
Zebrium Root Cause as a Service
(RCaaS) Documentation
Release EA-90

Table of Contents

Key Concepts 1

Zebrium Root Cause as a Service (RCaaS) 2

Root Cause Reports (RCA Reports) 3

Alert Rules and Alert Keys 4

Log Collectors 5

Service Groups 5

Notification Channels 7

ScienceLogic Integrations 7

Incident Management Integrations 9

Integrations Using Webhooks 10

Zebrium On Prem 10

Getting Started 11

How Zebrium Works 12

Consuming Root Cause Reports 13

Customizing Your ZebriumResults 14

Evaluating Zebrium 15

Signing Up for a New Account 15

What does Zebrium Do with Your Logs? 16

Log Collectors and File Uploads 17

AWS CloudWatch Collector (Beta) 18

Legal 18

Overview 18

Preparation 18

Installation 18

Configuration 19

Setup 19

Testing Your Installation 19

Azure Monitor OTel Collector (Beta) 20

Legal 20

Docker Container Log Collector 21

Getting Started 21

Deploying the Collector 21

Configuring the Docker Daemon 21

Environment Variables 22

Testing your Installation 22

File Upload (ze Tool) 23

Getting Started 23

Prerequisites 23

Installing ze 23

Configuration 23

Configuration File 24

Environment Variables 24

Commands and Help 25

Examples 25

Batch Uploads 25

Migrating from the Perl-based ze Tool (version 1.0.0) 25

Replacing the .zerc File 26

Environment Variables 26

Zebrium Batch Uploads and ze Command-line Interface 27

Batch Uploads vs Service Groups 27

Integrating Batch Uploads into the ze Tool 27

ze batch Subcommand 27

Examples 28

Uploading a Large Log and Monitoring its Progress 28

Uploading Multiple Logs to be Processed Together 28

Kubernetes Collector 30

Installing the Helm Chart 30

Uninstalling the Helm Chart 30

Additional Information 30

Log Path Mapping 30

Custom Namespace to Service Group Mapping 31

Values 31

Linux Collector 35

System Requirements 35

Installing the Collector 35

Upgrading the Collector 36

Uninstalling the Collector 36

Installing on Hosts with Existing td-agent Configuration 36

Configuration for td-agent 37

User Log Paths 38

Filtering Specific Log Events 38

Example 39

Log Path Mapping 39

Configuring Multiple Zebrium Service Groups Within a Single Collector 40

Usage 42

Start and Stop Fluentd 42

Testing Your Installation 42

Troubleshooting 42

Environment Variables 43

Operating with a Proxy Server 43

Setting the Proxy Server in a systemd Environment 43

Logstash Collector 44

Configuring Logstash to Send Log Data to Zebrium 44

Service Groups 46

Configuring Logstash Filters for Zebrium Required Fields (in Logstash) 46

Configuring Log Event Output to Zebrium (in Logstash) 49

Reload Logstash Configuration 50

Complete Example for filebeat and winlogbeat Data 50

Syslog Forwarder 55

Preparation 55

Forward Syslog 55

Installation 55

Client Configuration 56

Setup 56

Forward Log via TCP 56

Installation 56

Setup 56

Testing your installation 57

VMware vSphere Collector (Beta) 58

Legal 58

Overview 58

Prerequisites 58

Installation and Configuration 58

Installing the Zebrium Syslog Forwarder 58

Configuring vCenter Syslog Collection 58

Configuring ESXi Host Syslog Collection 59

Collecting VM Logs 59

Windows OTel Collector (Beta) 60

Legal 60

Overview 60

Prerequisite 60

Zebrium Windows OTel Collector Installation 60

Uninstalling Zebrium Windows OTel Collector 61

Suggestions and Root Cause Reports 62

Suggestions in Zebrium 63

Managing Suggestions in the Zebrium User Interface 65

Using the Filters on the Alerts Page in Zebrium 65

Using the Timeline Widget on the Alerts Page 67

Root Cause Reports 69

Additional Actions on the Root Cause Report Page 72

Assessing Suggestions 73

Accepting a Suggestion 73

Rejecting a Suggestion 75

Key Use Cases for Suggestions and Root Cause Reports 75

Automated Root Cause Analysis Only 75

Proactive Detection and Root Cause Analysis 75

Deterministic Detection of Known Problems 76

Getting the Best Results from Zebrium 76

Ingest Complete Logs That Contain a Real Problem 76

Be Mindful of Elapsed Time 76

Review Service Group Setup 77

Review RCA Settings 77

Use Integrations to Separate High-priority Alerts 77

Manage Alert Destinations 79

Use Routing Rules to Classify and Route Alerts 80

Example: Ensure that the AI/ML Engine Highlights Significant Events When They Happen Nearby 81

Example: Ensure the AI/ML Engine Ignores Spam Events When They Happen Nearby 82

Defining Rules 83

Service Groups 83

Event Labels 83

Event Text 84

Notification Channels 86

Email Notifications 87

Features 87

Integration Details 87

Slack Notifications 88

Features 88

Integration Details 88

Microsoft Teams Notifications 89

Features 89

Integration Details 89

Webex Teams Notifications 90

Features 90

Integration Details 90

ScienceLogic Integrations 91

ScienceLogic Root Cause Timeline Widget 92

Features 92

How It Works 92

Configuring the Root Cause Timeline Widget in SL1 92

Configuring a Zebrium Connection for the Root Cause Timeline Widget in SL1 93

Connecting Your Zebrium Instance to the Root Cause Timeline Widget 94

Creating a Dashboard Widget Integration in Zebrium 94

Creating a Service Connection in SL1 94

Creating a Sample Alert for the Widget 96

Using the Root Cause Timeline Widget 97

Working with Suggestions in the Zebrium User Interface 98

ScienceLogic Events (Zebrium Connector for SL1) 100

Workflow for Configuring the Connector 100

Creating an Authentication Token in Zebrium 100

Configuring SL1 101

Create a Service Connection in SL1 101

Create an SL1 Authentication Token 102

Create a Default Virtual Device (optional) 102

Install the Zebrium Event Policies PowerPack 103

Configuring the Zebrium Connector 103

System Requirements 103

Download and Install the RPM file for the Connector 104

Configure the config.yaml file 104

Configuration Schema 105

Example Configuration 106

ScienceLogic SL1 API Integration 107

Features 107

How It Works 107

Auto-Detect (recommended): Send Root Cause Detections to your SL1 Events Page 107

Sending Root Cause Suggestions to the SL1 Events Page 108

Integration Overview 108

Integration Details 108

STEP 1: Choose an Existing Device or Create a New Device 108

STEP 2: Create a User with Restricted API Access 109

STEP 3: Create an Event Policy for the Zebrium Alert 110

STEP 4: Create a ScienceLogic SL1 API Integration in Zebrium 110

Incident Management Integrations 112

Opsgenie Incident Management Integrations 113

Features 113

How it Works 113

Augment: Receive Signals from Opsgenie Incidents 113

Auto-Detect: Send Root Cause Detections to Opsgenie as Incidents 113

Sending Root Cause Detections to Opsgenie as Incidents 114

STEP 1: Add the Zebrium Integration to your Opsgenie Team 114

STEP 2: Create an Opsgenie Integration in Zebrium to Send Root Cause Detections to Opsgenie as
Incidents 114

PagerDuty Event Management Integrations 116

Features 116

How it Works 116

Augment: Receive Signals from PagerDuty Events 116

Auto-Detect: Send Root Cause Detections to PagerDuty as Events 116

Receiving Signals from PagerDuty 117

STEP 1: Configure API Access for Zebrium in PagerDuty 117

STEP 2: Create a PagerDuty Integration in Zebrium to Receive Signals from PagerDuty 117

STEP 3: Add the Zebrium Webhook to PagerDuty 117

How to Uninstall 118

Disable API Access in PagerDuty 118

Delete the Zebrium Integration 118

Sending Root Cause Detections to PagerDuty as Events 118

STEP 1: Create an Integration Key in PagerDuty 118

STEP 2: Create a PagerDuty Integration in Zebrium 118

Using Webhooks to Create Integrations 120

Root Cause Report Outgoing Webhook 120

Root Cause Report Incoming Webhook 120

Root Cause Report Outgoing Webhook 121

Features 121

STEP 1: Determine the Destination Endpoint 121

STEP 2: Create a Root Cause Report Outgoing Webhook Integration in Zebrium. 121

Root Cause Report Outgoing Webhook Payload 122

Payload 122

Event Object 124

Example Payload 124

Root Cause Report Incoming Webhook 153

Features 153

STEP 1: Create a Root Cause Report Incoming Webhook Integration in Zebrium 153

STEP 2: Request a Root Cause Report from Zebrium 153

Webhook Payload Format 153

Root Cause Report Incoming Webhook Payload 153

Payload 154

Example Payload 154

User Management 155

RBAC Component Definitions 156

Users 156

Groups 156

Roles 156

Owner 156

Admin 156

Editor 157

Viewer 157

Permissions 157

Security 158

Culture Based on Data Security 159

Logical (and Optionally Physical) Separation of Customer Data 159

Encryption 159

Single Sign-On Support 159

Service Security 159

Handling of Sensitive Data 160

Access by Zebrium Employees 160

Physical Security 160

Customer Data 160

Reports and Third-party Audits 161

Zebrium On Prem 162

Pre-installation 163

Sizing Considerations 163

Example 1 164

Example 2 164

Storage Considerations 164

Bring Your Own Storage Classes (BYOSC) 165

Using Zebrium Storage Classes 165

Dynamic vs Manual Volume Provisioning 166

Ingress Considerations 166

Helm Parameter Overrides 166

Global Overrides 166

Resource Overrides 167

Ingress Controllers 167

Packaged Ingress Controller 167

Hostname and DNS Resolution 168

TLS 168

Helm Chart and Image Repository Access 168

Additional Configurations 169

Enabling OpenAI Models 169

Prerequisites 170

Installation 170

Setting NLP Provider Limits 171

Installation 172

Assumptions 172

Installation Steps 172

STEP 1: Installing the Helm Chart 172

STEP 2: Configuring Your Account 173

STEP 3: Ingesting Data into your Zebrium On Prem Instance 173

Obtaining your ZAPI Token and Endpoint 174

Failure Domain Boundary 174

Using the Command-line Interface to Ingest Data 174

Using the Kubernetes Log Collector to Ingest Data 174

Using Logstash to Ingest Data 175

Sending Operational Data to Zebrium Support 176

Slack Notifications 176

Log Data 176

Contacting Zebrium Support 176

Slack (preferred) 176

Email 177

Support Hours 177

Support SLAs 177

Zebrium On Prem: API 178

Create Incident Type 179

Request Arguments 179

Example Request Payload 179

Example Response Payload 179

Read Incident 180

Request Arguments 181

Example Request Payload 181

Example Response Payload 182

Create Signal 183

Request Arguments 183

Example Request Payload 183

Example Response Payload 184

Read Signal 184

Request Arguments 184

Example Request Payload 185

Example Response Payload 185

Begin Batch 186

Request Arguments 186

Response Payload 186

Example Request Payload 186

Example Response Payload 186

End Batch 187

Request Arguments 187

Response Payload 187

Example Request Payload 187

Example Response Payload 187

Cancel Batch 187

Request Arguments 188

Response Payload 188

Example Request Payload 188

Get Batch 188

Example Response Payload 189

List Batches 189

HTTP Method GET 189

Listing Incidents for Batch Uploads 190

Listing Incidents for Batch Uploads 190

Usage 191

Batch IDs and Scope of Batches 192

Batch States 192

Opportunistic or Delayed Batch Processing 192

Example 193

Note on Canceled and Failed Batches 194

Get Etroot Vector 194

Request Arguments 194

Example Request Payload 195

Example Response Payload 195

Chapter

1
Key Concepts

Overview

The following video explains how Zebrium can automatically show you the root cause of any kind of software or
infrastructure problem, without any manual training or rules: https://www.youtube.com/watch?v=4jm108RXz1c.

This chapter covers the following topics:

Zebrium Root Cause as a Service (RCaaS) 2

Root Cause Reports (RCA Reports) 3

Alert Rules and Alert Keys 4

Log Collectors 5

Service Groups 5

Notification Channels 7

ScienceLogic Integrations 7

Incident Management Integrations 9

Integrations Using Webhooks 10

Zebrium On Prem 10

1

https://www.youtube.com/watch?v=4jm108RXz1c

2

Zebrium Root Cause as a Service (RCaaS)

Zebrium Root Cause as a Service (RCaaS) uses unsupervised machine learning on logs to automatically find
the root cause of software problems. It does not require manual rules or training, and it typically achieves
accuracy within 24 hours.

As Zebrium ingests logs, the Zebrium artificial-intelligence machine-learning (AI/ML) engine analyzes the logs,
looking for abnormal log line clusters that resemble problems, such as abnormally correlated rare and error
events from across all log streams.

When the AI/ML engine detects one of these "abnormal" clusters, it generates a suggestion, which appears on
the Alerts page (the home page) of the Zebrium user interface along with the existing alerts:

On the Alerts page, the summary report for a suggestion and an alert contains the following main elements:

l AI-generated title. Displaying at the top of the summary pane, this title is generated using GPT Services
that use new Generative AI models. You can enable or disable GPT services for a specific deployment of
Zebrium by using theGPT Services column on the Deployments page (Settings ()> Deployments).

l Word Cloud. A set of relevant words chosen by the AI/ML engine from the log lines contained in the alert.
Click a word in the cloud to highlight that word in the list of logs on the left.

l Significance icon. Since not all suggestions that the AI/ML engine generates will relate to problems that
actually impact users, the engine attempts to reason over the data and assess whether a problem actually
requires attention. Hover over this icon at the top of the list of logs to view the confidence level of the AI/ML
engine for this suggestion. A red icon () means "High" confidence, and a yellow icon () means "Medium"
confidence.

l AI Assessment . Since not all suggestions that the AI/ML engine generates will relate to problems that
actually impact users, the AI/ML engine attempts to reason over the data and assess whether a problem
actually requires attention. Depending on the quality of the data, some suggestions might not include an AI
Assessment. This value is shown in the Zebrium user interface as an AI Assessment value of one of the
following:

o "No Attention Needed" for content that the AI/ML engine assesses as unlikely to require immediate
attention.

o "Needs Your Attention" for content that the AI/ML engine believes should be looked into.

l Root Cause (RCA) Report Summary. The report contains the actual cluster of anomalous log lines that
was identified by the AI/ML engine. Up to eight of these log lines are shown in the summary view. You can
click anywhere in the summary to view the full Root Cause report.

Zebrium Root Cause as a Service (RCaaS)

Root Cause Reports (RCA Reports)

l Alert Key. One or two log lines, denoted with a key icon (), that are used to identify the suggestion if this
type of suggestion occurs again. The alert keys make up an alert rule.

You can click anywhere in the summary report for a suggestion or an alert to view a more detailed Root
Cause Report page for that suggestion or alert. For more information, see Root Cause Reports.

IMPORTANT: Suggestions are generated when the AI/ML engine finds a cluster of correlated anomalies in
your logs that resembles a problem. However, this does not mean that all suggestions relate
to actual important problems. This is especially true during the first few days of using Zebrium,
as the AI/ML engine learns the normal patterns in your logs.

When you start getting suggestions on the Alerts page, you can review the word clouds and event logs that
display in the summary views for the Root Cause reports for the suggestions. As a best practice, identify a specific
time frame when a possible problem occurred, and then start looking at the reports that have the most interesting
or relevant information related to the possible root cause of the problem.

You can choose to "accept" or "reject" a suggestion. For more information, see Assessing Suggestions.

You can also decide on the action to take if the same kind of alert type occurs again, such as sending a
notification to Slack, email, or another type of notification. For more information, seeNotification Channels.

If you currently use SL1 from ScienceLogic, you can configure an integration that lets you view Zebrium
suggestions in SL1 dashboards as well as on the SL1 Events page. For more information, see ScienceLogic
Integrations.

Root Cause Reports (RCA Reports)

A Root Cause Report or RCA Report is a report generated by the AI/ML engine that consists of a group of log
events that the AI/ML engine identified as being part of a problem.

3

4

A full RCA Report page (below) appears after you click the summary view for that report on the Alerts page:

The RCA report contains the actual cluster of anomalous log lines that was identified by the AI/ML engine. There
are typically between ten and 100 log events in a report. Up to eight of these log lines are shown in the summary
view. Clicking a summary on the Alerts page takes you to the full RCA report.

Each RCA report matches a particular "fingerprint" of log events. You can add notes, summaries, Jira links, and
alert preferences to the alert rules for the RCA report so that future occurrences of the same type of problem will
reflect these preferences and notes.

For more information, see Suggestions and Root Cause Reports.

Alert Rules and Alert Keys

An alert rule is made up of one or two log events that best represent a specific type of problem that caused the
event, and these events often provide clues as to the nature of the problem. These notable log events are called
alert keys, and the AI/ML engine uses these keys to trigger an alert when new log data is ingested.

A key icon () appears next to an alert key in the list of log events on the Alerts page and on the RCA Report
page:

The AI/ML engine also uses the alert keys as a "signature" for a particular type of alert. There are typically two
hallmark events:

Alert Rules and Alert Keys

Log Collectors

l The first event in the sequence, which is usually a rare event or anomaly and often relates the root cause.

l A high severity event, either as determined by log severity, or other indicators, such as certain words or
phrases indicating a problem, like "exception", "failed", "could not restart", and so on.

You can edit the alert keys of any Root Cause (RCA) report to select different log events if you believe those log
events are more useful. Future matches of this type of RCA report will match against your user-defined alert keys,
and carry forward your notes, summaries, Jira links, and alert preferences.

For more information, see Editing Alert Keys.

Log Collectors

When you are setting up your Zebrium system, one of the first tasks you need to do is configure a method for
gathering log data to send to Zebrium so the AI/ML engine can begin to analyze the log data.

You would typically configure one or more log collectors to gather logs and send those logs to Zebrium for
automated incident detection. For example, the following dialog explains how to set up a Linux log collector:

You can also use a file uploadmethod using ze, the Zebrium command-line interface for uploading log events
from files or streams.

For more information, see Log Collectors and File Uploads.

Service Groups

A Service Group is the collection of log types, pods, hosts, and other items that are all part of a "failure domain".
In other words, logs from the micro-services and processes that could all interact with each other to contribute to
an incident should be part of a service group. The AI/ML engine will only attempt to correlate anomalies and

5

6

errors across logs that fall within a service group. For more complex applications, you can have multiple service
groups if there is more than one failure domain.

For example, in the following image, sockshop and shop2 are two separate service groups where the same event
occurred:

TIP: You can view a list of service groups by clicking the [Filtering] button on the Alerts page. The Selected
Filter dialog contains a list of service groups in the Service Groups filter.

Using a service group allows you to collect logs from multiple applications or support cases and isolate the logs
of one from another so as not to mix these in a RCA report.

If omitted, the service group is set to "default", which means that the service group represents shared services. For
example, a database that is shared between two otherwise distinctly separate applications would be considered a
shared service. In this example scenario, you would set the service group to "app01" for one application and
"app02" for the other application. For the database logs, you would either omit the service group setting, or you
could explicitly set it to "default".

With this configuration, RCA reports will consider correlated anomalies across the following:

"app01" log events and default (i.e. database logs) and

"app02" log events and default (i.e. database logs) but not across:

"app01" and "app02

For more information, see Suggestions and Root Cause Reports .

Service Groups

Notification Channels

Notification Channels

Notification Channels provide a mechanism to define the methods that Zebrium will use to send notifications
from RCA reports. The supported types of notification channels include email, as well as Slack, Microsoft Teams,
and Webex Teams notifications.

After you have created one or more notification channels, you can link any number of these to any RCA report
created by the AI/ML engine. Linking a set of notification channels to a RCA report will send notifications of future
RCA reports of the same type to those channels.

For more information, see Notification Channels.

ScienceLogic Integrations

You can integrate the Zebrium Root Cause service with the SL1 platform from ScienceLogic to send suggestions
and alerts to the SL1 dashboards or to SL1 Events, Devices, and Services pages.

7

8

The following image shows the interactive Root Cause Timeline widget in an SL1 dashboard:

To enable a ScienceLogic integration, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors), select an integration type, and follow the instructions for setting up that dashboard.

For more information, see ScienceLogic Integrations.

ScienceLogic Integrations

Incident Management Integrations

Incident Management Integrations

You can configure an integration between Zebrium and your third-party Incident Management application to
automatically add Root Cause (RCA) reports to your incidents in the third-party application. Each Zebrium RCA
report includes a summary, word cloud, and a set of log events display symptoms and root cause, along with a
link to the full report in the Zebrium user interface.

After you complete the configuration, you can can view details of root cause and direct the incident to the
appropriate team. All of these features lead to faster Mean Time to Repair (MTTR) and less time manually hunting
for root cause.

For more information, see Incident Management Integrations.

9

10

Integrations Using Webhooks

Zebrium provides support for using webhooks so you can build your own custom integrations.

Zebrium provides the following webhooks:

l Outgoing Root Cause Report Webhook

l Incoming Root Cause Report Incoming Webhook

For more information, see Using Webhooks to Create Integrations .

Zebrium On Prem

In additional to the standard option of a cloud configuration for Zebrium, you also have the option for a Zebrium
on-premises (On Prem) configuration that is not located in the cloud.

For more information, see Zebrium On Prem.

Integrations Using Webhooks

Chapter

2
Getting Started

Overview

This chapter provides an overview of how Zebrium works, and how to get started using Zebrium.

IMPORTANT: Before you can start watching for suggestions and reviewing Root Cause reports, you will
need to configure a method for gathering log data to send to Zebrium. For more information,
see Log Collectors and File Uploads.

This chapter covers the following topics:

How Zebrium Works 12

Consuming Root Cause Reports 13

Customizing Your ZebriumResults 14

Evaluating Zebrium 15

11

12

How Zebrium Works

When skilled engineers troubleshoot software, they typically ask the following questions:

1. Where are the problems or events occurring? The events could be clusters of errors, warnings, stack
traces, or other indicators of bad outcomes.

2. Were there unusual events upstream that could help explain these bad outcomes? This might be
configuration changes, a new deployment, user actions, and so on.

In modern software, these events are often generated by different micro-services or software components, so you
might have to switch between many log streams and then mentally correlate the events across them.

