two events that are used to characterize the report in the list

view",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:29.833156Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 0,

"host": "host1",

"severity": "Critical",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

"incident_events": [

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:49.790742Z",

"epoch": 1634332009790,

"etype": "line",

"log_name": "logtype1",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000003",

"event_text": "[2021-10-15 21:06:49.790742] INFO: This is a sample

root cause report",

"metadata_id": "ze_deployment_name=sample,zid_container_

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

name=logtype1,zid_host=host2,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:06:49.790742Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:57.7982Z",

"epoch": 1634332017798,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000004",

"event_text": "[2021-10-15 21:06:57.7982] INFO: Real Root Cause

Reports typically have 5-20 \"Core\" log events",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:06:57.7982Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

186

187

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:05.805105Z",

"epoch": 1634332025805,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000005",

"event_text": "[2021-10-15 21:07:05.805105] INFO: Core events con-

sist of mostly \"rare\" and high-severity events that are correlated

across multiple logs",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:05.805105Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"root_cause": true,

"hallmark": true,

"epoch_ts": "2021-10-15T21:07:13.82029Z",

"epoch": 1634332033820,

"etype": "line",

"log_name": "logtype1",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000006",

"event_text": "[2021-10-15 21:07:13.82029] INFO: This is the first

of two events that are used to characterize the report in the list view",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:13.82029Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 0,

"host": "host1",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:21.826703Z",

"epoch": 1634332041826,

"etype": "line",

"log_name": "logtype1",

"severity_num": 3,

"event_uuid": "00000000-0000-0000-0000-000000000007",

"event_text": "[2021-10-15 21:07:21.826703] ERROR: Did you notice

this event has error severity?",

188

189

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:21.826703Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Error",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": true,

"epoch_ts": "2021-10-15T21:07:29.833156Z",

"epoch": 1634332049833,

"etype": "line",

"log_name": "logtype2",

"severity_num": 2,

"event_uuid": "00000000-0000-0000-0000-000000000008",

"event_text": "[2021-10-15 21:07:29.833156] CRITICAL: This is the

second of two events that are used to characterize the report in the list

view",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:29.833156Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 0,

"host": "host1",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"severity": "Critical",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:37.840903Z",

"epoch": 1634332057840,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000009",

"event_text": "[2021-10-15 21:07:37.840903] INFO: Now try the filter

bar (above), and highlight bar (below)",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:37.840903Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

190

191

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:45.851986Z",

"epoch": 1634332065851,

"etype": "line",

"log_name": "logtype1",

"severity_num": 2,

"event_uuid": "00000000-0000-0000-0000-000000000010",

"event_text": "[2021-10-15 21:07:45.851986] CRITICAL: If you do not

see enough detail in the Core events, try these things:",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:45.851986Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Critical",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:53.858345Z",

"epoch": 1634332073858,

"etype": "line",

"log_name": "logtype1",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000011",

"event_text": "[2021-10-15 21:07:53.858345] INFO: Click the Peek

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

button (at the end of each log line) to see all available lines from just

this log stream",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host2,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:53.858345Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:01.864572Z",

"epoch": 1634332081864,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000012",

"event_text": "[2021-10-15 21:08:01.864572] INFO: Or zoom out beyond

the Core events by clicking a Zoom level in Related Events (at the top)",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:08:01.864572Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

192

193

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:09.871442Z",

"epoch": 1634332089871,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000013",

"event_text": "[2021-10-15 21:08:09.871442] INFO: Zooming is useful

when the Core events do not contain enough information",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:08:09.871442Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:17.878258Z",

"epoch": 1634332097878,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000014",

"event_text": "[2021-10-15 21:08:17.878258] INFO: Enjoy using

Zebrium and let us know if you have any questions!",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:08:17.878258Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

}

],

"key_events": [

{

"root_cause": true,

"hallmark": true,

"epoch_ts": "2021-10-15T21:07:13.82029Z",

"epoch": 1634332033820,

"etype": "line",

"log_name": "logtype1",

194

195

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000006",

"event_text": "[2021-10-15 21:07:13.82029] INFO: This is the first

of two events that are used to characterize the report in the list view",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:13.82029Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 0,

"host": "host1",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": true,

"epoch_ts": "2021-10-15T21:07:29.833156Z",

"epoch": 1634332049833,

"etype": "line",

"log_name": "logtype2",

"severity_num": 2,

"event_uuid": "00000000-0000-0000-0000-000000000008",

"event_text": "[2021-10-15 21:07:29.833156] CRITICAL: This is the

second of two events that are used to characterize the report in the list

view",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:29.833156Z",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 0,

"host": "host1",

"severity": "Critical",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

}

],

"interesting_events": [

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:49.790742Z",

"epoch": 1634332009790,

"etype": "line",

"log_name": "logtype1",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000003",

"event_text": "[2021-10-15 21:06:49.790742] INFO: This is a sample

root cause report",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host2,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:06:49.790742Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

196

197

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:57.7982Z",

"epoch": 1634332017798,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000004",

"event_text": "[2021-10-15 21:06:57.7982] INFO: Real Root Cause

Reports typically have 5-20 \"Core\" log events",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:06:57.7982Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:05.805105Z",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"epoch": 1634332025805,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000005",

"event_text": "[2021-10-15 21:07:05.805105] INFO: Core events con-

sist of mostly \"rare\" and high-severity events that are correlated

across multiple logs",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:05.805105Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:21.826703Z",

"epoch": 1634332041826,

"etype": "line",

"log_name": "logtype1",

"severity_num": 3,

"event_uuid": "00000000-0000-0000-0000-000000000007",

"event_text": "[2021-10-15 21:07:21.826703] ERROR: Did you notice

this event has error severity?",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

198

199

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:21.826703Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Error",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:37.840903Z",

"epoch": 1634332057840,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000009",

"event_text": "[2021-10-15 21:07:37.840903] INFO: Now try the filter

bar (above), and highlight bar (below)",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:37.840903Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:45.851986Z",

"epoch": 1634332065851,

"etype": "line",

"log_name": "logtype1",

"severity_num": 2,

"event_uuid": "00000000-0000-0000-0000-000000000010",

"event_text": "[2021-10-15 21:07:45.851986] CRITICAL: If you do not

see enough detail in the Core events, try these things:",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:45.851986Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Critical",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

200

201

"epoch_ts": "2021-10-15T21:07:53.858345Z",

"epoch": 1634332073858,

"etype": "line",

"log_name": "logtype1",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000011",

"event_text": "[2021-10-15 21:07:53.858345] INFO: Click the Peek

button (at the end of each log line) to see all available lines from just

this log stream",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host2,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:53.858345Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:01.864572Z",

"epoch": 1634332081864,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000012",

"event_text": "[2021-10-15 21:08:01.864572] INFO: Or zoom out beyond

the Core events by clicking a Zoom level in Related Events (at the top)",

"metadata_id": "ze_deployment_name=sample,zid_container_

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

name=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:08:01.864572Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:09.871442Z",

"epoch": 1634332089871,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000013",

"event_text": "[2021-10-15 21:08:09.871442] INFO: Zooming is useful

when the Core events do not contain enough information",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:08:09.871442Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Informational",

"app": null,

202

203

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:17.878258Z",

"epoch": 1634332097878,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000014",

"event_text": "[2021-10-15 21:08:17.878258] INFO: Enjoy using

Zebrium and let us know if you have any questions!",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:08:17.878258Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

}

],

"nearby_events": [

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:25.77145Z",

"epoch": 1634331985771,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000000",

"event_text": "[2021-10-15 21:06:25.77145] INFO: You are seeing this

event because you zoomed into Related Events level 3 (or because you

Peeked)",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:06:25.77145Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 5,

"host": "host3",

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:33.778395Z",

"epoch": 1634331993778,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000001",

204

205

"event_text": "[2021-10-15 21:06:33.778395] INFO: You are seeing

this event because you zoomed into Related Events level 2 (or because you

Peeked)",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:06:33.778395Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 4,

"host": "host3",

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:41.784659Z",

"epoch": 1634332001784,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000002",

"event_text": "[2021-10-15 21:06:41.784659] INFO: You are seeing

this event because you zoomed into Related Events level 1 (or because you

Peeked)",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:06:41.784659Z",

"local_offset": "+0000",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"ze_xid": "",

"event_context_level": 3,

"host": "host3",

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:25.885936Z",

"epoch": 1634332105885,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000015",

"event_text": "[2021-10-15 21:08:25.885936] INFO: This is the last

event in the Related Events level 1 zoom out",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:08:25.885936Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 3,

"host": "host3",

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

206

207

"hostname": "host3.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:33.896882Z",

"epoch": 1634332113896,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000016",

"event_text": "[2021-10-15 21:08:33.896882] INFO: This is the last

event in the Related Events level 2 zoom out",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:08:33.896882Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 4,

"host": "host3",

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:41.903443Z",

"epoch": 1634332121903,

"etype": "line",

"log_name": "zoom_log",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000017",

"event_text": "[2021-10-15 21:08:41.903443] INFO: This is the last

event in the Related Events level 3 zoom out",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:08:41.903443Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 5,

"host": "host3",

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

}

]

}

208

Root Cause Report Incoming Webhook

Root Cause Report Incoming Webhook

Features

l This section provides detailed information on webhook support provided by Zebrium so you can build your
own custom integrations.

l Root Cause Report incoming webhooks provide a generic mechanism for requesting Root Cause analysis
for a specific time. This can be useful for integrating with third-party of custom solutions for which a specific
integration is not currently available from Zebrium.