The Zebrium AI/ML engine emulates the workflow of a skilled engineer by performing the following actions:

1. Automatically build a catalog of all of the event types generated by the software.

2. Track the patterns of each event type in each log stream, such as the logs generated by a specific container,
pod, or host.

3. Automatically identify unusual and "bad" events.

4. Identify unusually correlated clusters of rare and bad events that appear to be due to the same incident. The
AI/ML engine scores each such collection based on a combination of how rare the underlying events are,
and how bad the events are, such as how many warnings or errors are generated.

5. "Fingerprint" each cluster of such events as a unique type of issue. The events that rise above a specified
threshold can be considered a potential Root Cause report, and they are summarized using Natural
Language Processing (NLP) for Machine Learning.

When the AI/ML engine detects one of these "abnormal" clusters, it generates a suggestion, which appears on
the Alerts page (the home page) of the Zebrium user interface along with the existing alerts:

On the Alerts page, the summary report for a suggestion and an alert contains the following main elements:

l AI-generated title. Displaying at the top of the summary pane, this title is generated using GPT Services
that use new Generative AI models. You can enable or disable GPT services for a specific deployment of
Zebrium by using theGPT Services column on the Deployments page (Settings ()> Deployments).

l Word Cloud. A set of relevant words chosen by the AI/ML engine from the log lines contained in the alert.
Click a word in the cloud to highlight that word in the list of logs on the left.

How Zebrium Works

Consuming Root Cause Reports

l Significance icon. Since not all suggestions that the AI/ML engine generates will relate to problems that
actually impact users, the engine attempts to reason over the data and assess whether a problem actually
requires attention. Hover over this icon at the top of the list of logs to view the confidence level of the AI/ML
engine for this suggestion. A red icon () means "High" confidence, and a yellow icon () means "Medium"
confidence.

l AI Assessment . Since not all suggestions that the AI/ML engine generates will relate to problems that
actually impact users, the AI/ML engine attempts to reason over the data and assess whether a problem
actually requires attention. Depending on the quality of the data, some suggestions might not include an AI
Assessment. This value is shown in the Zebrium user interface as an AI Assessment value of one of the
following:

o "No Attention Needed" for content that the AI/ML engine assesses as unlikely to require immediate
attention.

o "Needs Your Attention" for content that the AI/ML engine believes should be looked into.

l Root Cause (RCA) Report Summary. The report contains the actual cluster of anomalous log lines that
was identified by the AI/ML engine. Up to eight of these log lines are shown in the summary view. You can
click anywhere in the summary to view the full Root Cause report.

l Alert Key. One or two log lines, denoted with a key icon (), that are used to identify the suggestion if this
type of suggestion occurs again. The alert keys make up an alert rule.

You can click anywhere in the summary report for a suggestion or an alert to view a more detailed Root
Cause Report page for that suggestion or alert. For more information, see Root Cause Reports.

IMPORTANT: Suggestions are generated when the AI/ML engine finds a cluster of correlated anomalies in
your logs that resembles a problem. However, this does not mean that all suggestions relate
to actual important problems. This is especially true during the first few days of using Zebrium,
as the AI/ML engine learns the normal patterns in your logs.

When you start getting suggestions on the Alerts page, you can review the word clouds and event logs that
display in the summary views for the Root Cause reports for the suggestions. As a best practice, identify a specific
time frame when a possible problem occurred, and then start looking at the reports that have the most interesting
or relevant information related to the possible root cause of the problem.

You can choose to "accept" or "reject" a suggestion. For more information, see Assessing Suggestions.

You can also decide on the action to take if the same kind of alert type occurs again, such as sending a
notification to Slack, email, or another type of notification. For more information, seeNotification Channels.

If you currently use SL1 from ScienceLogic, you can configure an integration that lets you view Zebrium
suggestions in SL1 dashboards as well as on the SL1 Events page. For more information, see ScienceLogic
Integrations.

Consuming Root Cause Reports

You can consume the AI/ML engine-generated Root Cause reports in one of the following ways:

13

14

1. Recommended. Connect Zebrium to a ScienceLogic integration, such as the SL1 Enhanced (12.x)
integration on the Integrations & Collectors page (Settings () > Integrations & Collectors). After you
configure the integration, data from the Root Cause reports from Zebrium will display in SL1 and you can
correlate the reports with any spikes or alerts occurring at the same time. For more information, see
ScienceLogic Integrations.

For more details, or to take action on one of these reports, click the URL to go directly to the detailed Root
Cause report in the Zebrium user interface. For more information, seeWorking with Suggestions and
Root Cause Reports.

2. Connect Zebrium to your incident management tool, such as Opsgenie, PagerDuty, or Slack. After you
configure the incident management tool, an RCA report is automatically created and sent back to the
incident management tool.

3. Evaluate the feed of auto-detected incident Root Cause reports on the Alerts page in the Zebrium user
interface, particularly around times where you know things went wrong. You can also force the AI/ML
engine to do a deep scan and create a report on demand by clicking the [Scan for RC] button on the
Settingsmenu (). Any Root Cause reports generated by that scan include a lightning bolt icon and the
text "Result of RC Scan". For more information, seeWorking with Suggestions and Root Cause Reports.

Customizing Your ZebriumResults

You can customize your Zebrium results on the Alerts page (the Zebriumhome page) by selecting one or more
filters at the top of the page. You can use these filters to manage the number of suggestions and alerts that
display on the Alerts page.

For example, by default only the First occurrence of each incident type is visible on dashboards and alert
channel, unless you create filters that specify that the incident deserves an alert or suggestion.

You can also filter the list of suggestions by Significance: the AI/ML engine assigns a value of Low, Medium, or
High to each alert. Significance is a cumulative score for each suggestion, based on the rareness and "badness"
(log severity level) of the log events within that alert. If you have a high Significance setting, the Root Cause events
will have to be more rare and more "bad" to show up in the list of suggestions.

By default, only suggestions with a significance of Medium and High are shown on the Alerts page, so if you
want to also see alerts with Low significance, select Low or greater for this filter. You can edit the default
Significance setting by editing the Root Cause Significance setting on the Report Settings page (Settings ()
> Root Cause Settings.

Customizing Your ZebriumResults

Evaluating Zebrium

These filters appear on the Selected Filter dialog, which displays when you click the [Filtering] button ()
on the Alerts page:

There is also a Search bar at the top of the Alerts page that you can use for text or regular expression (regex)
searches, and a toggle for Core Events and All Events.

For more information about filtering, see Using the Filters on the Alerts Page in Zebrium.

Evaluating Zebrium

The best way to try Zebrium is on a system that is experiencing an actual problem. If there are no real problems,
Zebrium will not find anything useful.

As an alternative, you can try Zebrium in an environment where you can simulate a real problem. You can also
use this step-by-step guide to set up a demonstration online shopping application and cause a failure by using an
open source chaos tool.

Signing Up for a New Account

To sign up for a new account and start sending your logs to Zebrium, watch this five-minute "Getting Started"
video: https://youtu.be/QwIbihOOW5k.

The video covers how to :

1. Sign up for a new account by visiting https://www.zebrium.com/ and clicking the blue [Get Started Free]
button.

15

https://www.zebrium.com/blog/how-to-try-zebrium-using-a-realistic-demo-app
https://youtu.be/QwIbihOOW5k
https://www.zebrium.com/

16

2. Installing the Kubernetes log collector by using the customized Helm command found on theWelcome
page. After you have configured the log collector, Zebrium can being reviewing your logs.

NOTE: You will need to set your Timezone and Service Group (zebrium.deployment) when installing
the collector.

What does Zebrium Do with Your Logs?

As logs are received by Zebrium , the AI/ML engine automatically structures and categorizes each type of log
event. This allows the AI/ML engine to identify anomalous log events. Many factors are used for anomaly
detection, but the two most important are the rareness and the severity of each log line.

The AI/ML engine then looks for abnormal clusters of correlated anomalies across all the logs within a Service
Group, also known as a failure domain. These clusters usually occur because of an actual problem.

If the AI/ML engine finds one of these clusters, it generates a Suggestion. The suggestion contains a payload that
includes the cluster of log lines.

Other than the log events that are contained in alerts, all other log data is discarded after a few hours.

Evaluating Zebrium

Chapter

3
Log Collectors and File Uploads

Overview

When you are setting up your Zebrium system, one of your first tasks is to configure a method for gathering and
sending log data to Zebrium so that the AI/ML engine can begin to analyze the log data.

You can configure one or more log collectors to gather logs and send those logs to Zebrium for automated
incident detection. You can also use a file uploadmethod using the ze tool, the Zebrium command-line
interface for uploading log events from files or streams.

The following pages explain how you can collect data from different sources, as well as file uploads:

l AWS CloudWatch

l Azure Monitor OTel

l Docker (including ECS)

l File Upload (ze Command)

l Kubernetes

l Linux

l Logstash

l Syslog Forwarder

l VMware vSphere

l Windows OTel

17

AWS CloudWatch Collector (Beta)

AWS CloudWatch Collector (Beta)

Legal

The AWS CloudWatch collector is provided by ScienceLogic with the following terms:

You may use, modify, reproduce, and distribute this freely and without restriction, provided as a condition of our
provision to use the software you acknowledge that the software is provided as-is, and ScienceLogic will not have
any monetary liability in association with the distribution of this software.

Overview

The Zebrium CloudWatch collector ze-cloudwatch (Lambda function for Amazon Web Services) sends logs to
Zebrium for automated Anomaly detection. The Zebrium GitHub repository is located here:
https://github.com/zebrium/ze-cloudwatch.

NOTE: This feature is currently Beta. For access to this collector, contact Zebrium at support@zebrium.com.

Preparation

1. Download the Zebrium CloudWatch Lambda function package from https://github.com/zebrium/ze-
cloudwatch/releases/download/1.47.0/zebrium_cloudwatch-1.47.0.zip.

2. If you have an existing Lambda function associated with the log group to be set up, you must go to AWS
CloudWatch page and delete the existing subscription filter. If not, you will get the following error message:
"An error occurred when creating the trigger: The log group host-log already has an enabled subscription
filter associated with it."

3. If you do not have an existing role with Lambda execution permission, you should got to the AWS IAM
service to create a role for running Lambda functions.

Installation

You will need to create a new Lambda function and then edit the function details.

1. Create a new Lambda function by going to the to AWS Lambda page.

2. Select Author from scratch.

3. Provide the following base information:

l Function Name: zebrium-cloudwatch

l Runtime: Node.js.12.x

4. Click Create function.

5. To edit the function details, go to the Code entry type drop-down menu and choose Upload a .zip file.

18

https://github.com/zebrium/ze-cloudwatch
mailto:support@zebrium.com
https://github.com/zebrium/ze-cloudwatch/releases/download/1.47.0/zebrium_cloudwatch-1.47.0.zip
https://github.com/zebrium/ze-cloudwatch/releases/download/1.47.0/zebrium_cloudwatch-1.47.0.zip

19

6. Upload the Zebrium Lambda function package file that you just downloaded.

7. Enter "index.handler" for Handler setting.

8. Choose Node.js.12.x for Runtime.

9. For Execution role, choose an existing role with Lambda execution permission.

10. Click on Designer and click on Add a trigger.

11. Type CloudWatch Logs and choose your log group.

12. Set the following environment variables:

l ZE_DEPLOYMENT_NAME: Deployment name (Required)

l ZE_HOST: Alternative Host Name (Optional)

l ZE_LOG_COLLECTOR_URL: ZAPI URL

l ZE_LOG_COLLECTOR_TOKEN: Auth token

13. Click [Save] to save your new Lambda function. New logs should appear on Zebrium web portal in a
couple of minutes.

Configuration

No additional configuration is required.

Setup

No additional setup is required.

Testing Your Installation

After the collector has been deployed in your CloudWatch environment, your logs and anomaly detection will be
available in the Zebrium user interface.

AWS CloudWatch Collector (Beta)

Azure Monitor OTel Collector (Beta)

Azure Monitor OTel Collector (Beta)

Legal

The Azure OTel collector is provided by ScienceLogic with the following terms:

You may use, modify, reproduce, and distribute this freely and without restriction, provided as a condition of our
provision to use the software you acknowledge that the software is provided as-is, and ScienceLogic will not have
any monetary liability in association with the distribution of this software.

NOTE: Additional information is coming soon for this collector.

20

Docker Container Log Collector

Docker Container Log Collector

The Zebrium Docker container log collector, ze-docker-log-collector, collects container logs and sends logs to
Zebrium for automated incident detection. The collector uses the Fluentd logging driver for Docker and the
Zebrium Fluentd output plugin.

The GitHub repository for the collector is located at https://github.com/zebrium/ze-docker-log-collector.

Getting Started

When sending your logs from your docker daemon to Zebrium, there are two configuration options for where
your log collector can be installed and configured. The collector can be installed within the docker daemon
context that you are sending all the logs from, or it could be installed on an external host, and route the logs to it
by each docker daemon.

Deploying the Collector

Regardless on the installation method, you will start the collector using the following command, substituting the
token and URL in for the values found in your Zebrium Integration and Collectors page.

docker run -p 24224:24224 -e ZE_LOG_COLLECTOR_URL=<URL> -e ZE_LOG_

COLLECTOR_TOKEN=<TOKEN> --restart always zebrium/docker-log-col-

lector:latest

Additional environment variables can be specified to the collector to further extend the functionality.

Configuring the Docker Daemon

After the collector has been deployed and configured, modify the docker daemon configuration to start sending
logs to the collector. For a complete list of configuration options, see the Docker documentation.

The docker daemon is located in /etc/docker/daemon.json on the Linux host and in
C:\ProgramData\docker\config\daemon.json on the Windows host. For more about the docker
daemon.json, see the Docker documentation.

Add the following configuration to your daemon.json file, substituting <fluentd-address> for the address
of your log collector. If your log collector is deployed in the same docker daemon, then use 127.0.0.1:24224 as
your address.

{

"log-driver": "fluentd",

"log-opts": {

"fluentd-address": "<fluentd-address>",

"fluentd-async": "true"

}

}

21

https://docs.docker.com/config/containers/logging/fluentd/
https://github.com/zebrium/fluentd-output-zebrium
https://github.com/zebrium/ze-docker-log-collector
https://docs.docker.com/config/containers/logging/fluentd/
https://docs.docker.com/engine/reference/commandline/dockerd/#daemon-configuration-file

22

After the daemon file is updated, restart the docker daemon for the new changes to take effect. After this, you
should be able to view the logs of the log collector and verify that it is receiving and forwarding logs to Zebrium.

Environment Variables

Below is a list of environment variables that are available for configuration of the Fluentd container:

Environment Variables Default Description Required?

ZE_LOG_COLLECTOR_URL "" Zebrium URL Endpoint for log
ingestion.

Yes

ZE_LOG_COLLECTOR_TOKEN "" Zebrium ZAPI token for log ingestion. Yes

ZE_DEPLOYMENT_NAME "default" Zebrium Service Group Name. No

FLUSH_INTERVAL "60s" Buffer Flush Interval. No

ZE_LOG_LEVEL "info" Sets the log level for the output plugin. No

VERIFY_SSL "true" Enables or disables SSL verification on
endpoint.

No

Testing your Installation

After the Docker log collector software has been deployed in your environment, your container logs and incident
detection will be available in the Zebrium user interface.

Docker Container Log Collector

https://docs.sciencelogic.com/zebrium/latest/Content/Web_Zebrium/Key_Concepts.html#service-groups

File Upload (ze Tool)

File Upload (ze Tool)

The ze tool is the Zebrium command-line interface for uploading log events from files or streams. For more
information, see https://github.com/zebrium/ze-cli.

IMPORTANT: The ze tool was recently updated to version 2.0.0, and these documents refer to that version.

Getting Started

Prerequisi tes

l A collector token, which you can find by clicking the [Other] button under Log Collectors on the
Integrations & Collectors page (Settings () Integrations & Collectors) > in the Zebrium user interface.

l The URL to your instance of Zebrium, which you can also find by clicking the [Other] button under Log
Collectors on the Integrations & Collectors page (Settings () Integrations & Collectors) > in the
Zebrium user interface.

Instal l ing ze

1. Download the corresponding release from the ze-cli GitHub Releases page:
https://github.com/zebrium/ze-cli/releases.

2. Set up your path in your shell config to include the new binary.

3. Start a new terminal and test your installation by running the following command:

ze -v

IMPORTANT: Before you start uploading log files with the ze tool, you will need to set Enable Historic
Incident Detection to Yes in the Zebrium user interface. If you do not enable this setting, Zebrium cannot
create Root Cause reports for logs that are older than a few hours.

1. In the Zebrium user interface, go to the Root Cause Settings page (Settings () > Root Cause
Settings).

2. Set Enable Historic Incident Detection to Yes, and then click [Apply]. An Apply Change dialog
appears.

3. Click [OK]. Historic incident detection is enabled.

Configuration

The ze tool supports a variety of ways to set its parameters. You can set all parameters using arguments. To find
out the arguments that are available and required for each call, use ze -help or ze <subcommand> -

23

https://github.com/zebrium/ze-cli
https://github.com/zebrium/ze-cli/releases

24

help.

When leveraging the configuration file or environment variables, the ze tool uses the following precedence:
configuration file > environment files > command-line arguments.

Configuration File

The ze tool supports setting global variables in a .ze file for easy configuration. The default location of this is
$HOME/.ze; however, you can override this by passing a new path with the --config option.

The contents of the .ze file are as follows:

url: <ze_log_collector_url>

ze_token: <ze_log_collector_token>

where <ze_log_collector_token> is the collector token, which you can find by clicking the [Other]
button under Log Collectors on the Integrations & Collectors page (Settings () Integrations & Collectors)
> in the Zebrium user interface:

Environment Variables

The ze tool supports setting the following environment variables:

ZE_AUTH: XXXXXXXXXXXX

ZE_URL: https://cloud.zebrium.com

File Upload (ze Tool)

File Upload (ze Tool)

Commands and Help

Run the following command to upload log event data to your Zebrium instance from a file or stream (STDIN) with
appropriate metadata:

ze up

Run the following command for a complete list of upload options:

ze up -help

Run the following command for a complete list of ze command options:

ze -help

Examples

1. Ingest three log files associated with the same support case "sr12345" (does not assume a .ze
configuration file exists):

ze up --file=/casefiles/sr12345/messages.log --svcgrp=sr12345 --

host=node01 --log=messages --url=<ZE_LOG_COLLECTOR_URL> --auth=<ZE_

LOG_COLLECTOR_TOKEN>

ze up --file=/casefiles/sr12345/application.log --svcgrp=sr12345 --

host=node01 --log=application --url=<ZE_LOG_COLLECTOR_URL> --

auth=<ZE_LOG_COLLECTOR_TOKEN>

ze up --file=/casefiles/sr12345/db.log --svcgrp=sr12345 --host=db01 -

-log=db --url=<ZE_LOG_COLLECTOR_URL> --auth=<ZE_LOG_COLLECTOR_TOKEN>

2. Ingest a continuous tail of /var/log/messages. When reading from a stream, such as STDIN, rather than
from a file, ze requires the –log flag (assumes a .ze configuration file exists):

tail -f /var/log/messages | ze up --log=varlogmsgs --svcgrp=monitor01

--host=mydbhost

Batch Uploads

The ze tool supports batch uploads. For more information, see Zebrium batch uploads and ze CLI.

Migrating from the Perl-based ze Tool (version 1.0.0)

The previous Perl-based application, version 1.0.0 of the ze tool, can be found at
https://github.com/zebrium/ze-cli/tree/master/bin.

25

https://github.com/zebrium/ze-cli/tree/master/bin

26

Replacing the .zerc File

Starting with version 2.0.0 of the ze tool, the .zerc file was replaced with a .ze file that accepts the configuration
in yaml. This is described in the version 1.0.0 Configuration section: https://github.com/zebrium/ze-
cli#configuration-file.

As a result, the configurations that were specified as:

url=<ZE_LOG_COLLECTOR_URL>

auth=<ZE_LOG_COLLECTOR_TOKEN>

will now need to be listed as the following:

url: <ZE_LOG_COLLECTOR_URL>

auth: <ZE_LOG_COLLECTOR_TOKEN>

Environment Variables

The ze tool now supports setting the following environment variables:

ZE_URL = <ZE_LOG_COLLECTOR_URL>

ZE_AUTH = <ZE_LOG_COLLECTOR_TOKEN>

File Upload (ze Tool)

https://github.com/zebrium/ze-cli#configuration-file
https://github.com/zebrium/ze-cli#configuration-file

Zebrium Batch Uploads and ze Command-line Interface

Zebrium Batch Uploads and ze Command-line Interface

Zebrium batch uploads provide a way for grouping one or more related uploads so that they can be monitored
and managed later as a unit. Each batch has a unique ID that is used to identify the batch.

Batch Uploads vs Service Groups

Batch uploads are different from service groups in the following ways:

l Service groups provide a semantic connection across the data in uploads when looking for incidents.

l Batch uploadsmanage the overall phases of uploading and processing data in related logs. For example:
monitoring if a batch is completed, how many lines of data have been ingested for, the time taken, and so
forth.

Integrating Batch Uploads into the ze Tool

Batch uploads are integrated into the ze tool in the following main ways:

l A standalone upload, using ze up , automatically has a batch created for it.

l The batch ID is displayed when the upload is finished, so progress can be monitored using ze batch
state and ze batch show , which are described below.

l A set of related uploads, using ze up , can be associated with a specific batch ID that has been created
earlier using the ze batch begin.

l When all the logs for the batch are uploaded, the batch should be completed using ze batch end,

l If there are errors, the batch can be canceled using ze batch cancel.

l When ze batch end is used, all the logs for that batch are processed together.

ze batch Subcommand

The ze batch subcommand allows batch uploads to be created, completed, canceled, and monitored. The
subcommand uses the following syntax:

ze batch begin [--url=<url>] [--auth=<auth>] [--batchId=<batchId>]

ze batch end [--url=<url>] [--auth=<auth>] --batchId=<batchId>

ze batch cancel [--url=<url>] [--auth=<auth>] --batchId=<batchId>

ze batch state [--url=<url>] [--auth=<auth>] --batchId=<batchId>

ze batch show [--url=<url>] [--auth=<auth>] --batchId=<batchId>

TIP: Adding -h at the end of any of these commands will run the help menus.

27

28

Examples

Uploading a Large Log and Monitoring its Progress

When you successfully upload a log file, Zebrium displays a new batch ID, usually with a Processing state, which
means that the log was accepted by the AI/ML engine and is being scanned for incidents:

ze up ... --file=myfile.log

State for batch upload baxyz1748ca is Processing

Sent successfully

To monitor the batch until processing completes:

watch ze batch state ... --batchId=baxyz1748ca

When the batch upload is completed, the state changes, typically to Done. For additional information, use the ze
batch show option:

ze batch show ... --batchId=baxyz1748ca

Batch ID: baxyz1748ca

State: Done

Created: 2022-06-08T22:58:18Z

Completion Time: 2022-06-08T22:59:45Z

Expiration Time: 2022-06-10T22:59:45Z

Lines: 377943

Bundles Created: 2

Bundles Completed: 2

Upload time: 0:17 min:sec

Processing time: 1:20 min:sec

In this output, the expiration time refers to the batch upload metadata, not the uploaded logs or any detected
incidents.

Uploading Multiple Logs to be Processed Together

The ze batch begin and ze batch end subcommands can be used to create a batch upload that spans
several linked files. This allows them to be processed as a unit.

To begin a new batch:

ze batch begin ...

New batch upload ID: baxyz7357473aac1

To upload several logs as part of the same batch, using the --batchId option:

Zebrium Batch Uploads and ze Command-line Interface

Zebrium Batch Uploads and ze Command-line Interface

ze up --batchId=baxyz7357473aac1 ... --file=file1.log

ze up --batchId=baxyz7357473aac1 ... --file=file2.log

ze up --batchId=baxyz7357473aac1 ... --file=file3.log

To end the batch:

ze batch end ... --batchId=baxyz7357473aac1

You can monitor the batch upload as in the previous example by using ze batch state and ze batch
show.

29

Kubernetes Collector

Kubernetes Collector

The zlog-collector is the Zebrium log collector for Kubernetes.

Installing the Helm Chart

To install the Helm chart with the release name zebrium, run the following commands:

helm repo add zebrium http://charts.zebrium.com

helm upgrade -i zlog-collector zebrium/zlog-collector --namespace zebrium

--create-namespace --set

zebrium.collectorUrl=<YOUR_ZE_API_URL>,zebrium.authToken=YOUR_ZE_API_AUTH_

TOKEN,zebrium.deployment=

<YOUR_DEPLOYMENT_NAME>,zebrium.timezone=<KUBERNETES_HOST_TIMEZONE>

where <KUBERNETES_HOST_TIMEZONE> is the time zone setting on Kubernetes host, such as UTC or
America/Los_Angeles. If this option is not provided, the default value of UTC will be used.

Uninstalling the Helm Chart

To uninstall the Helm chart with the release name zebrium, run the following command:

helm delete zlog-collector -n zebrium

Additional Information

Log Path Mapping

Log path mapping is the process of detecting semantic items in log file paths (IDs, configurations, and tags) and
then including them in the Zebrium log data. You can enable this by providing a JSON mapping file to the log
collector, as described in the repository at https://www.github.com/zebrium/ze-fluentd-plugin.

To use this functionality with the supplied Helm chart, you will need to complete a customValues.yaml file and
supply that file to the Helm install command line with the following command:

helm install ... -f customValues.yaml ...

A prototype example_logPathMappings.yaml file is provided in the repository under the example directory,
with the following format:

overridePMFConfig: true

zebrium:

pathMapFile: "pathMapFile.json"

customPMFConfig: {

"mappings": {

30

https://www.github.com/zebrium/ze-fluentd-plugin

31

"patterns":["/var/log/remote_logs/(?<host>[^/]+)/.*"],

"tags": [],

"ids" : [

"host"],

"configs": []

}

}

Custom Namespace to Service Group Mapping

Matching a Custom Namespace to a Service Group is the process of dynamically assigning a service group to a
log stream based on the resources namespace. This is enabled by providing a JSON mapping file to the log
collector.

To use this functionality with the supplied Helm chart, complete a customValues.yaml file and supply that file to
the Helm install command line with the following command:

helm install ... -f customValues.yaml ...

A prototype example_ns_svcgrp.yaml file is provided in the repository under the example directory, with the
following format:

overrideSVCGRPConfig: true

zebrium:

svcgrpMapFile: "svcgrpMapFile.json"

customSVCGRPConfig: {

"mynamespace1" : "svcgrp1",

"mynamespace2" : "svcgrp1",

"mynamespace3" : "svcgrp3"

}

Values

Key
Typ
e

Default Description

daemonset.dnsPolicy strin
g

"ClusterFirst"

daemonset.nodeSelector obje
ct

{}

daemonset.priorityClassName strin
g

""

daemonset.tolerateAllTaints bool true

daemonset.tolerations list [] set ‘daemonset.tolerations
[0].operator=Equal,daemonset.
tolerations

Kubernetes Collector

Kubernetes Collector

Key
Typ
e

Default Description

[0].effect=NoSchedule,daemon
set.tolerations [0].key=node-
role.kubernetes.io/master’

extraEnv list []

image.name strin
g

"zebrium/zlog-collector"

image.pullPolicy strin
g

"Always"

image.tag strin
g

"latest"

resources.limits.cpu strin
g

"1000m"

resources.limits.memory strin
g

"1Gi"

resources.requests.cpu strin
g

"20m"

resources.requests.memory strin
g

"500Mi"

ruby.gcHeapOldObjectLimitFactor float 1.2

secret.enabled bool true

services.automountServiceAccountT
oken

bool true

services.automountServiceAccountT
okenSupported

bool false

updateStrategy strin
g

"OnDelete"

zebrium.authToken strin
g

""

zebrium.autoupdate strin
g

"1"

zebrium.bufferChunkLimitRecords int 40000

zebrium.bufferChunkLimitSize strin
g

"8MB"

zebrium.bufferRetryMaxTimes int 360

zebrium.bufferRetryTimeout strin
g

"1h"

zebrium.bufferRetryWait strin
g

"10s"

zebrium.bufferTotalLimitSize strin
g

"64GB"

32

33

Key
Typ
e

Default Description

zebrium.clusterName strin
g

"" Name of the Kubernetes Cluster
that the zlog-collector is
deployed into

zebrium.collectorUrl strin
g

""

zebrium.deployment strin
g

"default"

zebrium.disableEc2MetaData strin
g

"true"

zebrium.ec2ApiClientTimeoutSecs strin
g

"1"

zebrium.excludeNamespaceRegex strin
g

"" Regex String to Exclude
Namespaces, such as: ^(?!.*
(bar foo)) would exclude all
namespaces except foo and bar

zebrium.excludePath strin
g

"[\"/var/log/boot.log\",
\"/var/log/lastlog\"]"

zebrium.excludePodRegex strin
g

"" Regex String to exclude pods,
such as: ^fluentbit.*
would exclude all fluentbit pods
from collection

zebrium.flushInterval strin
g

"30s"

zebrium.flushThreadCount strin
g

"4"

zebrium.handleHostAsConfig bool false

zebrium.k8sApiSecretName strin
g

""

zebrium.logFile strin
g

""

zebrium.logLevel strin
g

"info"

zebrium.name strin
g

"zlog-collector"

zebrium.nodeLogsPath strin
g

"/var/log/*.log,/var/lo
g/syslog,
/var/log/messages,/var/
log/secure"

zebrium.pathMapFile strin
g

""

zebrium.svcgrpMapFile strin
g

""

Kubernetes Collector

Kubernetes Collector

Key
Typ
e

Default Description

zebrium.tailFromHead strin
g

"true"

zebrium.timezone strin
g

"UTC"

zebrium.useHostEtcHostnameFile bool false

zebrium.verifyK8sApiSSL bool true

zebrium.verifySSL strin
g

"true"

34

Linux Collector

Linux Collector

The Zebrium Fluentd output plugin, ze-fluentd-plugin, sends the logs you collect with Fluentd on Linux to
Zebrium for automated anomaly detection. You can access the plugin at the Zebrium GitHub repository at
https://github.com/zebrium/ze-fluentd-plugin.

For instructions on deploying the Zebrium Fluentd collector for Docker environments, see the instructions in
Docker Container Log Collectors.

System Requirements

The following Linux operating system distributions are supported:

l Ubuntu 16.04, 18.04, or 20.04

l CentOS or Red Hat Enterprise Linux 7 or 8

l Amazon Linux 2

Installing the Collector

1. If the environment uses a proxy server, seeOperating with a Proxy Server, below.

2. Determine which deployment name to use for the <YOUR_SERVICE_GROUP> value, below.

3. If your account has multiple deployments, go to the Zebrium user interface, click the Deployment drop-
down in the top-right navigation bar, and switch to the deployment you want to use to collect Windows
logs.

4. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () Integrations
& Collectors).

5. Click the [Linux] button under Log Collectors and copy the command from the Linux Log Collector
dialog. This command includes the Zebrium API server URL (<ZAPI_URL>) and authentication token
(<AUTH_TOKEN>) values.

6. Update the command from step 4 with the relevant values and run it in a shell on the host. The command
uses the following format:

curl https://raw.githubusercontent.com/zebrium/ze-fluentd-

plugin/master/install_collector.sh | ZE_LOG_COLLECTOR_URL=<ZAPI_URL>

ZE_LOG_COLLECTOR_TOKEN=<AUTH_TOKEN> ZE_HOST_TAGS="ze_deployment_

name=<YOUR_SERVICE_GROUP>" /bin/bash

The default system log file paths are defined by the ZE_LOG_PATHS environment variable. The default value is:

"/var/log/*.log,/var/log/syslog,/var/log/messages,/var/log/secure"

You can use the ZE_USER_LOG_PATHS environment variable to add more user-specific log file paths. For
example, to add app log files at /app1/log/app1.log and /app2/log/*.log, you can set ZE_USER_LOG_
PATHS to:

35

https://github.com/zebrium/ze-fluentd-plugin

36

"/app1/log/app1.log,/app2/log/*.log"

Upgrading the Collector

The upgrade command is similar to the installation command:

curl https://raw.githubusercontent.com/zebrium/ze-fluentd-

plugin/master/install_collector.sh | ZE_LOG_COLLECTOR_URL=<ZAPI_URL> ZE_

LOG_COLLECTOR_TOKEN=<AUTH_TOKEN> ZE_HOST_TAGS="ze_deployment_

name=<deployment_name>" OVERWRITE_CONFIG=1 /bin/bash

Please note that setting OVERWRITE_CONFIG to 1 will cause /etc/td-agent/td-agent.conf to be upgraded to
the latest version.

Uninstalling the Collector

To uninstall:

curl https://raw.githubusercontent.com/zebrium/ze-fluentd-

plugin/master/install_collector.sh | ZE_OP=uninstall /bin/bash

Installing on Hosts with Existing td-agent Configuration

You can add the Zebrium output plugin on a host with existing td-agent configuration without running the
Zebrium log collector installer.

1. Download the Zebrium output plugin from https://github.com/zebrium/ze-fluentd-
plugin/releases/download/1.37.2/fluent-plugin-zebrium_output-1.37.2.gem.

2. Run the following command in the same directory where fluent-plugin-zebrium_output-1.37.2.gem is
saved:

sudo td-agent-gem install fluent-plugin-zebrium_output

Linux Collector

https://github.com/zebrium/ze-fluentd-plugin/releases/download/1.37.2/fluent-plugin-zebrium_output-1.37.2.gem
https://github.com/zebrium/ze-fluentd-plugin/releases/download/1.37.2/fluent-plugin-zebrium_output-1.37.2.gem

Linux Collector

3. Add Zebrium output configuration to the /etc/td-agent/td-agent.conf file.

The following is an example configuration that duplicates log messages and sends one copy to Zebrium:

<match **>

@type copy

Zebrium log collector

<store>

@type zebrium

ze_log_collector_url "ZE_LOG_COLLECTOR_URL"

ze_log_collector_token "ZE_LOG_COLLECTOR_TOKEN"

ze_host_tags "ze_deployment_name=#

{Socket.gethostname},myapp=test2"

@log_level "info"

<buffer tag>

@type file

path "/var/td-agent/zebrium"

flush_mode "interval"

flush_interval "60s"

</buffer>

</store>

<store>

@type OTHER_OUTPUT_PLUGIN

...

</store>

</match>

Configuration for td-agent

The configuration file for td-agent is at /etc/td-agent/td-agent.conf. The following parameters must be
configured for your instance:

Parameter Description Note

ze_log_collector_
url

Zebrium log host
URL

Provided by Zebrium after your account has been created.

ze_log_collector_
token

Authentication token Provided by Zebrium after your account has been created.

path Log files to read Both files and file patterns are allowed. Files should be separated by
comma. The default value is
'"/var/log/*.log,/var/log/syslog,/var/log/messages,/var/log/secure"'

ze_host_tags Host meta data This parameter is optional. You can pass meta data in key-value
pairs, the format is: "key1=value1,key2=value2". We suggest at least
set one tag for deployment name: "ze_deployment_name=<your_
deployment_name>"

37

38

Parameter Description Note

ze_host_in_
logpath

Log path component
for remote host
name

This parameter is optional. For situations where a remote host name is
embedded in the log file directory path structure, e.g.
"/var/log/remote/<host>/...", this can be used as the originating
host for the log by setting this parameter to the path component to be
used for the hostname. The value should be an integer, 1-based. In
this example the configuration would be "ze_host_in_logpath=4".

ze_forward_tag Tag to specify log-
forwarded sources

This parameter is optional. It can be used to indicate sources that are
being used for remote log forwarding, by specifying a specific fluentd
"tag" to one or more sources. The default tag value is "ze_forwarded_
logs".

ze_path_map_file Path mapping file This parameter is optional. It allows embedded semantic data (ids,
tags,configs) in logfile paths to be parsed and added to Zebrium log
data. Set to the full path of a JSON file containing mapping
information. Default is empty string. See Log Path Mapping, below.

User Log Paths

User log paths can be configured via /etc/td-agent/log-file-map.conf. During log collector service startup, if
/etc/td-agent/log-file-map.conf exists, log collector service script writes log paths defined in /etc/td-
agent/log-file-map.conf to /etc/td-agent/conf.d/user.conf. Please note any user log paths configured at
installation time via ZE_USER_LOG_PATHS must be added to /etc/td-agent/log-file-map.conf to avoid
being overwritten.

{

"mappings": [

{

"file": "/app1/log/error.log",

"alias": "app1_error"

},

{

"file": "/app2/log/error.log",

"alias": "app2_error"

},

{

"file": "/var/log/*.log",

"exclude": "/var/log/my_debug.log,/var/log/my_test.log"

}

]

}

Fil tering Specif ic Log Events

To exclude certain sensitive or noisy events from being sent to Zebrium, you can filter them at the source
collection point:

Linux Collector

Linux Collector

1. Add the following in /etc/td-agent/td-agent.conf after other @include:

@include conf.d/log_msg_filters.conf

2. Create a config file /etc/td-agent/conf.d/log_msg_filters.conf that contains the following:

<filter TAG_FOR_LOG_FILE>

@type grep

<exclude>

key message

pattern /<PATTERN_FOR_LOG_MESSAGES>/

</exclude>

</filter>

3. Restart the td-agent with the following command:

sudo systemctl restart td-agent

Example

Below is an example log_msg_filters.conf file for filtering out specific messages from a Vertica log file at
/fast1/vertica_catalog/zdb/v_zdb_node0001_catalog/vertica.log.

In this example, the Fluentd tag for file is node.logs.<FILE_NAME_REPLACE_/_WITH_DOT> (replace all
slashes with dots in the file path):

<filter node.logs.fast1.vertica_catalog.zdb.v_zdb_node0001_cata-

log.vertica.log>

@type grep

<exclude>

key message

pattern /^[^2]|^.[^0]|TM Merge|Authenticat|[Ll]oad *[Bb]alanc[ei]|\

[Session\]

<INFO>|\[Catalog\] <INFO>|\[Txn\] <INFO>|Init Session.*<LOG>/

</exclude>

</filter>

Log Path Mapping

Log path mapping allows semantic information (like "tags", "ids", and "configs") to be extracted from log paths and
passed to the Zebrium backend. For example, this can include log-file specific host information or business-
related tags that are embedded in the path of the log file can be extracted.

You can configure log path mapping using a JSON file, with the following format:

{

"mappings": {

"patterns": [

39

40

"regex1", ...

],

"tags": [

"tag_name", ...

],

"ids": [

"id_name",...

],

"configs": [

"config_name",...

]

}

}

Set "patterns" to regular expressions to match the log file path. Each regex-named capture in a matching
regular expression will be compared to the "tags", "ids", and "configs" sections and added to the corresponding
record section(s). Use the ze_path_map_file configuration parameter to specify the path to the JSON file.

Configuring Multiple Zebrium Service Groups Within a Single
Collector

You can use a single td-agent to send log files to multiple Zebrium service groups. You should be familiar with
advanced fluentd configuration for this feature. We recommended that you review the official documentation at
https://docs.fluentd.org/configuration/config-file.

The following settings are required:

l Each service group needs to have its own source block and match block definitions.

l In each source block, the path should be as specific as possible.

l The paths in source blocks should not overlap.

l Each source block needs a unique pos_file (td-agent will create the file if it does not exist).

l Each source block should include a unique tag to specify which match block or service group should pick up
the log events.

l Each match block should match on the tag in its corresponding source block.

l ze_log_collector_url, ze_log_collector_token, and ze_log_collector_type will probably be the same in
all match blocks.

l ze_host_tags specifies the service group name with "ze_deployment_name=".

l each match block requires a unique buffer path, which will be created if the specified path does not exist.

The following example shows how this could be configured in /etc/td-agent/td-agent.conf:

<source>

@type tail

Linux Collector

https://docs.fluentd.org/configuration/config-file

Linux Collector

path "/var/log/auth.log"

format none

path_key tailed_path

pos_file /var/log/td-agent/position_file_1.pos

tag seamus1

read_from_head true

</source>

<source>

@type tail

path "/var/log/syslog"

format none

path_key tailed_path

pos_file /var/log/td-agent/position_file_2.pos

tag seamus2

read_from_head true

</source>

@include conf.d/user.conf

@include conf.d/containers.conf

@include conf.d/systemd.conf

<match seamus1>

@type zebrium

ze_log_collector_url "https://trial.zebrium.com"

ze_log_collector_token "<your token here>"

ze_log_collector_type "linux"

ze_host_tags "ze_deployment_name=seamusfirstservicegroup"

<buffer tag>

@type file

path /var/log/td-agent/buffer1/out_zebrium.*.buffer

chunk_limit_size "1MB"

chunk_limit_records "4096"

flush_mode "interval"

flush_interval "60s"

</buffer>

</match>

<match seamus2>

@type zebrium

41

42

ze_log_collector_url "https://trial.zebrium.com"

ze_log_collector_token "<your token here, should be the same as above>"

ze_log_collector_type "linux"

ze_host_tags "ze_deployment_name=seamussecondservicegroup"

<buffer tag>

@type file

path /var/log/td-agent/buffer2/out_zebrium.*.buffer

chunk_limit_size "1MB"

chunk_limit_records "4096"

flush_mode "interval"

flush_interval "60s"

</buffer>

</match>

You should set "patterns" to regular expressions to match the log file path. Each regex named captured in a
matching regular expression will be compared to the "tags", "ids", and "configs" sections and added to the
corresponding record sections. Use the ze_path_map_file configuration parameter to specify the path to the
JSON file.

Usage

Start and Stop Fluentd

You can start or stop the Fluentd agent with the following command:

sudo systemctl <start | stop> td-agent

Testing Your Installation

After the collector has been deployed in your environment, your logs and anomaly detection will be available in
the Zebrium user interface.

Troubleshooting

In the event that Zebrium requires the collector logs for troubleshooting, the logs are located in the following
locations:

1. Collector installation log: /tmp/zlog-collector-install.log.*

2. Collector runtime log: /var/log/td-agent/td-agent.log

In case of an HTTP connection error, check the spelling of the Zebrium host URL. Also check that any network
proxy servers are configured appropriately.

Contact Zebrium at support@zebrium.com if you need any assistance.

Linux Collector

mailto:support@zebrium.com

Linux Collector

Environment Variables

If the environment is using a proxy server to access the Internet then standard variables, such as http_proxy,
should be configured prior to installation. For more information, seeOperating with a Proxy Server.

Operating with a Proxy Server

If the agent environment requires a non-transparent proxy server to be configured, you should do this at two
points:

l The standard http_proxy and https_proxy environment variables must be set in the local environment
when the installer is run. This allows the installer to access the Internet to download necessary components.

l After installation is run, the system service also needs to have the same environment variables available. This
allows the Zebrium agent to communicate with the log host to send logs.

Sett ing the Proxy Server in a systemd Environment

If the agent service is run from systemd and a proxy server is in use, the service needs to have the appropriate
proxy configuration added to systemd. This may not be needed if your system is already configured, so that all
systemd services globally use a proxy.

To do this, after the installation is performed, edit the file /etc/systemd/service/td-
agent.service.d/override.conf to add environment configuration lines for the proxy server. For example:

Environment=http_proxy=myproxy.example.com:8080

After this is done, run the following commands to reload the systemd daemon and start the service:

sudo systemctl daemon-reload

sudo systemctl restart td-agent

43

Logstash Collector

Logstash Collector

Configuring Logstash to Send Log Data to Zebrium

IMPORTANT: If you have upgraded from version 7.x of Logstash to version 8.x, ECS compatibility will be on
by default. Depending on your environment and settings, you might need to turn off
ECS compatibility. For more information, see
https://www.elastic.co/guide/en/logstash/current/breaking-8.0.html#bc-ecs-compatibility.

In Zebrium, you will need to retrieve your Zebrium URL and Auth Token for to configuring the Logstash HTTP
Output plugin:

1. If your account has multiple deployments, go to the Zebrium user interface, click the Deployment drop-
down in the top-right navigation bar, and switch to the deployment you want to use to collect Windows logs.

2. Go to the Integrations & Collectors page (Settings () Integrations & Collectors).

3. In the Log Collectors section, clickOther.

4. Make a note of the values in the ZE_LOG_COLLECTOR_URL and ZE_LOG_COLLECTOR_TOKEN fields,
as you will use them configuring Logstash.

Next, you will need to log into Logstash to complete the fields required by Zebrium.

Zebrium requires certain fields (keys) to be defined for each log event. These definitions are part of the "filter"
section in the logstash configuration.