Integration Overview

1. Create a Root Cause Report Incoming Webhook Integration in Zebrium.

2. Send a request for a Root Cause Report to Zebrium using the webhook created in step 1 and the required
payload.

Integration Details

STEP 1: Create a Root Cause Report Incoming Webhook Integration in
Zebrium.

1. From the User menu area in Zebrium, click on the Settingsmenu (hamburger).

2. Select Integrations.

3. Scroll to theWebhooks section and click on Incoming RCA.

4. Click [Create a New Integration].

5. Click the [General] tab.

6. Enter an Integration Name for this integration.

7. Select the Deployment for the integration.

8. Select the Service Group(s) for the integration.

9. Click the [Receive Signals] tab.

10. Click [Enabled].

11. Enter theWebhook URL that will receive and handle the POST request.

12. Select the required Authentication Method for the endpoint and complete the necessary configuration
using the information from STEP 1, above.

13. Click [Save].

14. Copy and save the contents of the Your URL text box for use in STEP 2 when sending a request for a Root
Cause Report to Zebrium.

209

210

STEP 2: Request a Root Cause Report from Zebrium

Send a POST request to the URL created in STEP 1 with the required payload (see theWebhook Payload page
for payload details):

curl -X POST -H 'Content-type: application/json' --data '<REQUEST_JSON_

PAYLOAD>' <URL_FROM_STEP_1>

Webhook Payload Format

See Root Cause Report Incoming Webhook Payload for a detailed description of the webhook payload.

Root Cause Report Incoming Webhook

Root Cause Report Incoming Webhook Payload

Root Cause Report Incoming Webhook Payload

Method URL URL created for this integration

HTTP Method POST

Content Type application/json

Payload

Name Type Description Required

zebrium.incident_ts string UTC Timestamp to perform RC
Analysis, such as "2022-03-
15T08:23:05Z"

Yes

zebrium.service_group string Zebrium service group to
perform RC Analysis or ‘All’

Yes

Example Payload

{

"zebrium" : {

"incident_ts" : "2022-03-15T08:23:05Z",

"service_group" : "production"

}

}

curl -X POST -H 'Content-type: application/json' --data '{ "zebrium" : {

"incident_ts" : "2022-03-15T08:23:05Z",

"service_group" : "production" } }' https://cloud.zebri-

um.com/api/v2/signal/E0D2C20624779984FADBE0D22E4125860A37299B

211

Chapter

9
Managing Users

Overview

User Management provides features for Role Based Access Controls whereby you can create groups, assign roles
to users, and assign users to groups.

By default, nothing will change any user’s access or roles that you have today so there is nothing you need to do
unless desired. This means that All Users will be assigned the least restricted Owner role.

This chapter covers the following topics:

RBAC Component Definitions 213

Users 213

Groups 213

Roles 213

Permissions 214

212

213

RBAC Component Definitions

l Users: Each user is assigned a Role (permissions on features/settings) and Users are members of one or
more Groups to control which deployments they can access.

l Groups: Groups define which deployments are available to Users in the Group.

l Roles: Pre-defined roles (Owner, Admin, Editor, Viewer) which define permissions (e.g. Create, Read/view,
Update, Delete) for each feature or application setting.

Users

l Each user is assigned a Role (permissions on features/settings) and Users are members of one or more
Groups to control which deployments they can access.

l Users belong to 1 or more groups.

l Users can be added/edited/deleted by the Owner role (see Roles and Permissions below).

l User Management is available under the Gear pull-down menu for Account Settings.

Groups

l Groups define which deployments are available to Users in the Group.

l The default group is All and has All deployments assigned to the group.

l Groups can be added/edited/deleted by the Owner role (see Roles and Permissions below).

l Group Management is available under the Gear pull-down menu for Account Settings.

Roles

The following role permissions are pre-defined and not configurable.

Owner

l Allows for billing and user management, including the creation and assignment of deployments in groups.

l Includes all permissions of the Admin and Member roles.

l Owner is the default role for a new user during initial account creation.

l All existing users are Owner roles until changed (by another Owner).

Admin

Day-to-day configuration including setting up integrations and various application customizations.

RBAC Component Definitions

Permissions

Editor

Users allowed to edit (create, update, delete) objects, particularly incident type metadata. This role will be
assigned to user of the role Member in a previous release

Viewer

Users that are allowed read-only access to all but their own profile, e.g. to change their deployment selection or
password

Permissions

Setting/Feature Owner Admin Editor Viewer

Report Notes and
Alerting

Edit Edit Edit View

Report Notes and
Alerting

Edit Edit None None

Report Notes and
Alerting

Edit Edit None None

Integrations Edit Edit None None

Root Cause Settings Edit Edit None None

User Management Edit Edit None None

Billing Edit None None None

214

Chapter

10
Zebrium Service Security

Overview

This chapter covers the following topics:

Culture Based on Data Security 216

Logical (and Optionally Physical) Separation of Customer Data 216

Encryption 216

Single Sign-On Support 216

Handling of Sensitive Data 217

Access by Zebrium Employees 217

Physical Security 217

Customer Data 218

Reports and Third-party Audits 218

215

216

Culture Based on Data Security

Securing customer data is a critical part of our promise to customers. We understand how important data security
and privacy are to our users.

The team behind Zebrium has decades of experience securely handling sensitive software logs and metrics for
market leading enterprise products that are used by some of the most security conscious enterprises and
government organizations. We have geared all aspects of our architecture, operations, and company culture to
meet these expectations.

The purpose of this writeup is to provide our customers with a “plain English” description of some of the security
protections we have in place. A more extensive, technical explanation is available in our infosec policy, which can
be provided upon request.

Logical (and Optionally Physical) Separation of Customer
Data

All customer data is tagged with a unique token identifier per organization, and each organization is assigned a
unique schema within the underlying database. All read/write operations rigorously enforce the mapping of
organization to assigned schema and data.

For customers with additional security restrictions, we offer the option of hosting your service in a dedicated
virtual private cloud (VPC) instance assigned exclusively to you. Since your data never leaves the dedicated VPC,
this provides an additional layer of protection over and above logical controls. Please contact us if you have
more specific requirements for the location of the service.

Encryption

All customer interactions with the Zebrium service, including data upload, download and UI operations are
encrypted using HTTPS and SSL.

All data at rest is encrypted using AES-256 encryption.

Single Sign-On Support

Zebrium supports most leading SSO providers via SAML including: Auth0, Azure, Duo, Jumpcloud, Okta.

Service Security

All inter-node communication within the Zebrium service is locked down by only allowing communication
between white listed nodes over a private subnet. SSH access to the service is only enabled for white-listed IP
addresses.

Culture Based on Data Security

Handling of Sensitive Data

Every code deployment automatically updates Zebrium nodes to include security updates from the latest version
of Ubuntu Linux currently available.

The service regularly undergoes penetration testing by 3rd parties, with no vulnerabilities unresolved.

All logs from software components of the Zebrium service are themselves fed into and analyzed by another
instance of the Zebrium service in order to uncover anomalous patterns.

Handling of Sensitive Data

The Zebrium service supports the option of filtering out specific event types, for instance those containing sensitive
fields such as IP addresses. One of the unique advantages of the Zebrium solution is the fact that all events in
your logs are automatically and fully parsed, and all fields within them extracted and typed as variables. In the
event that you accidentally upload customer sensitive data into our service, this capability means that we can
support the clinical removal of such data.

Access by Zebrium Employees

Access to production systems running Zebrium software will be subject to the following conditions:

l Access to systems is only allowed by an explicitly defined group of Zebrium operations employees

l Access to systems is allowed only when there is a specific operational need

l SSH access to the Zebrium service is only enabled for a whitelisted set of IP addresses and ports

l Admin actions via management console, CLI, or access to underlying cloud services is audited, and audit
logs are retained for retroactive review.

Access to data will be subject to the same conditions as above, plus some additional restrictions:

l Access will only be permitted for the purposes of troubleshooting, technical support or testing, tuning and
quality assurance of our service.

l Additional access will only be permitted with customer consent and only on and as-needed basis.