There are four required (and one optional) Zebrium fields that you can use to define the Logstash filter
configuration for proper Incident detection in Zebrium. An example Logstash configuration is shown below the
table:

Type Description Key Name Key Definition Requirement

Time Timestamp/ti
me zone of
each log
event.

@timestamp Timestamp of each log event
(rather than the time the event was
processed by Logstash if possible).

Required.

@ze_timezone Time zone of each log event. E.g.
"America/Los_Angeles"

Optional.
Note:
UTC is the
default.

Log
Generator

Indicates the
source of the
log event.

@ze_deployment_name Identifies the environment or
application domain. In the
Zebrium UI this is known as the
Service Group (see Note on
Service Groups below) E.g.
"production", "dev", "acme_
calendar_app"

Recommended.

44

https://www.elastic.co/guide/en/logstash/current/breaking-8.0.html#bc-ecs-compatibility

45

Type Description Key Name Key Definition Requirement

@ze_host Host name identifier Required.

@ze_logtype The basename of the log
source. E.g. "access.log",
"syslog". In the Zebrium UI, it
will be the logtype. In the
container world, this would
probably be the app name.

Required.

Log Events
Wrapped in
JSON

If the
application or
host log
events are
simply
wrapped in a
JSON and
contain a field
like "message"
: "2020-10-
23 04:17:37
mars INFO
systemd[1]:
Stopped
PostgreSQL
RDBMS.", then
these keys
need to be
defined.

@ze_msg If the JSON contains a field
representing a typical "log event"
<PREFIX INFORMATION>
<EVENT TEXT>, then this
Zebrium key should be set to the
value of that "log event". Zebrium's
machine learning with then
structure this field into an Event
Type (etype) used for Incident
detection.

Required
(if your log
events are
wrapped
in JSON).

@ze_sev If @ze_msg does not contain a
severity, then this field can be used
to explicitly set the severity based
on some other criteria or field
from the payload.

Optional.

External ID
Mapping

Map events in
Zebrium to
corresponding
events in
Elasticsearch.

@ze_xid Assign a unique id (UUID) to
every log event so that events
in Zebrium can be mapped to
corresponding events in
Elasticsearch through a
common UUID.

Required (if using
Kibana/Elasticsearch
to view Zebrium
Incidents).

Configurati
on metadata

Arbitrary
name/value
pairs
associated
with each log
event.

@ze_cfg_<name> Show as configuration
metadata in the Zebrium
user interface and in the
Outgoing Webhook
integration payload.For
example:

mutate {

add_field =>

{ "@ze_cfg_

myname1" =>

"myvalue1" }

Optional

Logstash Collector

Logstash Collector

Type Description Key Name Key Definition Requirement

}

Adds a metadata field
called myname1 with a
value of myvalue1.

Service Groups

A service group defines a failure domain boundary for anomaly correlation. This allows you to collect logs from
multiple applications and isolate the logs of one from another so as not to mix these in a Root Cause report.

If you are uploading multiple logs from different services in the same application, you would specify the same
service group for each log event from that application. For example, let's say that you have a database log, an
application log, and a middleware log for the Acme Calendar application. You would use an appropriate service
group when uploading all files from that application, such as acme_calendar_app.

Configuring Logstash Filters for Zebrium Required Fields (in Logstash)

1. Edit the appropriate Logstash configuration file to define the required Zebrium with Elastic Stack filter
definitions. All of these definitions are within the filter { } section of the configuration.

2. TIME FIELDS

l @timestamp should contain the timestamp from the log event (not the timestamp when processed
by Logstash). This is important for proper incident detection in Zebrium.

l Processing multi-line events should be enabled such that child log event lines are concatenated to
the parent event with newlines.

46

47

l The following code example shows an example configuration for meeting these requirements:

#---

-------#

Input Filter definition for processing multi-line events (if

needed) #

#---

-------#

codec => multiline {

pattern => "^%{TIMESTAMP_ISO8601}"

negate => true

what => "previous"

}

#---

---------------------------#

Grok and Date Filter for capturing log event timestamp in

@timestamp #

If it is not possible to easily capture the event timestamp as

@timestamp as shown here, #

it is OK to leave @timestamp as-is (i.e. use the logstash

generated timestamp) #

#---

---------------------------#

grok {

match => ["message", "(?m)%{TIMESTAMP_ISO8601:logdate}"] #

Note the multi-line capture pattern (?m)

}

date {

This will set @timestamp

match => ["logdate", "yyyy-MM-dd HH:mm:ss,SSS", "yyyy-

MM-dd HH:mm:ss"]

timezone => "America/Los_Angeles"

remove_field => ["logdate"]

}

#---------------------------------------#

Capture @ze_timezone

If not specified, UTC will be assumed

#---------------------------------------#

mutate {

Logstash Collector

Logstash Collector

add_field => { @ze_timezone => "America/Los_Angeles" } #

Specify timezone (IANA TZ Names)

if your log timestamps are missing the timezone info, otherwise

UTC is assumed (optional).

}

3. LOG GENERATOR FIELDS

#---#

Mutate Filter for capturing logtype, host and gid

PLEASE READ CAREFULLY - YOU MUST SUBSTITUTE THE

RIGHT-HAND SIDE OF THE ASSIGNMENTS WITH YOUR FIELD NAMES/VALUES

#---#

mutate {

add_field => { "@ze_deployment_name" => "%{my_deployment}" } #

assumes field "my_deployment" is part of the payload (recommended)

add_field => { "@ze_host" => "%{host}" } #

assumes field "host" is part of the payload (required)

add_field => { "@ze_logtype" => "%{logtype}" } #

assumes field "logtype" is part of the payload (required)

}

48

49

4. LOG EVENTS WRAPPED IN JSON FIELDS

This configuration is required if you have a "message" field in the JSON containing an unstructured log
event. In that case, we will structure the message and create an Event-Type automatically for Incident
Detection.

#---#

Required if your log events are wrapped in JSON

PLEASE READ CAREFULLY - YOU MUST SUBSTITUTE THE

RIGHT-HAND SIDE OF THE ASSIGNMENTS WITH YOUR FIELD NAMES/VALUES

#---#

mutate {

add_field => { "@ze_msg" => "%{message}" } # Capture the

unstructured log event from the message field - Zebrium will

automatically structure this into an etype (required)

add_field => { "@ze_sev" => "%{[log][severity]}" } # Capture the

severity explicitly since "message" field does not contain severity

(optional)

add_field => { "@ze_pfx" => "%{[log][process]}" } # Capture the

process name and add to the log event prefix so its part of the

automatic structuring (optional)

}

5. EXTERNAL ID MAPPING FIELD

NOTE: This is not part of a mutate filter.

uuid {

target => "@ze_xid" # Generate a Unique ID and assign to @ze_xid

}

6. SAVE YOUR CONFIGURATION FILE.

Configuring Log Event Output to Zebrium (in Logstash)

1. Edit the appropriate Logstash configuration file to define the required Zebrium with Elastic Stack output
definition.

Logstash Collector

Logstash Collector

2. Add the following Output Filter definition for Zebrium and substitute ZE_LOG_COLLECTOR_URL and ZE_
LOG_COLLECTOR_TOKEN with the values from step 5 of Configuring Logstash to Send Log Data to
Zebrium, above.

output {

if <SOME_CONDITION_IS_TRUE> {

http {

format => "json_batch"

http_method => "post"

url => "<ZE_LOG_COLLECTOR_URL>/log/api/v2/ingest?log_

source=logstash&log_format=json_batch"

headers => ["authtoken", "<ZE_LOG_COLLECTOR_TOKEN>"]

}

}

}

3. SAVE YOUR CONFIGURATION FILE.

Reload Logstash Configuration

Reload your Logstash configuration to pick up all changes. Data will now be ingesting into Zebrium.

Complete Example for filebeat and winlogbeat Data

It is highly recommended you read this carefully and follow the sample below:

input {

beats {

port => 5044

}

}

filter {

#--#

Add the UUID to all events before

cloning a copy for the zebrium only fields

#--#

uuid {

target => "@ze_xid" # Generate a Unique ID and assign to @ze_xid

}

#---#

50

51

Make a clone of the message so we only send

Zebrium add-ons to Zebrium and not to other

existing outputs like elastic

#---#

clone {

clones => ['zebrium']

}

#------------------------------------#

Add Zebrium specifics to the clone

#------------------------------------#

if([type] == 'zebrium') {

#--#

Common attributes across filebeats, winlogbeats

#--#

mutate {

add_field => { "[@metadata][zebrium]" => true }

}

mutate {

add_field => { "@ze_deployment_name" => "mydeployment01" }

}

if([host][hostname]) {

mutate {

add_field => { "@ze_host" => "%{[host][hostname]}" }

}

} else if ([host][name]) {

mutate {

add_field => { "@ze_host" => "%{[host][name]}" }

}

}

if([@ze_host]) {

mutate {

gsub => ["@ze_host", "^([^\.]+)", "\1"] # Use hostname without

fully qualified domain

}

} else {

mutate {

add_field => { "@ze_host" => "unknown" }

}

}

Logstash Collector

Logstash Collector

#------------------------------#

winlogbeat specific captures

#------------------------------#

if([agent][type] and [agent][type] == "winlogbeat") {

if([log][level]) {

mutate {

add_field => { "@ze_sev" => "%{[log][level]}" }

}

}

if([message]) {

mutate {

add_field => { "@ze_msg" => "%{[message]}" }

add_field => { "@ze_time" => "%{@timestamp}" }

}

}

if([event][provider]) {

mutate {

add_field => { "@ze_logtype" => "%{[event][provider]}" }

}

} else if([event][module]) {

mutate {

add_field => { "@ze_logtype" => "%{[event][module]}" }

}

} else {

mutate {

add_field => { "@ze_logtype" => "winlogbeat" }

}

}

if [@ze_logtype] and [@ze_logtype] =~ "^Microsoft\-Windows\-" {

Sometimes we see provider start with Microsoft-Windows-, so get

rid the that extraneous string and pickup the reaminder as the logtype

mutate {

gsub => ["@ze_logtype", "^Microsoft\-Windows\-(.*)$", "\1"]

}

}

}

#----------------------------#

filebeat specific captures

#----------------------------#

52

53

if([agent][type] and [agent][type] == "filebeat") {

if([message]) {

mutate {

add_field => { "@ze_msg" => "%{[message]}" }

}

}

if([log][file][path]) {

grok {

match => ["[log][file][path]","%{GREEDYDATA}[\\/]%{GREEDYDATA:-

logtype}\.log"]

}

mutate {

add_field => { "@ze_logtype" => "%{logtype}" }

remove_field => ["logtype"]

}

mutate {

Sometimes the log filename starts with the hostname, remove

that so all logs of the same type are grouped together

gsub => ["@ze_logtype", "^%{@ze_host}([^\d]+).*$", "\1"]

}

} else {

mutate {

add_field => { "@ze_logtype" => "filebeatlog" }

}

}

}

} # END OF ZEBRIUM

}

output {

SEND ZEBRIUM DATA TO ZEBRIUM ONLY

if [@metadata][zebrium] {

http {

format => "json_batch"

http_method => "post"

url => "<ZE_LOG_COLLECTOR_URL>/log/api/v2/ingest?log_

source=logstash&log_format=json_batch"

headers => ["authtoken", "<ZE_LOG_COLLECTOR_TOKEN>"]

proxy => "<proxy>"

}

Logstash Collector

Logstash Collector

THEN SEND DATA AS WAS DONE BEFORE ADDING ZEBRIUM

} else if [@metadata][pipeline] {

elasticsearch {

hosts => ["https://localhost:9200"]

index => "%{[@metadata][beat]}-%{[@metadata][version]}"

pipeline => "%{[@metadata][pipeline]}"

ssl => true

ssl_certificate_verification => true

cacert => '/etc/logstash/certs/ca.crt'

user => elastic

password => "${ES_PW}"

}

} else {

elasticsearch {

hosts => ["https://localhost:9200"]

index => "%{[@metadata][beat]}-%{[@metadata][version]}"

pipeline => beats

ssl => true

ssl_certificate_verification => true

cacert => '/etc/logstash/certs/ca.crt'

user => elastic

password => "${ES_PW}"

}

}

}

54

Syslog Forwarder

Syslog Forwarder

The Zebrium Syslog Forwarder accepts both syslogs and raw logs and forwards them to Zebrium for automated
anomaly detection.

The GitHub repository is located here: https://github.com/zebrium/ze-log-forwarder.

Preparation

1. By default, the syslog forwarder container uses TCP and UDP port 5514 for syslog, and TCP port 5170 for
TCP forwarding. Make sure clients can reach the host IP on those ports.

2. For syslog forwarding, make sure the host firewall does not block port 5514 for both TCP and UDP. For TCP
forwarding, make sure the TCP port 5170 is open.

3. Install Docker software if it is not installed.

Forward Syslog

Instal lation

1. To support syslog over TCP and UDP, run the following command as root, and be sure to replace items in
<BRACKETS> with real values:

docker run -d --name="zlog-forwarder" --restart=always \

-p 5514:5514/tcp \

-p 5514:5514/udp \

-e ZE_LOG_COLLECTOR_URL="<ZE_LOG_COLLECTOR_URL>" \

-e ZE_LOG_COLLECTOR_TOKEN="<ZE_LOG_COLLECTOR_TOKEN>" \

-e ZE_DEPLOYMENT_NAME="<DEPLOYMENT_NAME>" \

zebrium/log-forwarder:latest

2. To support syslog over TLS and UDP, create or copy the root certificate, the host certificate, and the host
private key files to a directory on the host that will be running log-forwarder container.

3. Run the following command as root:

docker run -d --name="zlog-forwarder" --restart=always \

-p 5514:5514/tcp \

-p 5514:5514/udp \

-v <USER_SERVER_CERTS_KEY_DIR>:/fluentd/tls

-e ZE_SYSLOG_PROTOCOL="tls" \

-e ZE_LOG_COLLECTOR_URL="<ZE_LOG_COLLECTOR_URL>" \

-e ZE_LOG_COLLECTOR_TOKEN="<ZE_LOG_COLLECTOR_TOKEN>" \

-e ZE_DEPLOYMENT_NAME="<DEPLOYMENT_NAME>" \

zebrium/log-forwarder:latest

55

https://github.com/zebrium/ze-log-forwarder

56

Client Configuration

1. Use the host IP as the syslog server IP address, and port 5514 for syslog port.

2. To configure rsyslog:

l To use UDP, add the following to the end of the rsyslog configuration file *.* @<LOG_
FORWARDER_HOST_IP>:5514

l To use TCP, add the following to the end of the rsyslog configuration file *.* @@<LOG_
FORWARDER_HOST_IP>:5514

l To use TLS:

o Copy client_configs/rsyslog/25-zebrium.conf to /etc/rsyslog.d/.

o Open the file, replace CLIENT_SSL_CERT_PATH with the real client SSL certificate path, change
SERVER_HOST to the hostname running log-forwarder container, and change SERVER_
DOMAIN_NAME to the domain of the host running the log-forwarder container.

o Restart the rsyslog service.

Setup

No additional setup is required.

Forward Log via TCP

Instal lation

Run the following command as root, and be sure to replace items in <BRACKETS> with real values:

docker run -d --name="zlog-forwarder" --restart=always \

-p 5170:5170/tcp

-e ZE_LOG_COLLECTOR_URL="<ZE_LOG_COLLECTOR_URL>" \

-e ZE_LOG_COLLECTOR_TOKEN="<ZE_LOG_COLLECTOR_TOKEN>" \

-e ZE_DEPLOYMENT_NAME="<DEPLOYMENT_NAME>" \

-e ZE_TCP_HOSTNAME="<TCP_FORWARDER_HOSTNAME>" \

-e ZE_TCP_LOGBASE="tcp_forwarder" \

-e ZE_TIMEZONE="<TIME_ZONE>" \

zebrium/log-forwarder:latest

where <TIME_ZONE> is timezone of the log messages, such as "UTC" or "EDT".

Setup

No additional setup is required.

Syslog Forwarder

Syslog Forwarder

Testing your installation

After the log forwarder software has been deployed in your environment, your logs and anomaly detection will be
available in the Zebrium user interface.

57

VMware vSphere Collector (Beta)

VMware vSphere Collector (Beta)

Legal

The VMware vSphere collector is provided by ScienceLogic with the following terms:

You may use, modify, reproduce, and distribute this freely and without restriction, provided as a condition of our
provision to use the software you acknowledge that the software is provided as-is, and ScienceLogic will not have
any monetary liability in association with the distribution of this software.

Overview

To collect logs for Zebrium, you will need to set up a Zebrium syslog forwarder within the vSphere environment
and configure vCenter to forward syslog events to the Zebrium syslog forwarder.

NOTE: This feature is currently Beta. For access to this collector, contact Zebrium at support@zebrium.com.

Prerequisites

l VMware vSphere 6.7 or later

l VMware vCenter Server

l Linux VM for forwarding syslogs

Installation and Configuration

Instal l ing the Zebrium Syslog Forwarder

1. Create a VM for hosting the Zebrium syslog forwarder. An Ubuntu 22.04 server with 1 CPU, 2G RAM, and
16G HDD is recommended.

2. Install the Zebrium syslog forwarder on the new VM by following the directions in the Syslog Forwarder
topic.

Configuring vCenter Syslog Collection

Configure your vCenter Server to forward vCenter syslogs to your new VM by following the directions here:
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.monitoring.doc/GUID-9633A961-
A5C3-4658-B099-B81E0512DC21.html

58

mailto:support@zebrium.com
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.monitoring.doc/GUID-9633A961-A5C3-4658-B099-B81E0512DC21.html
https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.monitoring.doc/GUID-9633A961-A5C3-4658-B099-B81E0512DC21.html

59

Configuring ESXi Host Syslog Collection

1. (Optional) For environments with fewer than 30 hosts, you can configure ESXi logs to be sent to the
vCenter server, which in turn will forward the logs to Zebrium. For more information, see
https://kb.vmware.com/s/article/2003322

2. (optional) For environments where forwarding ESXi logs to vCenter is not ideal, you can configure ESXi
host logs to be sent directly to the Zebrium syslog forwarder. You can accomplish this in one of the
following ways:

l Configure the ESXi syslog settings via vSphere Inventory Advanced System Settings:
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.esxi.upgrade.doc/GUID-
9F67DB52-F469-451F-B6C8-DAE8D95976E7.html.

l Configure the ESXi Syslog.global.logHost settings with the esxcli tool:
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.esxi.install.doc/GUID-
8981F5FA-BB2A-47FB-A59A-7FC5C523CFDE.html.

Collecting VM Logs

To send logs to Zebrium directly from VMs, please see the following topics:

l Linux-based VMs: Linux Collector

l Windows-based VMs:Windows OTel Collector

l Other VMs: Configuring Log Collectors and File Uploads

NOTE: Some VM operating systems might support forwarding syslogs. Forwarding the VM syslogs to the
Zebrium syslog forwarder created in the Installing the Zebrium Syslog Forwarder topic might be
an efficient VM log collection solution.

VMware vSphere Collector (Beta)

https://kb.vmware.com/s/article/2003322
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.esxi.upgrade.doc/GUID-9F67DB52-F469-451F-B6C8-DAE8D95976E7.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.esxi.upgrade.doc/GUID-9F67DB52-F469-451F-B6C8-DAE8D95976E7.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.esxi.install.doc/GUID-8981F5FA-BB2A-47FB-A59A-7FC5C523CFDE.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.esxi.install.doc/GUID-8981F5FA-BB2A-47FB-A59A-7FC5C523CFDE.html

Windows OTel Collector (Beta)

Windows OTel Collector (Beta)

Legal

The Windows OTel collector is provided by ScienceLogic with the following terms:

You may use, modify, reproduce, and distribute this freely and without restriction, provided as a condition of our
provision to use the software you acknowledge that the software is provided as-is, and ScienceLogic will not have
any monetary liability in association with the distribution of this software.

Overview

The following instructions explain how to install the Zebrium Open Telemetry (OTel) Collector on a Windows
system using PowerShell.

NOTE: This feature is currently Beta. For access to this collector, contact Zebrium at support@zebrium.com.

Prerequisite

The Windows OTel collector requires you to install the Visual Studio 2015 or later Redistributable package. For
more information, see https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-
170#visual-studio-2015-2017-2019-and-2022.

Zebrium Windows OTel Collector Installation

Before starting, you will need to obtain a copy of the Zebrium OTel Collector .zip file for Windows:

1. Unzip the otelcol-sciencelogic-zebrium_Windows_x86_64.zip archive:

Expand-Archive ./otelcol-sciencelogic-zebrium_x86_64.zip

cd otelcol-sciencelogic-zebrium_x86_64

2. If your account has multiple deployments, go to the Zebrium user interface, click the Deployment drop-
down in the top-right navigation bar, and switch to the deployment you want to use to collect Windows
logs.

3. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

4. In the Log Collectors section, click the [Windows] button. The Windows Log Collector dialog appears.

5. In the dialog, copy your Zebrium log collector URL and log collector token and click [Close].

60

mailto:support@zebrium.com
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#visual-studio-2015-2017-2019-and-2022
https://learn.microsoft.com/en-us/cpp/windows/latest-supported-vc-redist?view=msvc-170#visual-studio-2015-2017-2019-and-2022

61

6. Edit the otelcol.yaml file, and paste the Zebrium log collector URL and token from step 5 into the
appropriate place in the following two lines:

endpoint: <ze_log_collector_url>

ze_token: <ze_log_collector_token>

NOTE: More advanced configuration options are suggested in the comments if needed.

7. Run the following install script as Administrator:

cmd.exe /c .\InstallSciencelogicOpenTelemetryCollector.bat

This command installs the collector as a Windows Service that generates text logs in the Logs subdirectory.

8. After you complete these steps, logs will start streaming to your Zebrium account. In a few minutes, you
can view log activity in the Zebrium user interface by going to the Ingest History page (Settings () >
Ingest History).

Uninstalling Zebrium Windows OTel Collector

To remove the Zebrium Windows OTel service, run the following command:

cmd.exe /c .\UninstallSciencelogicOpenTelemetryCollector.bat

Windows OTel Collector (Beta)

Chapter

4
Suggestions and Root Cause Reports

Overview

This chapter explains suggestions in Zebrium and how to asses and disposition them, and it also explains how to
use Root Cause reports to quickly address issues.

This chapter covers the following topics:

Suggestions in Zebrium 63

Managing Suggestions in the Zebrium User Interface 65

Using the Filters on the Alerts Page in Zebrium 65

Using the Timeline Widget on the Alerts Page 67

Root Cause Reports 69

Assessing Suggestions 73

Key Use Cases for Suggestions and Root Cause Reports 75

62

63

Suggestions in Zebrium

Zebrium Root Cause as a Service (RCaaS) uses unsupervised machine learning on logs to automatically find
the root cause of software problems. It does not require manual rules or training, and it typically achieves
accuracy within 24 hours.

As Zebrium ingests logs, the Zebrium artificial-intelligence machine-learning (AI/ML) engine analyzes the logs,
looking for abnormal log line clusters that resemble problems, such as abnormally correlated rare and error
events from across all log streams.

When the AI/ML engine detects one of these "abnormal" clusters, it generates a suggestion, which appears on
the Alerts page (the home page) of the Zebrium user interface along with the existing alerts:

On the Alerts page, the summary report for a suggestion and an alert contains the following main elements:

l AI-generated title. Displaying at the top of the summary pane, this title is generated using GPT Services
that use new Generative AI models. You can enable or disable GPT services for a specific deployment of
Zebrium by using theGPT Services column on the Deployments page (Settings ()> Deployments).

l Word Cloud. A set of relevant words chosen by the AI/ML engine from the log lines contained in the alert.
Click a word in the cloud to highlight that word in the list of logs on the left.

l Significance icon. Since not all suggestions that the AI/ML engine generates will relate to problems that
actually impact users, the engine attempts to reason over the data and assess whether a problem actually
requires attention. Hover over this icon at the top of the list of logs to view the confidence level of the AI/ML
engine for this suggestion. A red icon () means "High" confidence, and a yellow icon () means "Medium"
confidence.

l AI Assessment . Since not all suggestions that the AI/ML engine generates will relate to problems that
actually impact users, the AI/ML engine attempts to reason over the data and assess whether a problem
actually requires attention. Depending on the quality of the data, some suggestions might not include an AI
Assessment. This value is shown in the Zebrium user interface as an AI Assessment value of one of the
following:

o "No Attention Needed" for content that the AI/ML engine assesses as unlikely to require immediate
attention.

o "Needs Your Attention" for content that the AI/ML engine believes should be looked into.

l Root Cause (RCA) Report Summary. The report contains the actual cluster of anomalous log lines that
was identified by the AI/ML engine. Up to eight of these log lines are shown in the summary view. You can
click anywhere in the summary to view the full Root Cause report.

Suggestions in Zebrium

Suggestions in Zebrium

l Alert Key. One or two log lines, denoted with a key icon (), that are used to identify the suggestion if this
type of suggestion occurs again. The alert keys make up an alert rule.

You can click anywhere in the summary report for a suggestion or an alert to view a more detailed Root
Cause Report page for that suggestion or alert. For more information, see Root Cause Reports.

IMPORTANT: Suggestions are generated when the AI/ML engine finds a cluster of correlated anomalies in
your logs that resembles a problem. However, this does not mean that all suggestions relate
to actual important problems. This is especially true during the first few days of using Zebrium,
as the AI/ML engine learns the normal patterns in your logs.

When you start getting suggestions on the Alerts page, you can review the word clouds and event logs that
display in the summary views for the Root Cause reports for the suggestions. As a best practice, identify a specific
time frame when a possible problem occurred, and then start looking at the reports that have the most interesting
or relevant information related to the possible root cause of the problem.

You can choose to "accept" or "reject" a suggestion. For more information, see Assessing Suggestions.

You can also decide on the action to take if the same kind of alert type occurs again, such as sending a
notification to Slack, email, or another type of notification. For more information, seeNotification Channels.

If you currently use SL1 from ScienceLogic, you can configure an integration that lets you view Zebrium
suggestions in SL1 dashboards as well as on the SL1 Events page. For more information, see ScienceLogic
Integrations.

64

65

Managing Suggestions in the Zebrium User Interface

The Alerts page is also the Zebrium home page, and you can get to this page by clicking the Ze icon () at the
top left of any page in the Zebrium user interface:

This page displays a list of filtering and search options at the top of the page. You can use these filters to manage
the number of suggestions and alerts that display on the Alerts page. There is also a Search bar for text or
regular expression (regex) searches, and a toggle for Core Events and All Events. For more information about
filtering, see Using the Filters on the Alerts Page in Zebrium.

Below the filters is a Timeline widget that displays a set of icons organized by time. These icons represent all
known suggestions, accepted alerts, custom alerts, and rejected alerts for a specific period of time. For more
information about the Timeline widget, see Using the Timeline Widget on the Alerts Page.

The Root Cause (RCA) reports that correspond to the items in the Timeline widget display in a summary view
below the widget. If you click an icon in the Timeline widget, the RCA report for that icon moves to the top of the
summary view below the widget. For more information about RCA reports, see Root Cause Reports.

Using the Filters on the Alerts Page in Zebrium

At the top of the Alerts page, the [Time Range] button () lets you change the time frame of the alerts.
The default time frame for displaying alerts is the last 7 days.

Managing Suggestions in the Zebrium User Interface

Using the Filters on the Alerts Page in Zebrium

In addition, you can click the [Filtering] button () to select filters that will control which RCA reports
display on the Alerts page. The Selected Filter dialog appears:

You can filter by log types (which typically match container names), service groups, hosts, tags, and more. Any
RCA reports that match these attributes will be shown in the filtered view.

TIP: You can click the Views icon () to change the view that is currently displayed on the Alerts page. A
view is a predefined set of filters for the user interface. You can also create your own view based on the
filters you use regularly. For example, if you set up your filters on the Selected Filter dialog to only see
the most recent occurrence in a specific service group, for the past seven days, then after you set those
filters, you can click [Add view] on the Viewsmenu to create a view for those filters. Later you can select
that new view from the Viewsmenu to get your customized set of filters.

Most of the filters on the Selected Filter dialog are self-explanatory. However, you should pay attention to the
following filters, especially if you are not seeing the reports you want to see on the Alerts page:

l Alert Occurrences. By default, only the first occurrence of a suggestion will be shown in the list, so that if
the same type of alert occurs more than once, you will only see its first instance. You can change this if you
wish to see all alert occurrences, the most recent alert occurrences, or other options.

l Alert Rule State. You can filter by some or all custom alerts, suggestions, accepted alerts, or rejected alerts.

l Significance. The AI/ML engine assigns a value of Low, Medium, or High to each suggestion, based on
how likely that suggestion is related to a problem. By default, only suggestions with a significance of
Medium and High are shown on the Alerts page, so if you want to also see suggestions with Low
significance, select Low or greater for this filter.

l AI Assessment . Since not all suggestions that the AI/ML engine generates will relate to problems that
actually impact users, the AI/ML engine attempts to reason over the data and assess whether a problem
actually requires attention. This value is displayed as the AI Assessment. You can filter by Needs Your
Attention and No Attention Needed.

You can further filter the log events by typing a text string or a PCRE2-compliant regular expression into the
Search field at the top of the page. Regular expression filters should use the syntax "/regex/". You can also
change the search scope by toggling between Core Events and All Events on the Search field.

66

67

TIP: You can also highlight any desired alphanumeric strings within the visible log events by typing text or a
regular expression in the Highlight Events that Match field at the bottom right of the Alerts page. This
field also displays on the RCA Report pages.

If you do not see a report in a time of interest where you believe a problem occurred, the AI/ML engine might
have suppressed it by the existing Significance filter settings.

You can also force the AI/ML engine to do a deep scan and create a report on demand by clicking the [Scan for
RC] button on the Settingsmenu () and specifying a time of interest. Any Root Cause reports generated by that
scan include a lightning bolt icon and the text "Result of RC Scan".

Using the Timeline Widget on the Alerts Page

The Timeline widget displays at the top of the Alerts page, and it lets you control which RCA report summaries
display in the lower portion of the page:

NOTE: The Timeline widget displays a list of the currently active filters at the top of the widget. For more
information about filtering, see Using the Filters on the Alerts Page in Zebrium.

The main section of the Timeline widget contains a time-based chart with different icons that represent the
following Zebrium elements:

l Suggestion (). A yellow diamond represents a potential problem found by the AI/ML engine. If you go to
the RCA Report page for that suggestion, you can choose to accept or reject that suggestion.

l Accepted Alert (). A green circle represents a suggestion that you or another Zebrium user has accepted.

l Custom Alert (). A blue triangle represents a custom alert, which you or another user defined by writing a
regular expression in Zebrium that searches for a specific pattern.

l Rejected Alert (). A red triangle represents a suggestion that you or another Zebrium user has rejected as
not relevant to your environment. This icon only appears if you included Rejected as a filter for the Alert
Rule State on the Filtering dialog.

When you click an icon in the Timeline widget, the summary view for the corresponding RCA report for that
suggestion or alert moves the top of list below the Timeline widget. Click anywhere in the summary view to open
its RCA Report page.

Using the Timeline Widget on the Alerts Page

Using the Timeline Widget on the Alerts Page

When you hover over an icon in the chart, a pop-up window appears with date and time information about that
specific suggestion, along with a title and word cloud that contains suggestions and information about the likely
root cause:

The Timeline widget also includes the following graphical elements:

l Spike. A gray vertical line appears on the widget if too many suggestions or alerts exist for a specific time
for the user interface to show them all:

You can click and drag the spike to the left or right to zoom in so you can see all of the suggestions for that
specific time. Click [Back] to go back to the default view settings.

l Log Lines timeline. Hover over this gray line to view a pop-up window that displays the number of log
lines that have been ingested within this time interval.

l Rare Events timeline. Hover over this red line to view a pop-up window that displays the number of
events marked as rare, such as possible issues or problems, that have been ingested within this time
interval. Rare events are often the most diagnostic anomalies in the logs.

TIP: Click the [Refresh] button to get the most recently updated data for this page.

68

69

When you suspect a problem, you can drill down and view the RCA report from the timeline or the report
summary view. The RCA Report page for that suggestion or alert appears. For more information, see Root
Cause Reports.

Root Cause Reports

On the Alerts page, you can click anywhere in the summary view for a suggestion to open the Root Cause
Report page. This page displays a more complete list of log events compiled by the AI/ML engine to describe this
particular problem:

A typical Root Cause Report page contains the following elements:

l If this is a suggestion, the top pane states "Suggested by AI/ML", and you have the option of accepting or
rejecting the suggestion:

o If you accept the suggestion, Zebrium will create a rule for the settings for that suggestion in the
future.

o If you reject the suggestion, Zebrium will no longer show a suggestion with the same settings as that
suggestion in the widget.

For more information, see Assessing Suggestions.

l At the top right of the page is a panel that shows the number of occurrences of this type of event, a drop-
down for each occurrence, and a sine wave depicting the time of each occurrence.

Root Cause Reports

Root Cause Reports

l The next pane down on the left contains a toggle for Core Events or All Events:

o Core Events display by default, and they are the set of events that the AI/ML engine determined were
the most likely events to explain the problem. Typically, the "core" list in an RCA report will contain
somewhere between five and 25 log events.

o All Events includes an much more expanded list of events that includes other surrounding
anomalous log events, warnings, and errors surrounding this core list of events.

l On the same pane, you can also toggle between Wrap () and No Wrap () for displaying the logs in
the pane below. You can also click [Raw Event Text] to view the log contents as text in a new dialog, in
case you need to copy large amounts of text.

l The large pane on the left contains the list of log events that make up the report. You can think of these as
the key log lines that explain a problem. You will usually see a combination root cause indicator and
symptom log lines. There are typically 10-100 log lines in a report that span multiple log types.

The columns in each log line show the event timestamp, a severity level, if available, the log type or
service, and the text of the log. In addition, the following icons might appear to the left of some of the log
events in the pane:

o Alert Key (). One or two log events in the report might display this icon, which signifies that the
AI/ML engine is using these event logs as a "signature" or alert rule to detect if the same type of alert
occurs again in the future. Click the key icon () to view the definition of the key. To ensure accurate
detection in the future, verify and edit the Alert Keys on the Settingsmenu () > Alert Rules
& Settings page to match the one or two log events that best characterize this type of problem.

o Log line of interest (). This icon appears next to any log events in the report that the AI/ML engine
has identified as possible events to explore. These events appeared in the report summary view on the
Alerts page. This is just an informational icon.

NOTE: You can hover over a log event to access the Actions button, which lets you perform
additional actions related to that log event. For more information, see Additional Actions on
the RCA Report Page.

l The bottom pane on the left lists the numbers of events that are currently being displayed. This number
changes if you click a word in the word cloud, or if you type text or a regular expression in the Highlight
Events that Match field.

70

71

l In the group of smaller panes to the right, the top pane contains the Insights panel, which contains a Title,
a Summary, and Details that are generated with GPT Services that use new Generative AI models. You can
enable or disable GPT services for a specific deployment of Zebrium by using theGPT Services column
on the Deployments page (Settings ()> Deployments).

l The next pane displays an AI Assessment , where relevant (not all suggestions will include an AI
Assessment, depending on the quality of the data). For this pane, the AI/ML engine attempts to reason
over the data and assess whether a problem actually requires attention. This value is shown in the Zebrium
user interface as an AI Assessment value of one of the following:

o "No Attention Needed" for content that the AI/ML engine assesses as unlikely to require immediate
attention.

o "Needs Your Attention" for content that the AI/ML engine believes should be looked into.

l The next pane displays the significance of the alert assigned by the AI/ML engine, from Low to High. The
pane also includes the name of the Service Group impacted by the event.

l The next pane displays the word cloud, which displays a set of keywords that the AI/ML engine selected
from the report. For each word, the font size denotes how rare it is (smaller is more rare), and the color
denoting how "bad" the underlying events were. For example, a word for a critical event displays in red.

TIP: Click a word in the cloud to highlight the log events that contain that word in the list of logs on the
left.

Root Cause Reports

Root Cause Reports

l Under the word cloud is a histogram that lists the number of events over time. You can click each gray
rectangle in the histogram to see the number of events in each time period. Below the histogram are
vertical rows of colored dots that represent the log events from the list on the left, arranged by micro-
service and host name. The horizontal location of the dots are chronological, based on the histogram at
the top of the pane. When you click a dot, the corresponding log event is highlighted on the left.

Additional Actions on the Root Cause Report Page

On the Root Cause Report page, you can hover over a log event to access the Actions button, which lets you
perform the following actions related to that log event:

l Peek. Peek mode shows the surrounding log lines from the log type (log stream) itself, and you can drill
down on logs from a particular host or pod. This is similar to looking at the log file for a single log
generator. To exit Peek mode, click the [Unpeek] button.

l Annotations. For an accepted alert, you can add notes relevant to this event log. A note icon displays to the
right of the event log, with a red badge listing the number of notes for that log.

l Related Incidents. Searches for other incidents that include this event. You can view the RCA report
summaries for the related events for more information about the event.

l Include this event type in future alerts. Adds this event type to future alerts.

l Exclude this event type in future alerts. Excludes this event type from future alerts.

l Create a custom alert rule using this event type. Lets you create a custom alert rule using this event type.

l Advanced: These options let you create and use custom, include, and exclude Regular Expressions for this
log event.

On the Root Cause Report page for an Accepted Alert, you can perform the following activities by clicking the
[Actions] button at the top of the page:

l Edit Alert Rule Metadata. Opens the Edit Alert Metadata dialog so you can update the metadata of the
alert rule.

l Edit Alert Rule. Opens the Edit Alert Rule Keys pane so you can change the alert keys, if needed.

l Send One Time Alert. Lets you send a one-time alert to the notification channel you specify here. For more
information, seeNotification Channels.

72

73

l Reject this Alert. Changes the status of the accepted alert to rejected. For more information, see Rejecting a
Suggestion.

l Revert to Suggested. Changes the status of the accepted alert to a suggestion.

TIP: The [Show Related Alerts and Suggestions] button on the Root Cause Report page for a custom
alert lets you augment the alert with related suggestions that the AI/ML engine uncovers in the
surrounding log lines. You can use this button to help determine the root cause of a problem by showing
a list of other alerts and suggestions that contain the same event.

Assessing Suggestions

The AI/ML engine constantly scans logs for clusters of correlated anomalies that resemble problems. When it
detects a potential problem, it proactively generates a suggestion. Be aware that while some suggestions will
relate to important issues or problems, others will not be useful at all. As a result, do not think of suggestions in
the same way that you normally think about alerts in other tools.

On a regular schedule, you should assess (or disposition) your suggestions in Zebrium by accepting, rejecting, or
ignoring the suggestions, as this will help improve the accuracy of the suggestions you will see in the future.

Accepting a Suggestion

You should Accept a suggestion if it relates to a real problem. If you accept the suggestion, Zebrium creates a
rule for the settings for that suggestion in the future. Accepting a suggestion turns it into a Accepted Alert and
creates an Accepted Alert Rule.

NOTE: If you accept a suggestion but no longer want to use it as a rule, you can revert it to make the rule
back into a suggestion again.

To accept a suggestion:

1. On the RCA Report page for the suggestion, click [Accept]. The Edit Alert Rule Metadata dialog
appears:

Assessing Suggestions

Assessing Suggestions

2. Complete the following fields:

o Title. Edit the name for this rule, or add a name if no name exists.

o Summary. Expand this field and edit the summary for this rule, or add a summary if none exists.

o Detail. Expand this field and edit the detail text for this rule, or add detail text if none exists.

o Send Alert To. Alerts will be sent to all dashboards that you have configured, along with any
notification channel you specify here. You can set up notification channels in the Integrations and
Collectors page. For more information, seeNotification Channels. This field is required, but you
can also click [Select No one] as an option.

o Owner. Type the name of the owner of this rule.

o Alert Priority. Set the priority from P1 (highest) to P5 (lowest). Required.

o Manual Tags. Select a tag as needed.

o Alert Volume. Select whether you want to alert at most once per day, once per hour, or once per
minute.

o Tracking URL. Add a URL to use for tracking this rule.

3. Click [Save & Edit Alert Rule], the Edit Alert Rule Keys pane appears:

4. You can use the currently selected keys, or you can edit one or both keys.

5. To edit the alert keys, click a key from the top list to remove it. Click a key from the second list of keys to use
that key instead.

6. Click [Save] and then click [View Alert List] to return to the Alerts page.

74

75

Rejecting a Suggestion

To reject a suggestion:

1. On the RCA Report page for the suggestion, click [Reject]. A dialog appears with the options to Ignore or
Reject.

2. Click [Ignore] if you are not sure if it is a good suggestion, which gives other members of your team the
option of reviewing the suggestion. The suggestion will still appear on the Alerts page, but will not generate
a suggestion in the future.

3. Click [Reject] if you are sure that the suggestion is not helpful. Zebrium will hide the suggestion on the
Alerts page, and will not notify you of future occurrences of the same suggestion type.

NOTE: You can restore a rejected alert by filtering for Rejected Alerts, navigating to the RCA report page
for that alert, and clicking [Restore & Accept]. The alert is restored and marked as accepted, and
Zebrium creates a rule based on the selected event keys. You can edit the alert metadata as needed
before saving it.

Key Use Cases for Suggestions and Root Cause Reports

This section covers the main use cases and concepts related to using Zebrium, along with some tips and best
practices.

Automated Root Cause Analysis Only

When you know a problem has occurred, you can look at Zebrium alerts around the time of the problem. As long
as details of the problem are present in the logs, you should find that the AI/ML engine has generated a useful
alert containing a report that explains the root cause of the problem. In this mode, the AI/ML engine typically
identifies the root cause more than 90% of the time.

For more information, see https://www.zebrium.com/cisco-validation.

Proactive Detection and Root Cause Analysis

The AI/ML engine constantly scans logs for clusters of correlated anomalies that resemble problems. When it
detects a potential problem, it proactively generates a suggestion. Be aware that while some suggestions will
relate to important issues or problems, others will not be useful at all. As a result, do not think of suggestions in
the same way that you normally think about alerts in other tools.

Instead of paging an operator with each new suggestion, as a best practice you should review suggestions at a
convenient time periodically. When reviewing a suggestion, you can choose to:

l Accept the suggestion. This creates an alert rule that will detect if the same thing happens in the future.

l Reject the suggestion. This tells the AI/ML engine not to create such an alert in the future.

l Ignore the suggestion without doing anything more; you will need to click the [Reject] button for the
suggestion first. Future occurrences will be filtered out by default.

Key Use Cases for Suggestions and Root Cause Reports

https://www.zebrium.com/cisco-validation

Key Use Cases for Suggestions and Root Cause Reports

TIP: Spending a few minutes each day reviewing suggestions from Zebrium will help to improve the signal-to-
noise ratio of future suggestions.

Deterministic Detection of Known Problems

After you accept a suggestion, you can use it to deterministically notify you if the same problem occurs again. This
is like having a robot that can generate alert rules for you.

You can also build your own custom rules to detect already known problems. When custom rules trigger, the
AI/ML engine automatically generates a report with additional anomalies from the logs that can help to explain
the root cause.

Getting the Best Results from Zebrium

The AI/ML engine will start working within a few minutes of logs arriving, detecting root causes for problems that
occur in your environment, and presenting them as suggestions within the Zebrium user interface. The signal-to-
noise ratio improves with time, and typically achieves a good level in about 24 hours.

If you are not satisfied with the quality of the results, there are a few things you can do. The next few topics
address this situation.

Ingest Complete Logs That Contain a Real Problem

Sometimes users connect Zebrium to a software environment that is in a steady state, where nothing bad
happens. In such cases, the logs do not actually contain any unusual events or significant errors. Naturally, in
such cases, the AI/ML engine will not be able to generate a useful Root Cause report.

Also, sometimes users will upload a subset of the logs, or even a single log file, which also degrades the ability of
the AI/ML engine to create meaningful root cause reports. For good results, connect Zebrium to a software
environment where real problems occur, or where you can deliberately break things.

You can achieve equivalent results by uploading static log files from a real problem, but in this case, be sure to
ensure that the log collection is complete; anything that a human would need for troubleshooting should be
included. Also, make sure that the files are tagged with correct metadata, and that the logs cover a time range of
24 hours or more before the problem occurred.

Be Mindful of Elapsed Time

By default, Zebrium has a few settings that govern whether, and how well, a root cause report is created.