Physical Security

l The Zebrium SaaS service is hosted in AWS datacenters with stringent security controls. Zebrium employees
do not have physical access to these data centers.

l AWS data centers comply with the most rigorous security certifications including SOC 1, 2 and 3, PCI DSS
3.2 Level 1, ISO 27001, as well as FedRamp (select locations).

217

218

Customer Data

The customer retains full ownership of all customer data stored in Zebrium systems. Upon termination of the
Zebrium service (or upon request), all copies of customer data will be deleted.

Reports and Third-party Audits

Extensive testing and auditing by internal and external security experts are part of our commitment to our
customers. Reports are available upon request.

l CAIQv4

l SOC 2 Attestation

l Most recent third-party penetration test report

Customer Data

Chapter

11
Zebrium On Prem

Overview

In additional to the standard option of a cloud configuration for Zebrium, you also have the option for a Zebrium
on-premises (On Prem) configuration that is not located in the cloud.

The following pages explain how to install a Zebrium On Prem configuration, how to contact Zebrium Support,
and how to use the various APIs from Zebrium:

l Getting Started

l Support

l Zebrium APIs

219

Zebrium On Prem: Getting Started

Zebrium On Prem: Getting Started

The following pages describe how to get ready to install a Zebrium on-premises (On Prem) configuration, along
with how to perform the installation and what to do after the installation:

l Pre-installation

l Installation

220

Pre-installation

This chapter covers the following topics:

Sizing Considerations 222

Software Requirements 222

Account Name 222

Domain Name 222

Slack Channels 222

Helm Chart and Image Repository Access 223

Configuration Questions 223

Assumptions 224

Obtaining your ZAPI Token and Endpoint 226

Failure Domain Boundary 226

Using the Command-line Interface to Ingest Data 226

Using the Kubernetes Log Collector to Ingest Data 226

Using Logstash to Ingest Data 227

Sending Operational Data to Zebrium Support 227

Contacting Zebrium Support 228

Zebrium On Prem: API 228

Create Incident Type 230

Read Incident 231

Create Signal 234

Read Signal 235

Begin Batch 237

End Batch 238

Cancel Batch 239

Get Batch 239

List Batches 240

Listing Incidents for Batch Uploads 241

Usage 242

Get Etroot Vector 245

221

222

Sizing Considerations

l Zebrium has a sizing calculator to determine vCPU and Memory requirements for your log ingest volume.

l Please contact Zebrium at support@zebrium.com for sizing calculations in preparation for deploying your
Kubernetes cluster.

NOTE: For better supportability, Zebrium recommends that you install Zebrium On Prem in its own
dedicated Kubernetes cluster rather than in a namespace on a shared cluster.

Software Requirements

The following list of requirements must be met for Zebrium software to be fully functional

l Kubernetes version 1.19 or higher required.

l Kubernetes cluster sizing must meet or exceed the Zebrium Sizing specifications. Please contact Zebrium to
obtain these requirements.

l Helm version 3 is required for installation of Zebrium On Prem.

l Local storage is required. Shared storage such as NFS is not supported for the Zebrium database.

l Ingress Controller with https support for a Fully Qualified Host Name (FQHN).

Account Name

You must define the name of the account that will be used in your On Prem instance. You are currently limited to
a single account. Recommended name format is<company>_<deployment_name>, such as acme_onprem.

Domain Name

You must define a Fully Qualified Host Name (FQHN) that will be used in the URL to view Root Cause Reports in
the Zebrium UI.

Slack Channels

There are two Slack webhooks that can be configured in the Helm chart. Zebrium recommends configuring these
two channels in your Slack instance and inviting Zebrium to the channels:

1. ZE_SLACK_WEBHOOK. This channel will receive a summary of all Root Cause reports.

2. ZE_SLACK_DEBUG_WEBHOOK. This channel will receive debug alerts on the operation of the Zebrium
software. It is strongly recommended that Zebrium be invited to this Slack channel.

Sizing Considerations

mailto:support@zebrium.com

Helm Chart and Image Repository Access

Helm Chart and Image Repository Access

l Zebrium will provide credentials (username/password) for access to your Helm chart and Zebrium container
images managed in Harbor at: https://goharbor.io/

l You will be able to create a secret key in your Kubernetes deployment from your Harbor account which will
be used in the Helm chart to pull images.

Helm Chart Overrides

Based on the sizing calculations, Zebrium will work with you to define the Helm chart specifications for scaling
and required CPU and Memory for all Zebrium components.

Your FQHN will be configured in your Helm chart as:

l global.hostname: ""

The two Slack webhooks defined above will be configured in your Helm chart as the following:

l zebrium-core.slack.enabled: "1"

l zebrium-core.slack.webhook: ""

l zebrium-core.slack.debugWebhook: ""

The secret key used to pull images from Harbor will be configured in your Helm chart as:

l global.imagePullSecret: ""

Configuration Questions

1. Are you currently running your own ingress on your Kubernetes cluster?

2. Do you already have a storage class or provisioner for Kubernetes PersistentVolumeClaims (PVCs)?

Installation

This chapter covers the following topics:

223

https://goharbor.io/

224

Assumptions

1. All pre-installation steps have been completed.

2. Your Kubernetes cluster we will deploy to is sized to at least the minimum specification provided in our sizing
guideline chart on the Zebrium sizing guide page for the log volume you plan to test. Click Show
Advanced Info at the bottom of the sizing guideline chart for more details.

3. The cluster we will deploy to is running at minimum Kubernetes version 1.19.

4. Helm 3 can be configured and used with the cluster.

5. The cluster we will deploy to has local storage available (NFS is not supported).

6. A Fully Qualified Host Name is available for ingress with a SSL certificate (we only support https to our
application UI)

7. Images can be pulled from https://harbor.ops.zebrium.com/, or other arrangements can be made to
make the images available during install.

8. Any prerequisites for your preferred ingress controller have been gathered.

STEP 1: Installing the Helm Chart

1. Create a secret using the Harbor repository that was setup for you by Zebrium. Zebrium will provide you with
your Harbor USERNAME and PASSWORD.

kubectl create secret docker-registry regcred --docker-

server=harbor.ops.zebrium.com --docker-username=<USERNAME> --docker-

password=<PASSWORD> --docker-email=<EMAIL> --namespace <NAMESPACE>

2. Update your Helm chart override.yaml file with the secret from Step 1.
global.imagePullSecret.Name="<SECRET>"

3. Add the Harbor repo to your Kubernetes cluster:
helm repo add --username <USERNAME> --password <PASSWORD> <REPO_NAME>

https://harbor.ops.zebrium.com/chartrepo/onprem

helm repo update

4. Install the Zebrium On Prem Software:
helm upgrade <RELEASE_NAME> -i --namespace <NAMESPACE> <REPO_

NAME>/zebrium-onprem -f <override.yaml>

STEP 2: Configuring Your Account

Zebrium On Prem currently supports a single account where all data will be ingested. This account can have
multiple users and logins.

Create your account and the first user:

Assumptions

https://sizing.zebrium.com/

Assumptions

IMPORTANT: You should only do this once.

1. In a browser, use the following format to type the URL for creating the account and first user:

https://<Your_Zebrium_URL>/auth/sign-up?firstName=<first_

name>&lastName=<last_name>&companyName=<company_name>&email=<user_

email>

For example:

https://cloud.ze.com/auth/sign-

up?firstName=Jane&lastName=Doe&companyName=Acme&email=JDoe@acme.com

2. Complete the remaining fields on the form and click the right arrow to continue.

3. Invite other users to your account by going to the [User Management] tab from the Settingsmenu.

4. Click Add User and complete the form

STEP 3: Configuring Outbound Notifications

If you would like Root Cause report notifications to be sent to a destination other than the Slack webhook defined
in your Helm chart, you can configure additional notification channels by visiting the Integrations page from the
Settingsmenu.

STEP 4: Configuring AutoSupport (optional)

When you register for Zebrium On Prem, Zebrium will provide a secure authentication token that can be used to
send logs from the Zebrium On Prem software to Zebrium for remote monitoring (akin to Zebrium AutoSupport).

NOTE: Installing the Zebrium Kubernetes Log Collector will send logs from all namespaces in your
Kubernetes cluster.

The log collector is deployed as a Kubernetes Helm chart as follows:

1. kubectl create namespace zebrium

2. helm install zlog-collector zlog-collector --namespace zebrium --repo
https://raw.githubusercontent.com/zebrium/ze-kubernetes-
collector/master/charts --set
zebrium.collectorUrl=https://zapi03.zebrium.com,zebrium.authToken=<AUTH_
TOKEN_FROM_ZEBRIUM>,zebrium.timezone=<KUBERNETES_HOST_TIMEZONE>

225

226

STEP 5: Ingesting Data into your Zebrium On Prem Instance

There are three supported methods to ingest data into Zebrium On Prem using your ZAPI Token and Endpoint:

l Zebrium CLI command

l Kubernetes Log Collector

l Elastic integration using Logstash

Obtaining your ZAPI Token and Endpoint

Instructions and commands for sending data to your On Prem instance is available under Log Collector in the
settings menu.