For instance, the AI/ML engine needs some history to build an event catalog, to learn normal patterns, and to
learn the dependencies between log streams. If you connect Zebrium to a brand-new environment, for best
results you should let it learn for about 24 hours before attempting tests. It is possible to get reasonable results
much quicker, such as one to two hours after setup, but be prepared for noisier results.

Also, if the same kind of problem keeps occurring within a day, the AI/ML engine might consider it "typical", and
not create a root cause report for it at all.

76

77

A common issue users encounter is that they induce the same problem more than once, and do not realize that
default filter settings will only show the first occurrence of the problem. For more information, see Using the
Filters on the Alerts Page in Zebrium.

Review Service Group Setup

Service groups are a way to inform the AI/ML engine about the failure domains within your log streams. Only log
streams or files coming from services, containers, and hosts that could affect each other should be placed in the
same service group. If you see log events in a RCA report that originate from completely unrelated services, you
can partition them by changing your log collector settings to place them in different service groups. Aside from
assigning a Service Group label per daemonset, you can also map sets of k8s labels (like apps, or namespaces)
into a particular Service Group by editing the YAML file for the log collector.

Review RCA Settings

A handful of the AI/ML engine settings are visible on the Report Settings page (Settings () > Root Cause
Settings.

The most common setting to consider adjusting is the Root Cause Significance setting. Think of this like a filter
level; the higher the significance setting, the more selective the AI/ML engine will be in alerting. Significance is a
cumulative score for each suggestion, based on the rareness and "badness" (log severity level) of the constituent
log events within that alert. The higher the significance setting, the more rare and bad the Root Cause events
have to be to show up in an alert feed.

"Badness" is derived from the log severity level, but there are additional hidden settings that can optionally scan
the log text, as well as add your own keywords or strings that have a special meaning for your software stack.

There are other settings that might be useful in rare cases, such as excluding a particular log type entirely if it is
not useful from a diagnostics perspective.

Use Integrations to Separate High-priority Alerts

The AI/ML engine creates RCA reports when it identifies clusters of rare events and bad events, such as events
with higher log severity, like warning or error, that are highly unlikely to occur by random chance. Nevertheless,
all such clusters may not be due to high priority (P1 or P2) issues, and therefore may not need immediate
attention.

One way to distinguish the high priority issues from others is to set up inbound integrations with tools such as
PagerDuty, Opsgenie, and VictorOps. When an incident is created in one of these tools, due to an alert from
some other observability tool, for example, the integration signals the AI/ML engine to analyze logs from the
same environment and respond with a RCA report. The report is automatically appended to the incident, such as
in the timeline or notes fields.

Key Use Cases for Suggestions and Root Cause Reports

Key Use Cases for Suggestions and Root Cause Reports

As a result, Zebrium RCA reports can be matched up with incident priorities that were already assigned based on
other rules:

You can also use inbound integrations to route alerts rather than incidents to Zebrium. In this case Zebrium will
not be able to update any incident fields, because it does not receive incident notifications. However, Zebrium
will use the alerts as triggers to generate RCA reports, which will be sent to the outbound channels that are
already configured.

Note that the AI/ML engine will continue to proactively detect alerts , even when there is no signal from a third-
party tool like PagerDuty or Opsgenie, but these proactive alerts can now be routed to lower priority alert queues.

78

79

Manage Alert Destinations

There are multiple ways to manage and segregate alerts. The easiest way is to set up notification channels for
every combination of deployments or service groups that you would like to route uniquely.

Notification Channels provide a mechanism to define the methods that Zebrium will use to send notifications
from RCA reports. The supported types of notification channels include email, as well as Slack, Microsoft Teams,
and Webex Teams notifications.

After you have created one or more notification channels, you can link any number of these to any RCA report
created by the AI/ML engine. Linking a set of notification channels to a RCA report will send notifications of future
RCA reports of the same type to those channels.

For more information, see Notification Channels.

Key Use Cases for Suggestions and Root Cause Reports

Key Use Cases for Suggestions and Root Cause Reports

Use Routing Rules to Classify and Route Alerts

An even more powerful way to manage and route alerts is to set up routing rules on the Alert Rules & Settings
page (Settings () > Alert Rules & Settings), on the the [ML Routing Rules] tab:

This allows you to set up rules regarding service group, event labels (such as the Kubernetes app or pod name),
as well as string matches in the actual log event. Each routing rule lets you automatically triage alerts and RCA
reports, and send them to the appropriate destination.

For example, you might want to create a "Networking" tag for alerts that involves logs from Kubernetes pods that
affect networking services, or contain key words related to network issues, and send them to an email alias or
Slack channel for the networking team:

For more information about creating the rules for the Event Labels and Event Text fields, see Defining Rules.

80

81

Example: Ensure that the AI/ML Engine Highlights Signif icant Events When They
Happen Nearby

As an example, let’s say that your engineers know that a specific log event is useful from a troubleshooting
perspective. If that event occurs in the vicinity of an auto-detected alert, you might want to ensure that it gets
pulled into the core event list of any alert.

If you want this outcome, go to the Alert Rules & Settings page (Settings () > Alert Rules & Settings), click the
[Include Rules] tab, and define the pattern to match these events.

For example, the rule below will make sure any events coming from the Postgres log stream that contain the
keyword "restart" will be pulled into an RCA report if the AI/ML engine detects unusual events within the vicinity of
this restart event:

For more information about creating the rules for the Event Labels and Event Text fields, see Defining Rules.

Key Use Cases for Suggestions and Root Cause Reports

Key Use Cases for Suggestions and Root Cause Reports

Example: Ensure the AI/ML Engine Ignores Spam Events When They Happen
Nearby

This configuration does the opposite of the previous feature. Let’s say your engineers know that a specific log
event is spam and low value from a troubleshooting perspective. If you want to keep it from showing up in RCA
reports, simply specify the event label and pattern match to tell the AI/ML engine to exclude these events:

If you want this outcome, go to the Alert Rules & Settings page (Settings () > Alert Rules & Settings), click the
[Exclude Rules] tab, and define the pattern to exclude this kind of event:

For more information about creating the rules for the Event Labels and Event Text fields, see Defining Rules.

82

Defining Rules

Defining Rules

On the rules on the Alert Rules & Settings page (Settings () > Alert Rules & Settings), you can set up detailed
alert rules to help you manage the types of suggestions that the AI/ML engine creates. On the Alerts page, you
can filter the list of suggestions and alerts based on the rules.

On the Alert Rules & Settings page, you can create the following types of rules for tags:

l Custom alert rules. Custom alert rules deterministically create a suggestion or an alert and notify one or
more channels when a log line matches the defined rule.

l Include rules. When the AI/ML engine creates a suggestion, any nearby log lines that match the include
rules below will also be included in the core of the suggestion.

l Exclude rules. Prevent log lines that match the exclude rules from ever being part of any suggestion.

l Routing rules. Routing rules allow you to tag a suggestion and notify one or more channels when log lines
in the suggestion match the rule you define.

When you create any of these rules on the Alert Rules & Settings page, you will need to:

1. Select the service group or groups for the rule.

2. Specify the event label, which requires one or more labels to match a corresponding Regular Express
(regex) or case-sensitive substring.

3. Specify the event text, which requires that the event text matches a corresponding regex or case-sensitive
substring.

These three elements are described in detail in the following sections.

Service Groups

On the Add Rule dialog on the Alert Rules & Settings page, select one or more named service groups from the
Service Groups drop-down.

If you do not select a service group, the rule can match an event from any service group. If you select one service
group, the rule only matches an event from that service group, If you select more than one service group, the rule
only matches an event from any one of the named service groups (a logical OR across the selections).

Event Labels

The Event Labels field requires one or more labels to match a corresponding case-sensitive substring, case-
sensitive regex, or case-insensitive regex. All provided label conditions must be satisfied by the same event for that
event to match the rule (a logical AND across the conditions).

The Event Labels field consists of a list of parenthesized conditions. Each parenthesized condition consists of the
label name, followed by a colon, followed by one of a case-sensitive substring, a case-sensitive regex, and a
case-insensitive regex.

As an example, to require the "app" label to start with the word core, case-insensitive; the "version" label to have a
first digit of 6; and the "State" label to have the value of DONE:

83

84

(app:/^core/i)(version:/^\D*6/)(State:DONE

Below are more details on entering each condition.

To require a case-sensitive substring match to the label value, enter something like this:

Exact Label Value Substring

To require a case-sensitive PCRE regex match to the label value, enter something like the following, surrounding
the regex in forward slashes:

/Label Value With Digit\d/

It is generally recommended, but not required, to escape all non-alphanumeric literal characters within your
regex as a best practice, such as:

/Label\ Value\ With\ Digit\d/

To require a case-sensitive PCRE regex match to the label value, enter something like this, surrounding the regex
in forward slashes:

/Label Value With Digit \d/

It is generally recommended, but not required, to escape all non-alphanumeric literal characters within your
regex as a best practice, such as:

/Label\ Value\ With\ Digit \d/

To require a case-insensitive PCRE regex match to the event text, enter something like this (note the “i” after the
second forward slash):

/label value with digit \d/i

It is generally recommended, but not required, to escape all non-alphanumeric literal characters within your
regex as a best practice, such as:

/label\ value\ with\ digit\ \d/i

In general, any parse errors related to ambiguous patterns can be resolved by escaping all non-alphanumeric
literal characters.

Event Text

The Event Text field requires the event text to match a corresponding case-sensitive substring, case-sensitive
regex, or case-insensitive regex. All provided label conditions must be satisfied by the same event for that event to
match the rule (a logical AND across the conditions).

For example, the following rule matches any event containing the phrase error code: followed by a number.

/error code:\d+/i

To require a case-sensitive substring match to the event text, enter something like this:

Exact Text to Match

Defining Rules

Defining Rules

To require a case-sensitive PCRE regex match to the event text, enter something like this, surrounding the regex in
forward slashes:

/Matches Any Digit\: \d/

It is generally recommended, but not required, to escape all non-alphanumeric literal characters within your
regex as a best practice, such as:

/Matches\ Any\ Digit\:\ \d/

To require a case-insensitive PCRE regex match to the event text, enter something like this (note the “i” after the
second forward slash):

/matches any digit\: \d/i

85

Chapter

5
Notification Channels

Overview

Notification Channels provide a mechanism to define the methods that Zebrium will use to send notifications
from RCA reports. The supported types of notification channels include email, Slack, Microsoft Teams, and
Webex Teams notifications.

After you have created one or more notification channels, you can link any number of these to any RCA report
created by the AI/ML engine. Linking a set of notification channels to a RCA report will send notifications of future
RCA reports of the same type to those channels.

Supported notification channels include:

l Email

l Slack

l Microsoft Teams

l Webex Teams

86

Email Notifications

Email Notifications

Features

l You can configure Zebrium to automatically send Root Cause (RCA) reports to email recipients. This allows
you to see details of root cause in your email client.

l Each Zebrium RCA report includes a summary, a word cloud, and a set of log events showing symptoms
and root cause, plus a link to the full report in the Zebrium user interface.

l This means faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

Integration Details

To create an email integration in Zebrium to send suggestions to email recipients:

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. In theNotifications section, click the [Email] button.

3. Click [Create a New Integration]. The Create Email Notification Integrations dialog appears.

4. On the [General] tab, enter an Integration Name for this integration.

5. In the Deployment drop-down, select a deployment for the integration.

6. In the Service Group(s) drop-down, select a service group for the integration.

7. On the [Send Detections] tab, click [Enabled].

8. Enter the Email Address List. Add one email recipient per line.

9. You can choose to send notifications the first time the AI/ML engine detects a new type of proactive Root
Cause report. We recommend setting the Send on 1st occurrence toggle to Yes for proactive notification
of potential new problems. If you want to be notified on subsequent occurrences, do this from the relevant
Root Cause report.

10. Click [Save].

87

Slack Notifications

Slack Notifications

Features

l You can configure Zebrium to automatically send Root Cause (RCA) reports to Slack channels. This allows
you to see details of root cause in your Slack client.

l Each Zebrium RCA report includes a summary, a word cloud, and a set of log events showing symptoms
and root cause, plus a link to the full report in the Zebrium user interface.

l This means faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

Integration Details

STEP 1: Create an incoming webhook in Slack:

1. Go to https://api.slack.com and log in to your workspace.

2. Click Your Apps, then the [Create New App] button, and then From Scratch.

3. Enter an App Name, select the appropriateWorkspace, and then click [Create App].

4. Click Incoming Webhooks.

5. Set Activate Incoming Webhooks toOn.

6. Click Add New Webhook to Workspace.

7. Select the desired Channel and click [Allow].

8. Copy and save theWebhook URL for use in STEP 2, below.

STEP 2: Create a Slack integration in Zebrium to send suggestions to Slack:

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. In theNotifications section, click the [Slack] button.

3. Click [Create a New Integration]. The Create Slack Notification Integration dialog appears.

4. On the [General] tab, enter an Integration Name for this integration.

5. In the Deployment drop-down, select a deployment for the integration.

6. In the Service Group(s) drop-down, select a service group for the integration.

7. On the [Send Detections] tab, click [Enabled].

8. In the Slack Webhook URL field, add the webhook that you created in STEP 1, above.

9. You can choose to send notifications the first time the AI/ML engine detects a new type of proactive Root
Cause report. We recommend setting the Send on 1st occurrence toggle to Yes for proactive notification
of potential new problems. If you want to be notified on subsequent occurrences, do this from the relevant
Root Cause report.

10. Click [Save].

88

https://api.slack.com/

Microsoft Teams Notifications

Microsoft Teams Notifications

Features

l You can configure Zebrium to automatically send Root Cause (RCA) reports to Microsoft Teams channels.
This allows you to see details of root cause in your Microsoft Teams client.

l Each Zebrium RCA report includes a summary, a word cloud, and a set of log events showing symptoms
and root cause, plus a link to the full report in the Zebrium user interface.

l This means faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

Integration Details

STEP 1: Create an incoming webhook in Microsoft Teams:

1. In Microsoft Teams, go to the Channel where you want to receive notifications.

2. Click the ellipsis button (…) at the top right to open the configuration menu, and then select Connectors.

3. Click Add/Configure Incoming Webhook, add theName, and then click [Create].

4. Copy and save theWebhook URL for use in STEP 2, below.

5. Click [Done].

STEP 2: Create a Microsoft Teams integration in Zebrium to send suggestions to Microsoft Teams:

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. In theNotifications section, click the [Microsoft Teams] button.

3. Click [Create a New Integration]. TheMicrosoft Teams Notification Integrations dialog appears.

4. On the [General] tab, enter an Integration Name for this integration.

5. In the Deployment drop-down, select a deployment for the integration.

6. In the Service Group(s) drop-down, select a service group for the integration.

7. On the [Send Detections] tab, click [Enabled].

8. In theWebhook URL field, add the webhook that you created in STEP 1, above.

9. You can choose to send notifications the first time the AI/ML engine detects a new type of proactive Root
Cause report. We recommend setting the Send on 1st occurrence toggle to Yes for proactive notification
of potential new problems. If you want to be notified on subsequent occurrences, do this from the relevant
Root Cause report.

10. Click [Save].

89

Webex Teams Notifications

Webex Teams Notifications

Features

l You can configure Zebrium to automatically send Root Cause (RCA) reports to Webex Teams spaces. This
allows you to see details of root cause in your Webex Teams client.

l Each Zebrium RCA report includes a summary, a word cloud, and a set of log events showing symptoms
and root cause, plus a link to the full report in the Zebrium user interface.

l This means faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

Integration Details

STEP 1: Create an Incoming Webhook in Webex Teams:

1. In Webex Teams, navigate to the Space where you want to receive notifications.

2. Click theGear icon and select Add Integrations and Bots… to navigate to theWebex App Hub page.

3. Search for "webhooks" using the Search apps field on theWebex App Hub page.

4. Click on Incoming webhooks.

5. Scroll down and enter theWebhook name.

6. Select the desired Space.

7. Click [Add].

8. Copy and save theWebhook URL for use in STEP 2, below.

STEP 2: Create a Webex Teams integration in Zebrium to send suggestions to Webex Teams:

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. In theNotifications section, click the [Webex Teams] button.

3. Click [Create a New Integration]. The Create Webex Teams Notification Integrations dialog
appears.

4. On the [General] tab, enter an Integration Name for this integration.

5. In the Deployment drop-down, select a deployment for the integration.

6. In the Service Group(s) drop-down, select a service group for the integration.

7. On the [Send Detections] tab, click [Enabled].

8. In theWebhook URL field, add the webhook that you created in STEP 1, above.

9. You can choose to send notifications the first time the AI/ML engine detects a new type of proactive Root
Cause report. We recommend setting the Send on 1st occurrence toggle to Yes for proactive notification
of potential new problems. If you want to be notified on subsequent occurrences, do this from the relevant
Root Cause report.

10. Click [Save].

90

Chapter

6
ScienceLogic Integrations

Overview

Zebrium offers the following ScienceLogic integrations:

l SL1 Enhanced (12.x). This integration uses a Zebrium access token that you can use with the following
methods of gathering and displaying data from Zebrium:

o ScienceLogic Root Cause Timeline Widget. Requires SL1 version 12.1.0 or later. This integration
adds a timeline view that shows Zebrium suggestions and alerts on any SL1 dashboard.

o ScienceLogic Events (Zebrium Connector for SL1). Requires SL1 version 12.2.0 or later. This
integration adds Zebrium suggestions and alerts as enriched events (including summary and word
cloud) within SL1. These suggestions and alerts can display on SL1 Events, Devices, and Services
pages.

l SL1 API. This integration is the legacy integration with SL1, which in previous versions of Zebrium was called
the "ScienceLogic Events" integration. This integration can be used with older versions of SL1, and supports
sending text-only alerts and events.

91

ScienceLogic Root Cause Timeline Widget

ScienceLogic Root Cause Timeline Widget

Features

l Automatically adds Root Cause reports in ScienceLogic SL1. This allows you to see details of root cause in
any SL1 dashboard.

l The Root Cause Timeline widget in SL1 dashboards displays suggestions, accepted and custom alerts,
and the Zebrium "word cloud" with summary root cause analysis (RCA) based on the relevant logs
associated with the suggestions and alerts.

l This leads to faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

l Requires SL1 12.1.0 or later.

How It Works

The recommended mode of operation for observability dashboard integrations is to use the Zebrium Auto-Detect
mode as an accurate mechanism for explaining the reason something went wrong. In this mode, you continue to
use your existing rules, alerts, and metrics as the primary source of problem detection.

You can then review Zebrium RCA report findings directly in your SL1 dashboards alongside other metrics to
explain the reason behind the problems for which you were alerted.

Configuring the Root Cause Timeline Widget in SL1

For Zebrium users, a Root Cause Timeline visualization is available on the Dashboards page in SL1. This
widget visualization lets you see when the AI/ML (machine learning) engine detects a possible or confirmed
issue. When you hover over an icon for a suggestion or an alert in the widget, a pop-up displays a title and a
word cloud that contains additional information about the likely root cause based on the relevant logs associated
with the issue.

You can click the icon for a suggestion or an alert on the Root Cause Timeline visualization to go to the
Zebrium user interface, where you can access further details and perform optional customizations on the Root
Cause Report page.

IMPORTANT: The Root Cause Timeline widget is specific to "AIML Predictions" widget types only.

If you selected Root Cause Timeline as the visualization, complete the following fields:

l Title. Enter a title for the widget.

l Zebrium Connection ID. Enter the unique connection ID from Zebrium, which you can find by creating a
service connection between SL1 and Zebrium. The value appears on the Service Connections page
(Manage > Service Connections) in the SL1 user interface. For more information, see Configuring a
Zebrium Connection for the Root Cause widget.

92

93

l Zebrium Service Groups. Enter the name or names of the service groups in Zebrium that you want to
monitor with this widget. If you have more than one service group, separate the names with commas. If
you want to view sample alerts for troubleshooting purposes, include the "integration_test" service group
here. If you leave this field blank, the widget will include all of the service groups. Optional.

NOTE: If you try the sample alert feature, make sure to add the special integration_test service group
to this field.

For more information about using the Root Cause Timeline visualization with "AIML Predictions" widget types,
see Using the Root Cause Timeline Widget.

Configuring a Zebrium Connection for the Root Cause
Timeline Widget in SL1

For Zebrium users, a Root Cause Timeline visualization is available on the Dashboards page in SL1. This
widget visualization lets you see when the AI/ML (machine learning) engine detects a possible or confirmed
issue. When you hover over an icon for a suggestion or an alert in the widget, a pop-up displays a title and a
word cloud that contains additional information about the likely root cause based on the relevant logs associated
with the issue.

You can click the icon for a suggestion or an alert on the Root Cause Timeline visualization to go to the
Zebrium user interface, where you can access further details and perform optional customizations on the Root
Cause Report page.

IMPORTANT: The Root Cause Timeline widget is specific to "AIML Predictions" widget types only.

Configuring a Zebrium Connection for the Root Cause Timeline Widget in SL1

Configuring a Zebrium Connection for the Root Cause Timeline Widget in SL1

Connecting Your Zebrium Instance to the Root Cause Timeline
Widget

To establish communication between Zebrium and the Root Cause Timeline widget in SL1, you will need to
create a service connection, which enables communication between SL1 and Zebrium.

This is a two-part process:

1. Create an "SL1 Enhanced (12.x)" integration in the Zebrium user interface.

2. Use the data from that integration to create the service connection in SL1.

Creating a Dashboard Widget Integration in Zebrium

You will need credentials for logging in to Zebrium to create the following integration.

To create an "SL1 Enhanced (12.x)" integration in Zebrium:

1. Log in to your Zebrium instance.

2. Go to the Integrations & Collectors page (Settings () > Integrations & Collectors) and click the [SL1
Enhanced (12.x)] button in the ScienceLogic section. The Integrations dialog appears.

3. Click [Create a New Integration]. The Create Integration dialog appears.

4. On the [General] tab, complete the following fields:

l Integration Name. Type a name for the widget.

l Deployment. Select the Zebrium deployment that you want to monitor.

5. Click [Save]. The Your Integration Info dialog appears, with a summary of the key values for the widget
integration.

6. Make a note of each value, as you will use all three values when creating the service connection in SL1. You
can click each value to automatically copy that value.

7. Click [OK]. The new integration is added to the ScienceLogic Integrations dialog.

Creating a Service Connection in SL1

After you create the ScienceLogic integration in Zebrium, you will have the data you need to create the service
connection in SL1.

IMPORTANT: To refer to this data in the Zebrium user interface, go to the Integrations & Collectors page
(Settings () > Integrations & Collectors) and click the [SL1 Ehanced (12.x)] button in the
ScienceLogic section, and then click the edit icon () for that integration. The Edit dialog
displays all the relevant data you need for this procedure.

To create a Zebrium service connection in SL1:

94

95

1. In SL1, go to the Service Connections page (Manage > Service Connections).

2. Click Add Service Connection. The Create Zebrium Connection window appears.

Configuring a Zebrium Connection for the Root Cause Timeline Widget in SL1

Configuring a Zebrium Connection for the Root Cause Timeline Widget in SL1

3. Complete the following fields:

l Name. Type a name for this new service connection.

l Access Token. Add the Access Token value from the Your Integration Info dialog or the
Edit Integration dialog.

TIP: You can also access this information on the Access Tokens page (Settings () > Access
Tokens) in the Zebrium user interface.

l Zebrium Endpoint URL. Add the Endpoint URL value from the Your Integration Info dialog or the
Edit Integration dialog. Zebrium Cloud users can use the default value in this field, while Zebrium
On Prem users will need to add the URL of their on-premises Zebrium instance.

l Zebrium Deployment ID. Add the Deployment ID value from the Your Integration Info dialog or
the Edit Integration dialog.

l Share data with. Select the All Organizations toggle (turn it blue) to share with all existing and new
organizations when you create them. Alternately, you deselect the All Organizations toggle (turn it
gray) and select one or more organizations from the Selected Organizations drop-down to limit
access to this connection to only the selected organizations.

4. Click [Save].

5. On the Service Connections page, copy the Service Connection ID value from the ID column for the
service connection you just created. You will use this value when you create the Root Cause Timeline
widget for the AIML Predictions widget type.

Creating a Sample Alert for the Widget

To create a sample alert to display on the new widget, you will need to add the "integration_test" service group in
the "SL1 Enhanced (12.x)" integration in the Zebrium user interface. You will not see the sample alert in SL1 unless
you configure the connector or widget to include the "integration_test" service group.

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations
& Collectors) and click the [SL1 Enhanced (12.x)] button in the ScienceLogic section. The Integrations
dialog appears.

2. Click the edit button next to the integration with SL1 that you created earlier.

3. Make sure that one of the service groups in the Service Groups drop-down includes integration_test. The
[Create Sample Alert] button creates an alert in the integration_test service group.

4. Click [Save].

5. After you update the service group, you can click [Create Sample Alert] to test your settings. If your
settings were correct, a sample alert will display on the Alerts page in the Zebrium user interface.

96

97

Using the Root Cause Timeline Widget

The main section of the Timeline widget contains a time-based chart with different icons that represent the
following Zebrium elements:

l Suggestion (). A yellow diamond represents a suggestion, or a potential problem found by the AI/ML
engine. When you click a yellow diamond, the RCA Report page for that suggestion opens in the Zebrium
user interface. On that page, you can choose to accept or reject that suggestion.

o If you accept the suggestion, Zebrium will create a rule for the settings for that suggestion in the
future.

o If you reject the suggestion, Zebrium will no longer show a suggestion with the same settings as that
suggestion in the widget.

l Accepted Alert (). A green circle represents an accepted alert, a suggestion that you or another Zebrium
user has accepted.

l Custom Alert (). A blue triangle represents a custom alert, which you or another user defined by writing
a regular expression in Zebrium that searches for a specific pattern.

When you hover over an icon in the chart, a pop-up window appears with date and time information about that
specific suggestion or alert, along with a title and word cloud that contains suggestions and information about
the likely root cause.

The Timeline widget also includes the following graphical elements:

Using the Root Cause Timeline Widget

Using the Root Cause Timeline Widget

l Spike. A gray vertical line appears on the widget if there are too many suggestions or alerts to show for a
specific time. You can click and drag on the spike to zoom in so you can see all of the suggestions for that
specific time. Click [Reset zoom] to go back to the default view settings.

l Log Lines timeline. Hover over this gray line to view a pop-up window that displays the number of log
lines that have been ingested within this time interval.

l Rare Events timeline. Hover over this red line to view a pop-up window that displays the number of
events marked as rare, such as possible issues or problems, that have been ingested within this time
interval. Rare events are often the most diagnostic anomalies in the logs.

Working with Suggestions in the Zebrium User Interface

You can click the icon for a suggestion or an alert on the Timeline widget to go to the Zebrium user interface,
where you can access further details and perform optional customizations on the Root Cause Report page.

98

99

For more information about what you can do on the Root Cause Report page, see Root Cause Reports in the
Zebrium Documentation.

Using the Root Cause Timeline Widget

https://docs.sciencelogic.com/zebrium/latest/Content/Web_Zebrium/Suggestions_RCA_Reports.html#RCA_Reports

ScienceLogic Events (Zebrium Connector for SL1)

ScienceLogic Events (Zebrium Connector for SL1)

The Zebrium Connector, also called the ze_connector service, continually checks your Zebrium instance for
suggestions and alerts. The Connector then looks for an SL1 device that matches the Zebrium alerts, and sends
the Zebrium suggestions and alerts to that device in SL1.

As a result, the Zebrium Connector lets you view Zebrium suggestions and alerts in the following locations in SL1:

l The Events page

l The Event Investigatorpage for a Zebrium suggestion or alert

l The [Investigator] tab and the [Events] tab of the Device Investigator page

l The Timeline widget and the [Log Insights] tab of the Service Investigator page

The Zebrium Connector requires SL1 12.2.0 or later.

Workflow for Configuring the Connector

Before you can view Zebrium data on these SL1 pages, you will need to complete the following configuration
steps in Zebrium and SL1:

l Configure Zebrium:

o Create an authentication token in Zebrium

l Configure SL1:

o Create a service connection in SL1

o Create an SL1 authentication token

o Create a default virtual device (optional)

o Install the Zebrium Event Policies PowerPack

l Configure the Zebrium Connector:

o Download and install the RPM file for the Zebrium Connector

o Configure the config.yaml file

Creating an Authentication Token in Zebrium

You first need to access the Zebrium user interface to get an authorization token, which you will use in the SL1
setup.

To create an authorization token in Zebrium:

100

101

1. In the Zebrium user interface, go to the Access Tokens page (Settings () > Access Tokens).

2. Click [Add Access Token]. The Add Access Token dialog appears:

3. Complete the following fields:

l Name. Type a name for this token.

l Role. Select Viewer.

l Deployment. Select the deployment that you want to monitor.

4. Make sure the Enabled button is selected, and then click [Add]. The new token is added to the
Access Tokens page. The token is in the format "Bearer <token>", such as Bearer abcdefghijk.

5. Hover over theName/Token column of the new token and click the [Copy] button that appears.

6. Save the access token for the next set of steps.

Configuring SL1

Complete the following steps to configure SL1 so it can use the Zebrium Connector.

Create a Service Connection in SL1

To create a service connection in SL1:

1. In SL1, go to the Service Connections page (Manage > Service Connections).

2. Click Add Service Connection. The Create Connection window appears.

3. Complete the following fields:

Configuring SL1

Configuring SL1

l Name. Type a name for this new service connection.

l Access Token. Paste the access token you created in Zebrium into this field. You can view this
information on the Access Tokens page (Settings () > Access Tokens) in the Zebrium user
interface.

l Zebrium Endpoint URL. Add the endpoint URL for your Zebrium instance. Zebrium Cloud users can
use the default value in this field, while Zebrium On Prem users will need to add the URL of their on-
premises Zebrium instance.

l Share data with. Select the All Organizations toggle (turn it blue) to share this connection with all
existing and newly created organizations. Alternately, you deselect the All Organizations toggle (turn
it gray) and select one or more organizations from the Selected Organizations drop-down to limit
access to this connection to only those organizations.

4. Click [Save]. The service connection is added to the Service Connections page.

Create an SL1 Authentication Token

Next, you will need to encode your SL1 credentials to create an SL1 authentication token:

1. Go to a Base64 encoding site like https://www.base64encode.org and paste your SL1 username and
password in the text box. Use the following format:

<username>:<password>

For example: myuser:mypassword

2. Use the default settings and click [Encode]. Your encoded credentials will look like the following:

bXl1c2VyOm15cGFzc3dvcmQ=

NOTE: The authentication token is in the format "Basic <token>".

3. Copy the newly encoded credentials, which will work as your SL1 authentication token.

Create a Default Virtual Device (optional)

The Zebrium Connector can send Zebrium suggestions and alerts to any device in SL1. If you do not have a
specific device that you want to use for this purpose, you can optionally configure a "default" SL1 device. The
Connector will send any Zebrium suggestions and alerts that do not map to existing SL1 devices to this default
device.

For this purpose, you can create a virtual device in SL1 to receive all of these unassigned suggestions and alerts.

To create a default virtual device in SL1:

1. Ensure that SL1 includes a device class for virtual devices. These device classes must have a device category
of "virtual" and a collection type of "virtual".

2. On the Device Manager page (Devices > Device Manager), click the [Actions] button and select Create

102

https://www.base64encode.org/

103

Virtual Device. The Create Virtual Devicemodal appears.

3. Complete the following fields:

l Device Name. Name of the virtual device.

l Organization. Organization to associate with the virtual device. Select from the drop-down list of all
organizations in SL1.

l Device Class. The device class to associate with the virtual device. Select from the drop-down list of
device classes. Only device classes with a device category of "virtual" and a collection type of "virtual"
appear in the list.

l Collector. Specifies which instance of SL1 will perform auto-discovery and gather data from the
device. Can also specify a "virtual" connector. Select from the drop-down list of all collectors in SL1.

4. Click [Add] to save the new virtual device. SL1 displays the new device ID after the text Device Added.

5. Before you close the modal, make a note of the ID for your new virtual device. You can sort for this ID on
the Devices page in SL1 to quickly locate this new virtual device.

Install the Zebrium Event Policies PowerPack

To convert the API alerts sent by the Zebrium Connector into SL1 events, you will need the Zebrium event policies,
which are available in the "Zebrium Event Policies" PowerPack. The event policies will be automatically enabled
when you install the PowerPack.

To configure the Zebrium event policies:

1. Download and install the "Zebrium Event Policies" PowerPack. For more information, see Importing and
Installing a PowerPack.

2. Go to the Event Policies page (Events > Event Policies) and sort by "Zebrium" in theName column.

3. Make sure all of the Zebrium event policies from the PowerPack have a Status of Enabled. If not, check the
boxes for the policies that are not enabled and click [Enable].

Configuring the Zebrium Connector

The Zebrium Connector, also called the ze_connector service, continually checks your Zebrium instance for
suggestions and alerts. The Connector then looks for an SL1 device that match the Zebrium alerts, and sends the
Zebrium suggestions and alerts to that device in SL1.

You will need to install the Zebrium Connector RPM file on the SL1 server that you want to connect with Zebrium.

System Requirements

The SL1 server where you install this service must have the following:

l systemd

l Python 3.8

l sudo access to the server

Configuring the Zebrium Connector

https://docs.sciencelogic.com/latest/Content/Web_Admin_and_Accounts/Power_Packs/power_packs_installing_a_power_pack.htm#Importin
https://docs.sciencelogic.com/latest/Content/Web_Admin_and_Accounts/Power_Packs/power_packs_installing_a_power_pack.htm#Importin

Configuring the Zebrium Connector

l SL1 version 12.2.0 or later, running Oracle Linux 8 or later, with the "Zebrium Event Policies" PowerPack
installed

IMPORTANT: ScienceLogic strongly recommends that you create a separate SL1 account for the Zebrium
integration instead of using the default "em7admin" user account. For more information, see
Manually Creating a New User Account in the SL1 Product Documentation.

Download and Install the RPM file for the Connector

You will need to download the RPM file from the ScienceLogic Support site, and then upload it to your SL1 system.

To download and install the RPM file:

1. Go to the ScienceLogic Support site at https://support.sciencelogic.com/s/.

2. Click the [Product Downloads] tab and select SL1 Platform. The Platform Downloads page appears.

3. Click the link for SL1 Hollywood Platform 12.2. The Release Version page appears.

4. In the Release Files section, click the RPM link for the Zebrium Connector RPM file. A Release File
page appears.

5. Click [Download File] at the bottom of the Release File page.

6. SSH to the server where you are installing the RPM and run the following command to install the RPM:

sudo dnf install ze_connector-0.0.2-1.el8.noarch.rpm -y

7. Configure the config.yaml file as needed:

sudo vi /usr/bin/ze_connector/config.yaml

8. Restart the service and verify:

sudo systemctl restart zeconnector

sudo systemctl status zeconnector

sudo journalctl -u zeconnector

tail /usr/bin/ze_connector/out.log

Configure the config.yaml file

The /usr/bin/ze_connector/config.yaml file is supplied as part of the RPM install. You can use this sample
configuration file to set up new jobs. This section explains the structure of the config.yaml file. You can copy this
file and update it for the connector jobs.

104

https://docs.sciencelogic.com/latest/Content/Web_Admin_and_Accounts/Organizations_and_Users/orgs_and_users_create_edit_user.htm#Manually
https://support.sciencelogic.com/s/

105

NOTE: This schema will be overwritten to track the most recent Zebrium event found, specifically the poll_
timing.poll_start_time_iso field.

Configuration Schema

l jobs: (array, required) - polling jobs to run

o name: (str, required) - unique name of this job for log message readability

o sl1_api_config: (obj, required)

n api_url: (str, required) - URL endpoint for the SL1 API to query; do not include a "trailing slash"
(/) at the end of the URL. Example: api_url: https://127.0.0.1

n api_auth: (str, required) - Basic authentication token for the SL1 API (see Create an SL1
Authentication Token for format)

o poll_timing: (obj, optional)

n poll_sleep_seconds: (int, optional default:60) - number of seconds to sleep between
polling requests

n poll_start_time_iso: (str, optional default:now) - ISO 8601 timestamp for when to start
querying for Zebrium alerts

o sl1_default_device_ids: (array[str], optional default:[]) - list of SL1 device IDs to send alerts
to if no device is matched automatically; omit to not send an alert if no device is matched

o ze_deployment_id: (str, required) - Deployment ID of the Zebrium deployment to query. You
can find this value in the Deployment ID column on the Deployments (Settings () > Deployments)
page of the Zebrium user interface.

o ze_service_groups: (array[str], optional default:[]) - list of Zebrium service groups to query. You
can view a list of service groups by clicking the [Filtering] button on the Alerts page of the Zebrium
user interface. The Selected Filter dialog contains a list of service groups in the Service Groups
filter. If you want to enable sample alerts, add "integration_test" under ze_service_
groups in the config.yaml file.

o sl1_override_event_time: (bool, optional default:False) - overrides using the Zebrium alert
timestamp and instead uses now as when the alert occurred

Configuring the Zebrium Connector

Configuring the Zebrium Connector

Example Configuration

The following configuration will run two polling jobs:

l Job 1 will querymy1.sl1.com using the defaults: poll every 60 seconds, starting from now

l Job 2 will querymy2.sl1.com using overrides: poll every 120 seconds, starting from 09/05/2023, only
query for Zebrium service groups sg-1 and sg-2, send any unmatched events to SL1 device_id 1.

jobs:

minimal config required job

will default to all Zebrium Service Groups

will drop all alerts that don't match an SL1 device

polling will occur every 60s, starting from now

- name: example_job_1

ze_deployment_id: "sciencelogic_default"

sl1_api_config:

api_url: https://my1.sl1.com

api_auth: "Basic dXNlcjpwYXNz"

maximal config job

will query only the 2 service groups provided

will send any alerts that don't match an SL1 device to device/1

will poll every 120 seconds from 9/5/2023 00:00:00 GMT to now

- name: example_job_2

sl1_default_device_ids:

- "1"

ze_service_groups:

- "sg-1"

- "sg-2"

- "integration_test"

ze_deployment_id: "some_other_deployment"

sl1_api_config:

api_url: https://my2.sl1.com

api_auth: "Basic dXNlcjpwYXNz"

poll_timing:

poll_sleep_seconds: 120

poll_start_time_iso: "2023-09-05 00:00:00"

sl1_override_event_time: false

106

ScienceLogic SL1 API Integration

ScienceLogic SL1 API Integration

Features

l You can configure Zebrium to automatically add Root Cause (RCA) reports as events in ScienceLogic SL1.

l Each Zebrium RCA report includes a summary, a word cloud, and a set of log events showing symptoms
and root cause, plus a link to the full report in the Zebrium user interface.

l This means faster Mean Time to Resolution (MTTR) and less time manually hunting for root cause.

l Requires SL1 11.2.0 or later.

NOTE: The "SL1 API" integration is a legacy integration, and in previous releases it was called the
"ScienceLogic Events" integration. To configure the newer Zebrium Connector (the ze_connector
service), which sends Zebrium suggestions and alerts to the Events page, Events Investigator
page, Device Investigator, and Service Investigator pages in SL1, see Zebrium Connector for
SL1. This feature is available in SL1 version 12.2.0 or later.

How It Works

The recommended mode of operation for observability dashboard integrations is to use the ZebriumAuto-
Detectmode as an accurate mechanism for explaining the reason something went wrong. In this mode, you
continue to use your existing rules, alerts and metrics as the primary source of problem detection. You can then
review Zebrium RCA report findings directly on the ScienceLogic SL1 Events page (or Events Console in the
classic user interface) alongside other metrics to explain the reason behind problems you were alerted on.

The ZebriumAugmentmode is useful if you use a run book automation in SL1 to create a ticket based on an
event from your alerts. In this mode, Zebrium updates the ticket directly with any Root Cause reports around the
time of the event, so they are immediately visible to you as you work the case.

The two modes of operation are independent. You can configure Auto-Detect and/or Augment modes
depending on your operational use case.

Auto-Detect (recommended): Send Root Cause Detections to your SL1 Events
Page

1. Zebrium continuously monitors all application logs and uses unsupervised machine learning to find
anomalous log patterns that indicate a problem. These are automatically turned into Root Cause reports
highlighting details of any problems with over 95% accuracy.

2. Root Cause report summaries are sent to ScienceLogic as Events, and Root Cause details are visible on the
SL1 Events page.

3. With a single click on the SL1 Events page, you can drill down further into the Zebrium user interface to
look at correlated logs across your entire application.

For details, see Sending Root Cause Suggestions to the SL1 Events Page.

107

108

Sending Root Cause Suggestions to the SL1 Events Page

Integration Overview

1. In ScienceLogic SL1, choose an existing Device or create a new virtual device used to associate Root Cause
reports from Zebrium.

2. Set up a user with restricted access to minimally required API access hooks.

3. Setup an event policy for the "Auto-Detected Root Cause Report" alert sent by Zebrium.

4. Create a ScienceLogic integration in Zebrium using the information from STEPS 1 and 2.

Integration Details

STEP 1: Choose an Exist ing Device or Create a New Device

Because Zebrium is using logs from an application that may be spread across many hosts, containers, network
devices, and more, there is no direct association of Root Cause reports to a single hardware device. Instead,
Zebrium associates Root Cause reports to a "device" that represents the set of services that make up the
application.

If you already have such a "device", like a Cloud Application, then Zebrium needs its Device ID (DID).

If you do not have an existing device in SL1 that is appropriate to use, you can create a virtual device for this
purpose.

To use an existing device:

1. In SL1, go to the Devices page (). If you are using the classic user interface, go to Registry > Devices
> Device Manager.

2. Locate the desired device from the list and make a note of the numeric Device ID (DID) in the ID column (or
the DID column in the classic user interface). The DID also makes up part of the URL for the Device
Investigator page for that device, such as https://<SL1_IP_address>/inventory/devices/315/investigator.
You will use the DID when configuring the Zebrium integration.

To create a new virtual device:

1. In SL1, go to the Device Manager page (Devices > Device Manager). If you are using the classic user
interface, go to Registry > Devices > Device Manager.

2. Click [Actions] and select Create Virtual Device. The Create Virtual Devicemodal appears.

Sending Root Cause Suggestions to the SL1 Events Page

Sending Root Cause Suggestions to the SL1 Events Page

3. Complete the following fields:

o Device Name. Name of the virtual device. Can be any combination of alphanumeric characters, up
to 32 characters in length.

o Organization. Organization to associate with the virtual device. Select from the drop-down list of all
organizations in SL1.

o Device Class. Select ScienceLogic | Integration Service as the device class to associate with the
virtual device.

o Collector. Specifies which instance of SL1 will perform auto-discovery and gather data from the
device. Select the collector from the drop-down list of all collectors in SL1.

4. Click [Update] and close the modal.

5. Go to Devices page or the Device Manager page (Devices > Device Manager) and locate the newly
created virtual device from the list.

6. Make a note of the numeric Device ID (DID) in the ID column (or the DID column in the classic user
interface). You will use the DID when configuring the Zebrium Integration.

STEP 2: Create a User with Restr icted API Access

To define a new access key for API access:

1. In SL1, go to the Access Keys page (System > Manage > Access Keys).

2. Click [Key Manager]. The Key/Hook Alignment Editor dialog appears.

3. Complete the following fields:

o Name. Name of the key, such as API Access for Zebrium.

o Key Category. Select API Access.

o Key Description. Enter an appropriate description for the key.

4. In the Hook Alignment section, select each of the following unaligned access hooks on the left-hand side
and click » to move the selected hook to the Aligned Access Hooks on the right:

Events: Event Note:Add/Rem

Events: Events/Event:View

Ticketing: Ticket:Notes:Add

Ticketing: Ticket:View

5. Click [Save].

To define a new user policy using the new access key:

1. In SL1, go to the User Policies page (Registry > Accounts > User Policies).

2. Click [Create]. A Create New User Policy dialog appears.

109

110

3. In the Privilege Keys section, select the access key that you created in the previous procedure. You might
need to scroll down to the API Access section.

4. Complete the remaining fields according to your accepted policies.

5. Click [Save].

To define a new user using the new user policy:

1. In SL1, go to the User Accounts page (Registry > Accounts > User Accounts).

2. Click [Create]. A Create New Account dialog appears.

3. Complete the following fields:

o Require Password Reset. Make sure Next Login is unchecked.

o Account Type. Select Policy Membership.

o Policy Membership. Select the new user policy created in the previous procedure.