Failure Domain Boundary

Because Zebrium On Prem currently supports a single account with only one deployment, if you intend to ingest
data from unrelated services/applications it is important to specify the ze_deployment_name label which
essentially defines a failure domain boundary for anomaly correlation.

You will see in the examples provided below, how to specify the ze_deployment_name label for each of the three
methods that can be used to ingest data.

NOTE: The ze_deployment_name must be a single word lowercase characters.

Using the Command-line Interface to Ingest Data

For instructions about downloading, configuring, and using the Zebrium command-line interface, see File
Upload (ze Command).

Here is an example that ingests a Jira log file into the atlassian failure domain (ze_deployment_name):

~/zapi/bin/ze up --file=jira.log --log=jira --ids=zid_host=jiraserver,ze_

deployment_name=atlassian --auth=97453627rDGSDE67FDCA77BCE44 --

url=http://34.72.193.228:443

Using the Kubernetes Log Collector to Ingest Data

If your application to be "monitored" is Kubernetes-based, this is the preferred method for sending logs to
Zebrium On Prem.

The log collector is deployed as a Kubernetes Helm chart as follows:

Obtaining your ZAPI Token and Endpoint

Using Logstash to Ingest Data

1. kubectl create namespace zebrium

2. helm install zlog-collector zlog-collector --namespace zebrium --repo
https://raw.githubusercontent.com/zebrium/ze-kubernetes-
collector/master/charts --set zebrium.collectorUrl=http://<ZAPI_
ENDPOINT>:443,zebrium.authToken=<ZAPI_TOKEN>,zebrium.deployment=<ZE_
DEPLOYMENT_NAME>,zebrium.timezone=<KUBERNETES_HOST_TIMEZONE>

NOTE: Remember to substitute <ZAPI_ENDPOINT>, <ZAPI_TOKEN>, <ZE_DEPLOYMENT_NAME>
and <KUBERNETES_HOST_TIMEZONE> with the relevant values for your system.

Using Logstash to Ingest Data

For instructions about configuring this integration, see Logstash Collector.

NOTE: Please contact Zebrium Support for assistance with configuration.

Zebrium On Prem: Support

This chapter covers the following topics:

Sending Operational Data to Zebrium Support

Slack Notifications

There are two Slack webhooks that can be configured in the Helm chart. Zebrium recommends configuring these
two channels in your Slack instance and inviting Zebrium to the channels:

1. ZE_SLACK_WEBHOOK. This channel will receive a summary of all Root Cause reports.

2. ZE_SLACK_DEBUG_WEBHOOK. This channel will receive debug alerts on the operation of the Zebrium
software. It is strongly recommended that Zebrium be invited to this Slack channel.

Log Data

When you register for Zebrium On Prem, Zebrium will provide a secure authentication token that can be used to
send logs from the Zebrium On Prem software to Zebrium for remote monitoring (similar to Zebrium
AutoSupport).

227

228

NOTE: Installing the Zebrium Kubernetes Log Collector will send logs from all namespaces in you
Kubernetes cluster.

The log collector is deployed as a Kubernetes Helm chart as follows:

1. kubectl create namespace zebrium

2. helm install zlog-collector zlog-collector --namespace zebrium --repo
https://raw.githubusercontent.com/zebrium/ze-kubernetes-
collector/master/charts --set
zebrium.collectorUrl=https://zapi03.zebrium.com,zebrium.authToken=<AUTH_
TOKEN_FROM_ZEBRIUM>,zebrium.timezone=<KUBERNETES_HOST_TIMEZONE>

Contacting Zebrium Support

Slack (preferred)

If your company uses Slack, Zebrium will create a shared Slack channel and invite members of your company
and team to join.

Email

Send email to: support@zebrium.com.

Support Hours

Day Hours Time Zone

Monday to Friday 6:00am - 6:00pm Pacific

Saturday and Sunday Limited Pacific

Support SLAs

Contact Zebrium at support@zebrium.com.

Zebrium On Prem: API

The following pages describe the endpoints and APIs that are available from Zebrium, along with example
request and response payloads:

Contacting Zebrium Support

mailto:support@zebrium.com
mailto:support@zebrium.com

Zebrium On Prem: API

l Incident API

o Create Incident Type

o Read Incident

l Signal API

o Create Signal

o Read Signal

l Batch Upload API

o Begin Batch

o End Batch

o Cancel Batch

o Get Batch

o List Batch

o Listing Incidents for a Batch Upload

o Usage

l Etroot Vector API

o Get Etroot Vector

229

230

Create Incident Type

Use this request to set attributes of an Incident Type.

Method URL URL created for this integration

HTTP Method POST

Content Type application/json

Request Arguments

Required Arguments Data Type How To Use Default

itype_id string Incident Type ID None

Optional Arguments Data Type How To Use Default

itype_title string Short title of the incident as seen
in the RCA list and RCA report
Notes section

None

itype_desc string Long description of the incident
as seen in the RCA report Notes
section

None

itype_tracking_url string URL pointing to additional
information for the Incident as
seen in the RCA report Notes
section

None

Example Request Payload

{

"itype_id": "00000000-0000-0000-0000-000000000000",

"itype_title": "This is a short title",

"itype_desc": "This is a longer description seen when viewing the RCA

report Notes",

"itype_tracking_url": "https://sup-

port.acme.com/kb012345/instructions.html"

}

Example Response Payload

{

"data": [

Create Incident Type

Read Incident

{

"itype_desc": "This is a longer description seen when viewing the

RCA report Notes",

"itype_feedback_incident": 5,

"itype_id": "00000000-0000-0000-0000-000000000000",

"itype_keys": "",

"itype_outbound_integration_ids": [

"3ca42ef0-1510-4a61-aee3-9763bf008acf",

"8a0d216e-ccbd-4cbf-9f16-c99b6701ffd4",

"85b92f12-97f3-43d4-7d94-5ff9784a1a92"

],

"itype_owner": "",

"itype_priority_ts": "0001-01-01T00:00:00Z",

"itype_title": "This is a short title",

"itype_tracking_url": "https://sup-

port.acme.com/kb012345/instructions.html",

"modify_user_name": "Zebrium",

"ts": "2021-09-15T15:50:16.726916Z",

"itype_outbound_priority": "P3"

}

],

"error": {

"code": 200,

"message": "200 OK"

}

"op": "create",

"softwareRelease": "20210915074109"

}

Read Incident

Use this request to get attributes of an Incident based on specified filters.

Method URL http://<mwsd_container_url>:<mwsd_container_
port>/mwsd/v1/incident/read/list

HTTP Method POST

Content Type application/json

231

232

Request Arguments

Required Arguments Data Type How To Use Default

time_from integer Include Incidents created after
this epoch time (use 1 as
beginning of time)

None

time_to integer Include Incidents created before
this epoch time (use
999999999999 as all time)

None

timezone string Time zone name for time_from -
time_to specification. Typically
use “UTC”

None

repeating_incidents string Include “first” or “all”
occurrence(s) of an Incident Type

None

occurrences string Always specify “none” None

time_buckets string Always specify “none” None

Optional Arguments Data Type How To Use Default

inci_id string Return the Incident with this
Incident ID

None

itype_id string Include only incidents of this
Incident Type

None

itype_id string Return all Incidents created as a
result of a signal with this SRID.
Use the SRID returned from the
Signal Create API

None

batch_ids stringSlice Return all Incidents associated
with the Transactional Batch
Upload. Use the Batch ID
returned from the Begin Batch
API

None

Example Request Payload

{

"time_from": 1,

"time_to": 999999999999,

"repeating_incidents": "first",

"occurrences": "none",

"time_buckets": "none",

"timezone": "UTC",

Read Incident

Read Incident

"inci_signal": "000615d0-39a0-0000-0000-00fffff00004"

}

Example Response Payload

{

"data": [

{

"inci_code": "5nDZv",

"inci_fevt_etext": "Oct 5 18:50:17 ip-172-31-62-10 kernel:

[11128469.531293] nvme nvme2: rescanning",

"inci_fevt_gen": "1ab751d74131e92b12ea357418a53d6ed4753583",

"inci_fevt_host": "ip-172-31-62-10",

"inci_fevt_log": "kern",

"inci_fevt_ts": "2021-10-06T01:50:17.487Z",

"inci_has_signal": true,

"inci_hosts": "ip-172-31-59-106,ip-172-31-62-10,ip-172-31-62-236,ip-

172-91-93-128",

"inci_id": "000615d0-0d97-6e58-0000-2f9000000c89",

"inci_itype_occ": 1,

"inci_itype_ttl": 1,

"inci_logs": "kern,network,vertica",

"inci_signal": "000615d0-39a0-0000-0000-00fffff00004",

"inci_svc_grps": "portal03,qa-blue",

"inci_ts": "2021-10-06T01:50:17.487Z",

"inci_wevt_etext": "Oct 5 18:50:17 ip-172-31-62-10 kernel:

[11128469.531293] Permission expired : rescanning and calculating for

brady",

"inci_wevt_gen": "1ab751d74131e92b12ea357418a53d6ed4753583",

"inci_wevt_host": "ip-172-31-62-10",

"inci_wevt_log": "kern",

"inci_wevt_ts": "2021-10-06T01:50:17.487Z",

"itype_code": "5nDZv",

"itype_desc": "The first log message is a warning that the per-

mission voter for user brady has expired and will be recalculated.",

"itype_feedback_incident": 0,

"itype_id": "000615d0-0d97-6e58-0000-2f9000000c89",

"itype_outbound_integration_ids": [],

"itype_owner": "",

"itype_title": "The first log message is a warning that the

233

234

permission voter for user brady has expired and will be recalculated.",

"itype_tracking_url": ""

}

],

"error": {

"code": 200,

"data": null,

"message": ""

},

"op": "read",

"softwareRelease": "release-ea58_20211005201105"

}

Create Signal

Use this request to enter a time around which to search for interesting events to create a Root Cause report.

Method URL http://<mwsd_container_url>:<mwsd_
port>/mwsd/v1/incident/create/signal

HTTP Method POST

Content Type application/json

Request Arguments

Required Arguments Data Type How To Use

timestamp string Timestamp in RFC3339

Optional Arguments Data Type How To Use

service_group string Service group to scan for creating Root Cause Report.
Default is all if not specified.

Example Request Payload

{

"timestamp": "2020-12-11T00:53:04.451035Z",

"service_group": "staging"

}

Create Signal

Read Signal

Example Response Payload

{

"data": [

{

"customer": "zebrium466",

"db_schema": "zebrium466_trial",

"service_group": "ops-blue",

"srid": "000615d0-39a0-0000-0000-00fffff00004"

}

],

"error": {

"code": 200,

"data": null,

"message": ""

},

"op": "create",

"softwareRelease": "20210412141334"

}

Read Signal

Use this request to get the status of a signal.

Method URL http://<mwsd_container_url>:<mwsd_port>/mwsd/v1/signal/read

HTTP Method POST

Content Type application/json

Request Arguments

Required Arguments Data Type How To Use

filter list List of SRID filter strings of the format “srid=<SRID>”
where SRID is the srid returned from
incident/create/signal API call.

Optional Arguments Data Type How To Use

None

235

236

Example Request Payload

{

"filter": ["srid=000615d0-39a0-0000-0000-00fffff00004"]

}

Example Response Payload

l bake_ct. Number of bakes that have run since signal created.

l expired. Set to True after three bakes have run.

l created_incident. Set to True if an incident was created as a result of this signal request

l Use the incident/read/list API with the inci_signal filter set to the <SRID> to get the list of incidents
created as result of this signal request.

{

"data": [

{

"bake_ct": 1,

"create_time": "2021-10-06T04:21:32.472795Z",

"created_incident": true,

"epoch": 1633485722000,

"event_type": "zebrium_incident",

"expired": false,

"integration": "zebrium",

"local_time": "Tue Oct 5 19:02:02 PDT 2021",

"modify_time": "2021-10-06T04:22:35.043531Z",

"payload_data": "{\"zebrium\": {\"epoch_ts\": \"2021-10-

06T02:02:02Z\", \"epoch_msec\": 1633485722000, \"epoch_local\": \"Tue Oct

5 19:02:02 PDT 2021\", \"deployment\": \"trial\", \"service_group\":

\"ops-blue\"}, \"slack\": null}",

"service_group": "ops-blue",

"siid": "765afdaa-e85b-43e5-baa4-16214de10296",

"srid": "000615d0-39a0-0000-0000-00fffff00004",

"ssid": "a3593b9e-7858-429e-981e-2d9e50dab43a",

"ts": "2021-10-06T02:02:02Z"

}

],

"error": {

"code": 200,

"data": null,

Read Signal

Begin Batch

"message": ""

},

"op": "create",

"softwareRelease": "20210412141334"

}

Begin Batch

The Begin Batch API is called to begin a new batch upload. It is called as the first step in performing a batch
upload. See the Usage page for more information on batch uploads.

Method URL POST http://<zapi_url>:<zapi_port>/api/v2/batch/

HTTP Method POST

Content Type application/json

Required Headers Authorization (set to ZAPI token)

Request Arguments

Optional Arguments Data Type How To Use

processing_method string Set to delay or opportunistic

retention_hours retention_hours Minimum time to retain batch status after processing
completes, in hours.

batch_id string Optional user specified batch Id. Must be unique.

Response Payload

Optional Arguments Data Type How To Use

batch_id string Upload id, use as ze_batch_id.

Example Request Payload

{

"processing_method": "delay",

"retention_hours" : 8

}

Example Response Payload

{

"batch_id": "b1cc71aef9989ead80012ac"

237

238

}

End Batch

The End Batch API should be used when all files have been uploaded to ZAP for a batch upload. On success the
batch upload will move into the Processing state.

Method URL PUT http://<zapi_url>:<zapi_port>/api/v2/batch/<batch_id>

HTTP Method PUT

Content Type application/json

Required Headers Authorization (set to ZAPI token)

Request Arguments

Arguments Data Type How To Use

uploads_complete bool Set to true

Response Payload

Optional Arguments Data Type How To Use

batch_id string

state state The new state

Example Request Payload

{

"uploads_complete" : true

}

Example Response Payload

{

"batch_id" : "b1cc71aef9989ead80012ac",

"state" : "Processing"

}

End Batch

Cancel Batch

Cancel Batch

The Cancel Batch API is called while uploading files to cancel a batch upload. Note that in some cases it may not
be possible to cancel a batch upload. Use the returned state to check the new batch state.

Method URL PUT http://<zapi_url>:<zapi_port>/api/v2/batch/<batch_id>

HTTP Method PUT

Content Type application/json

Required Headers Authorization (set to ZAPI token)

Request Arguments

Arguments Data Type How To Use

cancel bool Set to true

Response Payload

Optional Arguments Data Type How To Use

batch_id string

state state The new state

Example Request Payload

{

"cancel" : true

}

Example Response Payload

{

"batch_id" : "b1cc71aef9989ead80012ac",

"state" : "Cancelled"

}

Get Batch

The Get Batch API is called to get the status of a batch upload.

Method URL GET http://<zapi_url>:<zapi_port>/api/v2/batch/<batch_id>

HTTP Method GET

239

240

Content Type application/json

Required Headers Authorization (set to ZAPI token)

Example Response Payload

{

"batch_id": "b1cc71aef9989ead80012ac",

"state": "Done",

"lines": 22000,

"bundles": 3,

"bundles_completed": 3,

"created": "2022-10-12T07:20:50",

"upload_time_secs": 250,

"processing_time_secs": 45,

"processing_method": "delay",

"completion_time" : "2022-10-12T0755:17",

"retention_hours" : 8,

"expiration_time": "2022-10-12T15:55:17",

"reason":""

}

List Batches

The List Batches API is called to list current batch uploads. See the get_batch API to list a specific batch.

Method URL GET http://<zapi_url>:<zapi_port>/api/v2/batch

HTTP Method GET

Content Type application/json

Required Headers Authorization (set to ZAPI token)

HTTP Method GET

"batches" : [{

"batch_id": "b1cc71aef9989ead80012ac",

"state": "Done",

"lines": 22000,

"bundles": 3,

"bundles_completed": 3,

"created": "2022-10-12T07:20:50",

"upload_time_secs": 250,

List Batches

Listing Incidents for Batch Uploads

"processing_time_secs": 45,

"processing_method": "delay",

"completion_time" : "2022-10-12T0755:17",

"retention_hours" : 8,

"expiration_time": "2022-10-12T15:55:17",

"reason" :""

},

{

"batch_id": "b2ef71aef9226ead80012ac",

"state": "Uploading",

"lines": 0,

"bundles": 0,

"bundles_bundles": 0,

"created": "2022-10-14T08:23:34",

"upload_time_secs": 10,

"processing_time_secs": 0,

"processing_method": "delay"

"completion_time" : "",

"retention_hours" : 8,

"expiration_time": "2022-10-14T16:23:34",

"reason" :""

}

]

Listing Incidents for Batch Uploads

Listing Incidents for Batch Uploads

Incidents associated with batch uploads may be queried using the existing read incident and find incident
MWSD APIs. The optional query parameter batch_ids will return only incidents for the specified batch ID(s).

For example, to query the incidents for batch id bazo3aabb123ff, the query would have the optional parameter:

...

"batch_ids" : ["bazo3aabb123ff"],

...

If this batch had three incidents, then these would be reported as (using the find API):

{

"data": [

241

242

{

"inci_code": "OdmrA",

"inci_id": "0006266a-f550-0000-0000-01700000376e",

"inci_ts": "2022-04-25T14:25:25Z",

"itype_id": "ae64766d-36dd-419b-e62a-826675ec4a0d"

},

{

"inci_code": "fI7GX",

"inci_id": "0006266a-f550-0000-0000-1d800000ca3a",

"inci_ts": "2022-04-25T14:25:25Z",

"itype_id": "a1599bb9-ed24-d2ea-6a50-f624508a7423"

},

{

"inci_code": "8ho3P",

"inci_id": "0006266a-f550-0000-0000-84000004e23d",

"inci_ts": "2022-04-25T14:25:25Z",

"itype_id": "107d4f27-96d8-41ac-3528-9269bbe670da"

}

],

"error": {

"code": 200,

"data": null,

"message": ""

},

"op": "read",

"softwareRelease": "release-ea72_20220425101422"

}

Usage

The Batch Upload API allows a set of related logs to be grouped together when uploading to Zebrium. When
compared to single file uploads, or the upload-status APIs, batch uplobegin_batch.htmlads provide a more
controlled and organized way to send groups of information to Zebrium. There can be multiple batch uploads
concurrently underway.

The operational flow for batch uploads is:

1. Make an API call to Zebrium to begin a batch (begin_batch). A unique batch ID is returned on success that
is used in subsequent steps while working with a batch. This API call creates the required Zebrium state for a
batch and must be the first operation for each new batch.

Usage

Usage

2. The logs associated with a batch are uploaded, such as using ze or curl. These use the configuration
variable ze_batch_id to notify Zebrium that the logs are part of a batch. This must be set to the batch_id
used in step 1.

3. When all files have been uploaded make another API call to Zebrium to end the batch upload phase (end_
batch). This tells Zeberium that all files for a batch are uploaded and processing can begin on the batch.

4. Check the state of a batch periodically (using the get_batch API) until processing has completed.

See the Example below for more information.

Additional operations that can be performed are:

l List Batches and their states.

l Get batch metrics.

l Cancel a non-finished batch.

l List incidents associated with a batch.

Batch IDs and Scope of Batches

Each batch upload is identified by a unique string, the batch ID. This is defined when the begin_batch API is
called, and is valid for the lifetime of the batch upload.

Zebrium automaticaly returns a new batch ID from the begin_batch API by default. Alternatively, a user-defined
batch ID may be supplied on the begin_batch API call. However, note that this cannot be reused until the batch
has expired and been removed. Batch IDs are formed using 1-36 alphanumeric characters, plus ‘_’ (underscore)
and ‘-‘ (dash).

Batch ids are used as part of ZAPI uploads, along with a ZAPI token. They are associated with that ZAPI token at
creation time, and may only be used with the same token in later upload calls.

The lifetime of a batch, or retention period, is set in hours. By default this is 8 hours. This can be overridden in the
begin_batch API if desired. The retention period is used to extend the lifetime as a batch successfully proceeds
through each state.

Batch States

Each batch upload exists in one of the following states:

State Interpretation

Uploading Files are being uploaded to the batch (step 1, 2 above)

Processing All files have completed upload and are being processed. (triggered by step 3 above)

Done Ingest and bake has completed on all uploads

Failed The batch could not be uploaded and/or processed

Cancelled The batch was cancelled by the user prior to step 3

243

244

Opportunist ic or Delayed Batch Processing

When starting a new batch the API (step 1) allows the user to specify how to stage and process the batch, either
delayed or opportunistic. The default is delay.

In both cases uploaded files for a batch are processed together in one or more bundles, with no other logs
included in the bundles.

Type Interpretation

Opportunistic Zebrium may start processing uploaded files before the final commit (step 3). This can reduce the
amount of temporary space needed for a batch, and spreads work out over a longer time.

Delayed Zebrium will delay processing uploaded files until the final commit (step 3) occurs. This
guarantees the batch is processed as a unit, although it may consume more temporary space
and cause a burst of work when the batch ends.

If batches are typically small then using delay is appropriate. If batches are very large then using opportunistic
may be appropriate.

Example

This example uses Curl to get a batch ID, uses the ze CLI to upload several files with the same batch ID, then uses
Curl to advise Zebrium that all data for the upload has been sent. Finally, a check is made whether or not all the
data in the upload has been processed.

Begin batch, get a batch ID:

curl --silent --insecure -H "Authorization: Token <authToken> " -H

"Content-Type: application/json" -X POST https://<ZapiHost>/api/v2/batch

BATCH_ID=<newBatchId>

Upload logs using ze CLI

ze up --url=https://mysite.example.com --auth=<authToken>--

file=syslog.syslog.log --log=syslog --ids=ze_deployment_name=case1 --

cfgs=ze_batch_id=$BATCH_ID

ze up --url=https://mysite.example.com --auth=<authToken> --

file=jira.jira.log --log=jira --ids=ze_deployment_name=case1 --cfgs=ze_

batch_id=$BATCH_ID

ze up --url=https://mysite.example.com --auth=<authToken> --

file=conflnc.conflnc.log --log=conflnc --ids=ze_deployment_name=case1 --

cfgs=ze_batch_id=$BATCH_ID

Indicate end of uploads:

Usage

Get Etroot Vector

curl --silent --insecure -H "Authorization: Token <authToken" -H "Content-

Type: application/json" -X PUT --data '{ "uploads_complete" : true }'

https://<zapi_host>/api/v2/batch/$BATCH_ID

Check the status of uploads is complete via the state that is returned in the response payload:

curl --silent --insecure -H "Authorization: Token <authToken" -H "Content-

Type: application/json" https://<zapi_host>/api/v2/batch/$BATCH_ID | grep

state

When the state becomes Done, the batch is successfully processed. While processing is underway other
information from the get_batch API can be used to monitor progress, for example the number of bundles created
for the batch, and completed so far:

...

"bundles": 8,

"bundles_completed": 3,

...

Note on Canceled and Failed Batches

A batch can be canceled while still performing uploads using the cancel_batch API. This causes the batch to
transition to the Canceled state. Any uploaded files staged on Zebrium will be removed.

If a batch fails processing it transitions to the Failed state. The reason for the failure, if known, is available in the
reason attribute. For example:

"state": "Failed",

...

"reason": "write bundle files failed"

would indicate insufficient temporary storage to process the batch.

Get Etroot Vector

Method URL POST http://<mwsd_container_url>:<mwsd_container_
port>/mwsd/v1/incidentevent/read/etroots

HTTP Method POST

Content Type application/json

245

246

Request Arguments

Required Arguments Data Type How To Use

inci_id string Incident ID to get etroot vector

ievt_level integer 0 (first/worst), 1 (0 + other root cause events), 2 (0 + 1
+ other core events)

Optional Arguments Data Type How To Use

None

Example Request Payload

{

"inci_id": "00061279-e560-0000-0000-013000000895",

"ievt_level": 2

}

Example Response Payload

{

"data": [

{

"ievt_etroot": "received_sigterm_from_systemd"

},

{

"ievt_etroot": "read_domainname_sysconfig_network"

},

{

"ievt_etroot": "mounted_message_queue_system"

},

{

"ievt_etroot": "remount_root_kernel_systems"

},

{

"ievt_etroot": "http_named_cookie_not_present"

}

],

"error": {

"code": 200,

"data": null,

Get Etroot Vector

Get Etroot Vector

"message": ""

},

"op": "read",

"softwareRelease": "20210903100945"

}

247

© 2003 - 2023, ScienceLogic, Inc.

All rights reserved.

LIMITATION OF LIABILITY AND GENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and ScienceLogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without notice.
ScienceLogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

ScienceLogic, the ScienceLogic logo, and EM7 are trademarks of ScienceLogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to ScienceLogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

l ScienceLogic™
l EM7™ and em7™
l Simplify IT™
l Dynamic Application™
l Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
ScienceLogic’s trademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of ScienceLogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com. For more information, see
https://sciencelogic.com/company/legal.

mailto:legal@sciencelogic.com
https://sciencelogic.com/company/legal

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Key Concepts
	Zebrium Root Cause as a Service (RCaaS)
	Root Cause Reports (RCA Reports)
	Alert Rules and Alert Keys
	Log Collectors
	Service Groups
	Notification Channels
	Observability Dashboard Integrations
	Incident Management Integrations
	Integrations Using Webhooks
	Zebrium On Prem

	Getting Started with Zebrium
	How Zebrium Works
	Consuming Root Cause Reports
	Customizing Your Zebrium Results
	Evaluating Zebrium
	Signing Up for a New Account
	What does Zebrium Do with Your Logs?

	Configuring Log Collectors and File Uploads
	Kubernetes Collector
	Installing the Helm Chart
	Uninstalling the Helm Chart
	Additional Information
	Log Path Mapping
	Custom Namespace to Service Group Mapping

	Values

	Linux Collector
	System Requirements
	Installing the Collector
	Upgrading the Collector
	Uninstalling the Collector
	Installing on Hosts with Existing td-agent Configuration
	Configuration for td-agent
	User Log Paths
	Filtering Specific Log Events
	Example

	Log Path Mapping
	Environment Variables
	Usage
	Start and Stop Fluentd

	Testing Your Installation
	Troubleshooting
	Operation with a Proxy Server
	Setting the Proxy Server in a systemd Environment

	File Upload (ze Command)
	Features
	up (upload)
	help
	help_adv

	Getting Started
	Prerequisites
	Installing ze

	Configuration
	Setup
	Environment Variables

	Usage
	Command Syntax and Options
	Advanced Options
	Batch Uploads

	Examples

	Zebrium Batch Uploads and ze Command-line Interface
	Batch Uploads vs Service Groups
	Integration into ze CLI
	ze batch CLI subcommand
	Examples
	Uploading a Large Log and Monitoring its Progress

	Uploading Multiple Logs to be Processed Together
	Batch_upload.sh script

	CloudWatch Collectors
	Preparation
	Installation
	Configuration
	Setup

	Testing Your Installation

	Docker Container Log Collector
	Getting Started
	Docker
	Docker Compose
	AWS Elastic Container Service (ECS)

	Environment Variables
	Testing your Installation

	Logstash Collector
	Configuring Logstash to Send Log Data to Zebrium
	Service Groups
	Configuring Logstash Filters for Zebrium Required Fields (in Logstash)
	Configuring Log Event Output to Zebrium (in Logstash)
	Reload Logstash Configuration
	Complete Example for filebeat and winlogbeat Data

	Syslog Forwarder
	Preparation
	Forward Syslog
	Installation
	Client Configuration
	Setup

	Forward Log via TCP
	Installation
	Setup

	Testing your installation

	Working with Suggestions and Root Cause Reports
	Suggestions in Zebrium
	Managing Suggestions in the Zebrium User Interface
	Using the Filters on the Alerts Page in Zebrium
	Using the Timeline Widget on the Alerts Page

	Root Cause Reports
	Additional Actions on the RCA Report Page

	Assessing Suggestions
	Accepting a Suggestion
	Rejecting a Suggestion

	Key Use Cases for Suggestions and Root Cause Reports
	Automated Root Cause Analysis Only
	Proactive Detection and Root Cause Analysis
	Deterministic Detection of Known Problems
	Getting the Best Results from Zebrium
	Ingest Complete Logs That Contain a Real Problem
	Be Mindful of Elapsed Time
	Review Service Group Setup
	Review RCA Settings
	Use Integrations to Separate High-priority Alerts
	Manage Alert Destinations
	Use Routing Rules to Classify and Route Alerts
	Example: Ensure that the AI/ML Engine Highlights Significant Events When They...
	Example: Ensure the AI/ML Engine Ignores Spam Events When They Happen Nearby

	Configuring Observability Dashboard Integrations
	AppDynamics
	Features
	How it Works
	Auto-Detect (Recommended): Send Root Cause Detections to your AppDynamics Das...
	CLICK HERE to send Root Cause Detections to your AppDynamics Dashboards

	Augment (Advanced Users): Receive Signals from AppDynamics Health Rule Violat...
	CLICK HERE to receive Signals from AppDynamics Health Rule Violations

	Sending Root Cause Detections to AppDynamics Dashboards
	Integration Overview
	Integration Details
	STEP 1: Configure API Access for Creating Root Cause Reports as Monitor Events
	STEP 2: Create an AppDynamics Integration in Zebrium to Send Detections to Ap...

	Support

	Receiving Signals from AppDynamics Health Rule Violations
	Integration Overview
	Integration Details
	STEP 1: Configure API Access for Creating Root Cause Reports as Monitor Events
	STEP 2: Create an AppDynamics Integration in Zebrium to Receive Signals from ...
	STEP 3: Create HTTP Request Template in AppDynamics to send Signals to Zebrium

	Support

	Datadog Dashboard Widget
	Datadog Events and Metrics
	Features
	How it Works
	Auto-Detect (recommended): Send Root Cause Detections to your Datadog Dashboards
	CLICK HERE to send Root Cause Detections to your Datadog Dashboards

	Augment (advanced users): Receive Signals from Datadog Triggered Monitors
	CLICK HERE to receive Signals from Datadog Triggered Monitors

	Sending Root Cause Detections to your Datadog Dashboards
	Integration Overview
	Integration Details
	STEP 1: Create an API Key in Datadog
	STEP 2: Create a Datadog Integration in Zebrium to Send Detections to Datadog
	STEP 3: Add Zebrium Root Cause Report Detections and Log Count Metrics to You...

	Visualizing Zebrium Data in Datadog
	Important Metric Names
	Support

	Receiving Signals from Datadog Triggered Monitors
	Integration Overview
	Integration Details
	STEP 1: Create an API Key in Datadog
	STEP 3: Create a Webhook Integration in Datadog
	STEP 4: Add Webhook notifications to your Triggered Monitors in Datadog
	STEP 5: Add Zebrium Root Cause Report Detections to any of your Datadog Dashb...

	Visualizing Zebrium Data in Datadog
	Important Metric Names
	Support

	Dynatrace
	Features
	How it Works
	Auto-Detect (recommended): Send Root Cause Detections to Dynatrace Dashboards
	CLICK HERE to send Root Cause Detections to your Dynatrace Dashboards

	Augment (advanced users): Receive Signals from Dynatrace Triggered Monitors
	CLICK HERE to receive Signals from Dynatrace Triggered Monitors

	Sending Root Cause Detections to Dynatrace Dashboards
	Receiving Signals from Dynatrace Triggered Monitors
	Elastic Stack
	Features
	How it Works
	Auto-Detect: Send Root Cause Detections to your Kibana Dashboards
	CLICK HERE to send Root Cause Detections to your Kibana Dashboards

	Sending Root Cause Detections to Your Kibana Dashboards
	Integration Overview
	Integration Details
	STEP 1: Create a Secure Access Token in Zebrium
	STEP 2: Create Zebeat Override File and Deploy in your Kubernetes Environment
	Deploy Zebeat in your Kubernetes Environment
	STEP 3: Create Visualizations in your Dashboard
	Visualizing in Kibana

	Important Metric Names
	Sample Payloads for Detections and Logs Metricsets
	Detections Metricset Payload
	Logs Metricset Payload

	Support

	Grafana Plugin
	Features
	How it Works
	Auto-Detect: View Root Cause Detections to your Grafana Dashboards
	CLICK HERE to View Root Cause Detections in your Grafana Dashboards

	Viewing Root Cause Detections in your Grafana Dashboards
	Integration Overview
	Prerequisites
	Current Zebrium Plugins
	Integration Details
	STEP 1: Download Plugins from GitHub
	STEP 2: Sign and Install Plugins
	STEP 3: Create a Secure Access Token in Zebrium
	STEP 4: Set up the Zebrium Datasource
	STEP 5: Install Zebrium Root Cause Finder on a Dashboard

	Support

	New Relic
	Features
	How it Works
	Auto-Detect (recommended): Send Root Cause Detections to your New Relic Dashb...
	CLICK HERE to send Root Cause Detections to your New Relic Dashboards

	Augment (advanced users): Receive Signals from New Relic Alert Policies
	CLICK HERE to receive Signals from New Relic Alert Policies

	Adding Zebrium Root Cause Reports to New Relic Dashboards
	Integration Overview
	Integration Details
	STEP 1: Create an API Key in New Relic
	STEP 2: Create a New Relic Outbound Integration in Zebrium
	STEP 3: Add Zebrium Root Cause Report Detections and Log Metrics to your New ...

	Important Metric Names
	Zebrium Detections Event Payload
	Support

	Augmenting New Relic with Root Cause Reports using Alert Policies
	Integration Overview
	Integration Details
	STEP 1: Create an API Key in New Relic
	STEP 2: Create a New Relic Inbound Integration in Zebrium
	STEP 3: Create a Webhook Notification Channel in New Relic
	STEP 4: Add Webhook Notifications to your Alert Policies in New Relic

	Support

	ScienceLogic
	Features
	How it Works
	Auto-Detect (recommended): Send Root Cause Detections to your SL1 Events Page
	CLICK HERE to Send Root Cause Detections to your ScienceLogic Event Console

	Augment (advanced users): SL1 Tickets with Root Cause Reports
	CLICK HERE to receive Signals from ScienceLogic Run Book Automation

	Sending Root Cause Detections to the SL1 Events Page
	Integration Overview
	Integration Details
	STEP 1: Choose an Existing or Create a New Device
	Use an Existing Device
	Create a New Virtual Device

	STEP 2: Create a User with Restricted API Access
	Define a New Access Key for API Access
	Define a New User Policy using the New Access Key
	Define a New User using the New User Policy

	STEP 3: Create an Event Policy for the Zebrium Alert
	STEP 4: Create a ScienceLogic Integration in Zebrium

	Support

	Receiving Signals from a ScienceLogic Run Book Automation
	Integration Overview
	Integration Details
	STEP 1: Create a User with Restricted API Access
	Define a New User Policy using the New Access Key
	Define a New User using the New User Policy

	STEP 2: Set Up Webhook Credentials and HTTP Action Policy
	Create Credentials
	Create a HTTP Request Action

	STEP 3: Create a ScienceLogic Integration in Zebrium to Receive Signals from ...
	STEP 4: Set Up Run Book Automation to Augment Tickets with Root Cause Reports

	Support

	Configuring Incident Management Integrations
	Opsgenie
	Features
	How it Works
	Augment: Receive Signals from Opsgenie Incidents
	CLICK HERE to receive Signals from Opsgenie Incidents

	Auto-Detect: Send Root Cause Detections to Opsgenie as Incidents
	CLICK HERE to send Root Cause Detections to Opsgenie as Incidents

	Receiving Signals from Opsgenie
	Integration Overview
	Integration Details
	STEP 1: Configure API Access for Zebrium in Opsgenie
	STEP 2: Create an Opsgenie Integration in Zebrium to Receive Signals from Ops...
	STEP 3: Add the Zebrium Webhook to Opsgenie

	How to Uninstall
	Disable API Access
	Delete the Zebrium Integration

	Support

	Sending Root Cause Detections to Opsgenie as Incidents
	Integration Overview
	Integration Details
	STEP 1: Add the Zebrium Integration to your Opsgenie Team
	STEP 2: Create an Opsgenie Integration in Zebrium to Send Root Cause Detectio...

	Support

	OpsRamp
	Features
	How it Works
	Augment: Receive Signals from OpsRamp Incidents
	CLICK HERE to receive Signals from OpsRamp Incidents

	Auto-Detect: Send Root Cause Detections to OpsRamp as Incidents
	CLICK HERE to send Root Cause Detections to OpsRamp as Incidents

	Receiving Signals from OpsRamp
	Sending Root Cause Detections to OpsRamp as Incidents
	Integration Overview
	Integration Details
	STEP 1: Add the Zebrium Integration to OpsRamp
	STEP 2: Create an OpsRamp Integration in Zebrium to Send Root Cause Detection...

	Support

	PagerDuty
	Features
	How it Works
	Augment: Receive Signals from PagerDuty Incidents
	CLICK HERE to receive Signals from PagerDuty Incidents
	Auto-Detect: Send Root Cause Detections to PagerDuty as Incidents
	CLICK HERE to send Root Cause Detections to PagerDuty as Incidents

	Receiving Signals from PagerDuty
	Integration Overview
	Integration Details
	STEP 1: Configure API Access for Zebrium in PagerDuty
	STEP 2: Create a PagerDuty Integration in Zebrium to Receive Signals from Pag...
	STEP 3: Add the Zebrium Webhook to PagerDuty

	How to Uninstall
	Disable API Access in PagerDuty
	Delete the Zebrium Integration

	Support

	Sending Root Cause Detections to PagerDuty as Incidents
	VictorOps
	Features
	How it Works
	Augment: Receive Signals from VictorOps Incidents
	CLICK HERE to receive Signals from VictorOps Incidents

	Auto-Detect: Send Root Cause Detections to VictorOps as Incidents
	CLICK HERE to send Root Cause Detections to VictorOps as Incidents

	Receiving Signals from VictorOps
	Sending Root Cause Detections to VictorOps as Incidents
	Integration Overview
	Integration Details
	STEP 1: Create an Incoming Webhook in VictorOps
	STEP 2: Create a VictorOps Integration in Zebrium to Send Root Cause Detectio...

	Support

	Enabling Notification Channels
	Email Notifications
	Features
	Integration Details

	Mattermost Notifications
	Features
	Integration Overview
	Integration Details
	STEP 1: Create an Incoming Webhook in Mattermost
	STEP 2: Create a Mattermost Integration in Zebrium to Send Detections to Matt...

	Slack Notifications
	Features
	Integration Overview
	Integration Details
	STEP 1: Create an Incoming Webhook in Slack
	STEP 2: Create a Slack Integration in Zebrium to Send Detections to Slack

	Microsoft Teams Notifications
	Features
	Integration Overview
	Integration Details
	STEP 1: Create an Incoming Webhook in Microsoft Teams
	STEP 2: Create a Microsoft Teams Integration in Zebrium to Send Detections to...

	Webex Teams Notifications
	Features
	Integration Overview
	Integration Details
	STEP 1: Create an Incoming Webhook in Webex Teams
	STEP 2: Create a Webex Teams Integration in Zebrium to Send Detections to Web...

	Creating Integrations Using Webhooks
	Root Cause Report Outgoing Webhook
	Root Cause Report Incoming Webhook
	Root Cause Report Outgoing Webhook
	Features
	Integration Overview
	Integration Details
	STEP 1: Determine the Destination Endpoint
	STEP 2: Create a Root Cause Report Outgoing Webhook Integration in Zebrium.

	Webhook Payload Format

	Root Cause Report Outgoing Webhook Payload
	Payload
	Event Object
	Example Payload

	Root Cause Report Incoming Webhook
	Features
	Integration Overview
	Integration Details
	STEP 1: Create a Root Cause Report Incoming Webhook Integration in Zebrium.
	STEP 2: Request a Root Cause Report from Zebrium

	Webhook Payload Format

	Root Cause Report Incoming Webhook Payload
	Payload
	Example Payload

	Managing Users
	RBAC Component Definitions
	Users
	Groups
	Roles
	Owner
	Admin
	Editor
	Viewer

	Permissions

	Zebrium Service Security
	Culture Based on Data Security
	Logical (and Optionally Physical) Separation of Customer Data
	Encryption
	Single Sign-On Support
	Service Security

	Handling of Sensitive Data
	Access by Zebrium Employees
	Physical Security
	Customer Data
	Reports and Third-party Audits

	Zebrium On Prem
	Zebrium On Prem: Getting Started
	Sizing Considerations
	Software Requirements
	Account Name
	Domain Name
	Slack Channels
	Helm Chart and Image Repository Access
	Helm Chart Overrides

	Configuration Questions
	Assumptions
	STEP 1: Installing the Helm Chart
	STEP 2: Configuring Your Account
	STEP 3: Configuring Outbound Notifications
	STEP 4: Configuring AutoSupport (optional)
	STEP 5: Ingesting Data into your Zebrium On Prem Instance

	Obtaining your ZAPI Token and Endpoint
	Failure Domain Boundary
	Using the Command-line Interface to Ingest Data
	Using the Kubernetes Log Collector to Ingest Data
	Using Logstash to Ingest Data
	Sending Operational Data to Zebrium Support
	Slack Notifications
	Log Data

	Contacting Zebrium Support
	Slack (preferred)
	Email
	Support Hours
	Support SLAs

	Zebrium On Prem: API
	Create Incident Type
	Request Arguments
	Example Request Payload
	Example Response Payload

	Read Incident
	Request Arguments
	Example Request Payload
	Example Response Payload

	Create Signal
	Request Arguments
	Example Request Payload
	Example Response Payload

	Read Signal
	Request Arguments
	Example Request Payload
	Example Response Payload

	Begin Batch
	Request Arguments
	Response Payload
	Example Request Payload
	Example Response Payload

	End Batch
	Request Arguments
	Response Payload
	Example Request Payload
	Example Response Payload

	Cancel Batch
	Request Arguments
	Response Payload
	Example Request Payload

	Get Batch
	Example Response Payload

	List Batches
	HTTP Method GET

	Listing Incidents for Batch Uploads
	Listing Incidents for Batch Uploads

	Usage
	Batch IDs and Scope of Batches
	Batch States
	Opportunistic or Delayed Batch Processing

	Example
	Note on Canceled and Failed Batches

	Get Etroot Vector
	Request Arguments
	Example Request Payload
	Example Response Payload