4. Complete the remaining fields according to your accepted policies.

5. Make a note of the Username and Password for use in the next STEP.

6. Click [Save].

STEP 3: Create an Event Policy for the Zebrium Alert

1. Go to the Event Policies page (Events > Event Policies). If you are using the classic user interface, go to
Registry > Events > Event Manager.

2. Click [Create Event Policy]. If you are using the classic user interface, click [Create].

3. In the Policy Name field at top left, type a name for the policy.

4. On the [Policy Description] tab, type a description of the policy, such as "Zebrium alert".

5. On the [Match Logic] tab (or the [Policy] tab in the classic user interface), select API for the Event Source.

6. In the drop-down at the top of the next column, select Regular Expression (or [Regex Match] in the classic
user interface).

7. In the firstMatch String field, type the following: ^Zebrium\s+(Detected|created).*

8. Do not selectMulti Match.

9. SelectMessage Match.

10. On the [Event Message] tab (or the [Policy] tab in the classic user interface), enter%M in the Event
Message field.

11. Click [Save].

STEP 4: Create a ScienceLogic SL1 API Integration in Zebrium

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. Scroll to the ScienceLogic section and select ScienceLogic SL1 API.

3. Click the [Create a New Integration] button.

Sending Root Cause Suggestions to the SL1 Events Page

Sending Root Cause Suggestions to the SL1 Events Page

4. On the [General] tab, enter an Integration Name for this integration.

5. Select the Deployment for the integration.

6. Select the Service Group(s) for the integration.

7. Go to the [Send Detections] tab.

8. Enter the Username and Password from STEP 2, above.

9. Enter the Device ID from STEP 1, above.

10. Enter the fully qualified Appliance URL to your instance of SL1 (/api/<api_endpoint> will be added
automatically by the integration).

11. After you update this tab, you can click [Create Sample Alert] to test your settings. If your settings were
correct, a sample alert will display on the Alerts page.

12. Click [Save].

111

Chapter

7
Incident Management Integrations

Overview

You can configure an integration between Zebrium and your third-party Incident Management application to
automatically add Root Cause (RCA) reports to your incidents in the third-party application. Each Zebrium RCA
report includes a summary, word cloud, and a set of log events display symptoms and root cause, along with a
link to the full report in the Zebrium user interface.

After you complete the configuration, you can can view details of root cause and direct the incident to the
appropriate team. All of these features lead to faster Mean Time to Repair (MTTR) and less time manually hunting
for root cause.

Zebrium supports Incident Management integrations with the following third-party applications:

l Opsgenie

l PagerDuty

112

Opsgenie Incident Management Integrations

Opsgenie Incident Management Integrations

Features

l You can configure Zebrium to automatically add Root Cause (RCA) reports to incidents in Opsgenie. This
allows you to see details of root cause and direct the incident to the appropriate team.

l Each Zebrium RCA report includes a summary, a word cloud, and a set of log events showing symptoms
and root cause, plus a link to the full report in the Zebrium user interface.

l This leads to faster Mean Time to Repair (MTTR) and less time manually hunting for root cause.

How it Works

The recommended mode of operation for incident management integrations is to use the Zebrium Augment
mode as an accurate mechanism for explaining the reason something went wrong. In this mode, you continue to
use your existing rules as the primary source of problem detection and incident creation. You can then review
Zebrium RCA report findings directly in the incident that was created by Opsgenie to explain the reason behind
the incident.

The Zebrium Auto-Detectmode is useful when you want to direct all Root Cause reports to Opsgenie for routing
and dispositioning. You can also use Auto-Detectmode when you want to send only specific Root Cause reports
to Opsgenie after first reviewing them in the Zebrium user interface.

The two modes of operation are independent. You can configure Augment and/or Auto-Detect modes
depending on your operational use case.

Augment: Receive Signals from Opsgenie Incidents

1. Any Opsgenie incident can trigger a webhook request for Root Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the incident and creates a
Root Cause report.

3. Root Cause report summaries are sent to Opsgenie using the notes API, and Root Cause details are visible
in your Opsgenie incident.

4. With a single click on your incident, you can drill down further into the Zebrium user interface to look at
correlated logs across your entire application.

For details, see Receiving Signals from Opsgenie.

Auto-Detect: Send Root Cause Detections to Opsgenie as Incidents

1. The Zebrium AI/ML engine continuously monitors all application logs and uses unsupervised machine
learning to find anomalous log patterns that indicate a problem. These are automatically turned into Root
Cause reports highlighting details of any problems with over 95% accuracy.

2. Root Cause report summaries are sent to Opsgenie using the webhook interface, and the Root Cause
details are visible as incidents in Opsgenie.

113

#receive_opsgenie

114

3. With a single click on your incident, you can drill down further into the Zebrium user interface to look at
correlated logs across your entire application.

For details, see Sending Root Cause Detections to Opsgenie as Incidents.

Sending Root Cause Detections to Opsgenie as Incidents

This incident management integration automatically sends a Root Cause (RCA) report to Opsgenie so that the
appropriate team is notified when the Zebrium AI/ML engine auto-detects an incident .

STEP 1: Add the Zebrium Integration to your Opsgenie Team

1. In the Opsgenie user interface, click the [Teams] tab to access your Team dashboard.

2. Click the desired Team for the integration.

3. Click the Integrations section from the left-hand navigation pane.

4. Click the [Add integration] button.

5. Click the [Add] button under the Zebrium integration icon.

6. Make a note of theWebhook URL in the Zebrium section of the Integration Setup page. You will use this
in STEP 2, below.

7. In the Settings section, update theName as desired.

8. Make sure that the Enabled checkbox is selected.

9. Click Save Integration.

STEP 2: Create an Opsgenie Integration in Zebrium to Send Root
Cause Detections to Opsgenie as Incidents

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. In the Incident Management section, click the [Opsgenie] button.

3. Click [Create a New Integration] button. The Create Opsgenie Incident Management dialog
appears.

4. On the [General] tab, enter an Integration Name for this integration.

5. In the Deployment drop-down, select a deployment for the integration.

6. In the Service Group(s) drop-down, select a service group for the integration.

7. On the [Send Detections] tab, click [Enabled].

8. Enter theOpsgenie Webhook URL that you created in STEP 1, above.

9. You can choose to send notifications the first time the AI/ML engine detects a new type of proactive Root
Cause report. We recommend setting the Send on 1st occurrence toggle to Yes for proactive notification
of potential new problems. If you want to be notified on subsequent occurrences, do this from the relevant

Sending Root Cause Detections to Opsgenie as Incidents

Sending Root Cause Detections to Opsgenie as Incidents

Root Cause report.

10. Click [Save].

115

PagerDuty Event Management Integrations

PagerDuty Event Management Integrations

Features

l You can configure Zebrium to automatically add Root Cause (RCA) reports to events in PagerDuty. This
allows you to see details of root cause and direct the event to the appropriate team.

l Each Zebrium RCA report includes a summary, a word cloud, and a set of log events showing symptoms
and root cause, plus a link to the full report in the Zebrium user interface.

l This leads to faster Mean Time to Repair (MTTR) and less time manually hunting for root cause.

How it Works

The recommended mode of operation for event management integrations is to use the Zebrium Augmentmode
as an accurate mechanism for explaining the reason something went wrong. In this mode, you continue to use
your existing rules as the primary source of problem detection and event creation. You can then review Zebrium
RCA report findings directly in the event that was created by PagerDuty to explain the reason behind the event.

The Zebrium Auto-Detectmode is useful when you want to direct all Root Cause reports to PagerDuty for
routing and dispositioning. You can also use Auto-Detectmode when you want to send only specific Root
Cause reports to PagerDuty after first reviewing them in the Zebrium user interface.

The two modes of operation are independent. You can configure Augment and/or Auto-Detect modes
depending on your operational use-case.

Augment: Receive Signals from PagerDuty Events

1. Any PagerDuty event can trigger a webhook request for Root Cause Analysis from Zebrium.

2. Zebrium finds anomalous log patterns from your application that coincide with the event and creates a Root
Cause report.

3. Root Cause report summaries are sent to PagerDuty using the notes API, and Root Cause details are visible
in your PagerDuty Event.

4. With a single click on your event, you can drill down further into the Zebrium user interface to look at
correlated logs across your entire application.

For details, see Receiving Signals from PagerDuty.

Auto-Detect: Send Root Cause Detections to PagerDuty as Events

1. The Zebrium AI/ML engine continuously monitors all application logs and uses unsupervised machine
learning to find anomalous log patterns that indicate a problem. These are automatically turned into Root
Cause reports highlighting details of any problems with over 95% accuracy.

2. Root Cause report summaries are sent to PagerDuty using the webhook interface, and the Root Cause
details are visible as events in PagerDuty.

116

117

3. With a single click on your event, you can drill down further into the Zebrium user interface to look at
correlated logs across your entire application.

For details, see Sending Root Cause Detections to PagerDuty as Events.

Receiving Signals from PagerDuty

STEP 1: Configure API Access for Zebrium in PagerDuty

1. In the PagerDuty user interface, go to the Integrationsmenu and select API Access.

2. Click the [Create New API Key] button.

3. Enter a description, such as "Zebrium Event Detection".

4. Make sure that the Read-only API Key option is not selected.

5. Click [Create Key].

6. Copy the API Key and save it for STEP 2. The key will not be visible in PagerDuty again.

STEP 2: Create a PagerDuty Integration in Zebrium to Receive Signals
from PagerDuty

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. In the Event Management section, click the [PagerDuty] button in the Incident Management section.

3. Click [Create a New Integration] button. The Create PagerDuty Event Management dialog appears.

4. On the [General] tab, enter an Integration Name for this integration.

5. In the Deployment drop-down, select a deployment for the integration.

6. In the Service Group(s) drop-down, select a service group for the integration.

7. On the [Receive Signals] tab, click [Enabled].

8. Enter the Username for your PagerDuty portal.

9. Enter the API Key that you created in STEP 1, above.

10. Click [Save]. The Your URL dialog appears.

11. Copy theWebhook URL and save it for use in STEP 3, below.

12. Click [OK].

STEP 3: Add the Zebrium Webhook to PagerDuty

1. n the PagerDuty user interface, go to the Integrationsmenu and select selectGeneric Webhooks (v3).

2. Click the [+ Add New Webhook] button.

Receiving Signals from PagerDuty

Sending Root Cause Detections to PagerDuty as Events

3. In theWEBHOOK URL area, paste the Zebrium Webhook URL that was copied in STEP 2 when
configuring access for PagerDuty in Zebrium.

4. In the SCOPE TYPE drop-down, select Service.

5. In the SCOPE drop-down, select the desired service to which you want to add the Zebrium webhook.

6. Enter a DESCRIPTION, such as "Zebrium Signal".

7. In the EVENT SUBSCRIPTION field, select event.triggered. Clear all other checkboxes.

8. Click the [Add Webhook] button.

How to Uninstall

Disable API Access in PagerDuty

1. In the PagerDuty user interface, go to the Integrationsmenu and select API Access.

2. Click Disable or Remove on the API Access Key you want to delete.

3. Click the [Save] button after confirming you wish to proceed.

Delete the Zebrium Integration

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. In the Event Management section, click the [PagerDuty] button.

3. Click the delete icon () next to the Zebrium integration that you want to delete.

4. Click [OK] after confirming you wish to proceed.

Sending Root Cause Detections to PagerDuty as Events

This integration automatically sends Root Cause (RCA) reports to PagerDuty so that the appropriate team is
notified when the Zebrium AI/ML engine auto-detects an event .

STEP 1: Create an Integration Key in PagerDuty

1. In the PagerDuty user interface, go to an existing or create a new Event Orchestration or Event Rule
under the Automationmenu item.

2. Under Integrations associated with the Event Orchestration or Rule, copy the corresponding Integration
Key for STEP 2, below.

STEP 2: Create a PagerDuty Integration in Zebrium

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. In the Incident Management section, click the [PagerDuty] button.

118

119

3. Click [Create a New Integration] button. The Create PagerDuty Event Management dialog appears.

4. On the [General] tab, enter an Integration Name for this integration.

5. In the Deployment drop-down, select a deployment for the integration.

6. In the Service Group(s) drop-down, select a service group for the integration.

7. On the [Send Detections] tab, click [Enabled]. You might need to complete the [Receive Signals] tab
before you can go to the next step. For more information, see Create a PagerDuty Integration in
Zebrium to Receive Signals from PagerDuty, above.

8. In the Integration Key field, paste the Integration Key that you saved from STEP 1, above.

9. You can choose to send notifications the first time the AI/ML engine detects a new type of proactive Root
Cause report. We recommend setting the Send on 1st occurrence toggle to Yes for proactive notification
of potential new problems. If you want to be notified on subsequent occurrences, do this from the relevant
Root Cause report.

10. After you update this tab, you can click [Create Sample Alert] to test your settings. If your settings were
correct, a sample alert will display on the Alerts page.

11. Click [Save].

Sending Root Cause Detections to PagerDuty as Events

Chapter

8
Using Webhooks to Create Integrations

Overview

Zebrium provides support for using webhooks so you can build your own custom integrations.

Zebrium provides the following webhooks:

l Outgoing Root Cause Report Webhook

l Incoming Root Cause Report Incoming Webhook

Root Cause Report Outgoing Webhook

Root Cause Report outgoing webhooks are sent when data is ingested and the AI/ML engine detects an incident
comprised of anomalous events.

The frequency of Root Cause Report outgoing webhooks depend on data ingest and detection of root cause
reports.

For more information, see Root Cause Report Outgoing Webhook.

Root Cause Report Incoming Webhook

Signal incoming webhooks provide a generic mechanism for requesting Root Cause analysis for a specific time.
This can be useful for integrating with third-party of custom solutions for which a specific integration is not
currently available from Zebrium.

For more information, see Root Cause Report Incoming Webhook.

120

Root Cause Report Outgoing Webhook

Root Cause Report Outgoing Webhook

Features

l This section provides detailed information on webhook support provided by Zebrium so you can build your
own custom integrations.

l Root Cause report webhook payloads are sent when data is ingested and our machine learning detects an
incident comprised of anomalous events.

l Frequency of Incident webhook depends on data ingest and detection of anomalies.

STEP 1: Determine the Destination Endpoint

The destination endpoint is the endpoint URL that will receive and process the content of the Root Cause Report
Outgoing Webhook.

The authentication method for the endpoint can be one of the following:

l None

l Basic authentication

l Token (or Bearer) authentication

The authentication method and its associated configuration parameters will be used in STEP 2.

STEP 2: Create a Root Cause Report Outgoing Webhook Integration
in Zebrium.

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. In theWebhooks section, click the [Outgoing RCA] button.

3. Click [Create a New Integration] button. The Create Outgoing RCA Webhook dialog appears.

4. On the [General] tab, enter an Integration Name for this integration.

5. In the Deployment drop-down, select a deployment for the integration.

6. In the Service Group(s) drop-down, select a service group for the integration.

7. Enter theWebhook URL that will receive and handle the POST request.

8. On the [Send Detections] tab, click [Enabled].

9. Enter theWebhook URL that will receive and handle the POST request.

10. Select the required Authentication Method for the endpoint and complete the necessary configuration
using the information from STEP 1, above.

11. Click [Save].

121

122

Root Cause Report Outgoing Webhook Payload

Payload

Name Type Description

account string Zebrium account name for this customer_name

customer_name string Customer name of Zebrium instance

deployment_
name

string Name of the deployment where incident was raised

event_type string Always: “zebrium_incident”

first_
occurrence

boolean First time this incident has been seen

incident_bad_
level

number Numeric scale from 0-9 indicating the badness of the core
events in the RC report (9 being very bad)

incident_desc_
alt

string Unused

incident_desc string Summarization of the incident assigned by NLP or the user

incident_epoch integer UTC epoch of incident start

incident_
epoch_ts

timestamp (yyyy-mm-
ddThh:mm:ss.nnnnnnZ)

UTC timestamp of incident start

incident_
feedback

number 1-5 Likert rating given to this incident type

incident_group string Name of the incident group where incident was raised

incident_hosts string Comma separated list of hosts participating in this incident
(Zebrium On-Prem only)

incident_id uuid Unique identifier for the incident

incident_jira_
url

url encoded string URL to the Jira Issue linked to this incident type

incident_like url encoded string API URL to "like" the incident

incident_
local_offset

string Local time offset from UTC as depicted in the log event

incident_
local_
timestamp

timestamp (yyyy-mm-
ddThh:mm:ss.nnnnnn)

Local time of incident start

incident_logs string Comma separated list of logs participating in the incident
(Zebrium On-Prem only)

incident_mute url encoded string API URL to "mute" the incident

incident_name string Title of the incident assigned by NLP or the user

incident_owner string Owner assigned to this incident

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

Name Type Description

incident_
priority

string Priority assigned to this incident (P1/P3)

incident_rare_
level

number Numeric scale from 0-9 indicating the rareness of the core
events in the RC report (9 being very rare)

incident_
repeat_ct

number Number of times this incident type has been seen

incident_
repeat_idx

number Time ordered occurrence of this incident type

incident_
short_name

string System generated name for the incident type

incident_spam url encoded string API URL to tag incident as "spam"

incident_state string State of the incident (open, muted)

incident_
summary

string Summarization of the incident assigned by NLP or the user

incident_title string Title of the incident assigned by NLP or the user

incident_
detail

string Full details of the incident assigned by NLP or the user

incident_
touches_agent

boolean Incident is related to a log or metrics collector vs. application

incident_
touches_k8s

boolean Incident is related to Kubernetes infrastructure

incident_type uuid Unique identifier for the incident type

incident_url url encoded string URL to view incident in the Zebrium UI

incident_words word object list List of words (w) and their rareness/size (s) and badness (b)
used in the word cloud

service_groups string list List of service groups touched by this incident

signal_
association

string How is Incident associated to the signal (related or nearby)

signal_
initiated

boolean Incident is associated with a signal request

signal_
timestamp

string Timestamp of the signal request

signal_type string What initiated the signal. Could be USER, OPSGENIE,
PAGERDUTY, SLACK

incident_
hallmark_event

event object Event determined to be the most severe indicator of the
incident (Unused)

incident_
events

event object list All events in the core RC Report (level 0-2)

key_events event object list Key events (level 0) in RC Report

interesting_ event object list Interesting events (level 1) in RC Report

123

124

Name Type Description

events

nearby_events event object list Nearby events (level 3-5) in RC Report

Event Object

Name Type Description

app string Application name from meta data

container_
name

string Container name from meta data

epoch integer UTC epoch of event

epoch_ts timestamp (yyyy-mm-
ddThh:mm:ss.nnnnnnZ)

UTC timestamp of event

etype string Name of the event type

event_
context_level

integer Event level: 0=key, 1=interesting, 2=core, 3,4,5=nearby

event_meta_
data

set of name value pairs Name value pairs derived from event meta data

event_text string Log event text

event_uuid uuid Unique identifier for the event

hallmark boolean True if this event is the hallmark event

host string Host on which event originated

incident_
group

string Name of the incident group where anomaly was raised

local_offset string Local time offset from UTC as depicted in the log event

local_
timestamp

timestamp (yyyy-mm-
ddThh:mm:ss.nnnnnn)

Local timestamp of event

log_name string Name of log basename (e.g. syslog, error)

namespace_
name

string Namespace name from meta data

root_cause boolean True if this event is the root cause event

severity_num integer Severity number as defined by syslog

severity string Severity text as see in the log (e.g. INFO)

ze_xid uuid Unique external identifier for the event if provided by the log
collector (otherwise empty)

Example Payload

{

"incident_id": "00000000-0000-0000-0000-000000000000",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"incident_type": "00000000-0000-0000-0000-000000000000",

"incident_epoch_ts": "2021-10-15T21:07:13.813857Z",

"incident_epoch": 1634332033813,

"incident_state": "open",

"incident_desc": "Notes let you document details of a report to help

colleagues understand your analysis in the future.",

"incident_repeat_ct": 2,

"incident_local_timestamp": "2021-10-15T21:07:13.813857Z",

"incident_local_offset": "+0000",

"incident_touches_k8s": false,

"incident_touches_agent": false,

"incident_name": "SAMPLE - You would normally see An NLP-generated title

here",

"incident_short_name": "cfcd2",

"incident_summary": "",

"incident_owner": "Zebrium",

"incident_feedback": 5,

"incident_jira_url": "https://www.zebrium.com",

"incident_priority": "P3",

"service_groups": [

"sample"

],

"signal_initiated": false,

"signal_type": "",

"signal_timestamp": "",

"signal_association": "",

"incident_repeat_idx": 2,

"first_occurrence": false,

"incident_hosts": "host1,host2,host3",

"incident_logs": "logtype1,logtype2,zoom_log",

"incident_bad_level": 5,

"incident_rare_level": 5,

"incident_words": [

{

"w": "critical",

"s": 10,

"b": 4

},

{

"w": "peek",

125

126

"s": 14,

"b": 4

},

{

"w": "characterize",

"s": 14,

"b": 1

},

{

"w": "rca",

"s": 14,

"b": 2

},

{

"w": "filter",

"s": 12,

"b": 4

},

{

"w": "zoom",

"s": 10,

"b": 1

},

{

"w": "correlated",

"s": 8,

"b": 4

},

{

"w": "enjoy",

"s": 6,

"b": 2

},

{

"w": "useful",

"s": 4,

"b": 4

},

{

"w": "wordcloud",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"s": 2,

"b": 4

},

{

"w": "related",

"s": 2,

"b": 2

},

{

"w": "reports",

"s": 2,

"b": 2

},

{

"w": "data",

"s": 2,

"b": 4

},

{

"w": "zebrium",

"s": 2,

"b": 2

},

{

"w": "raw",

"s": 2,

"b": 1

},

{

"w": "fast",

"s": 2,

"b": 2

}

],

"account": "zebrium465_trial",

"customer_name": "zebrium465",

"deployment_name": "trial",

"incident_group": "sample",

"event_type": "zebrium_incident",

"incident_url": "https://cloud.zebrium.com/root-cause/report?itype_

127

128

id=00000000-0000-0000-0000-000000000000&inci_id=00000000-0000-0000-0000-

000000000000&ievt_level=2",

"incident_like": "https://cloud.zebrium.com /ap-

i/v2/incident/setstate/00000000-0000-0000-0000-

000000000000/liked/B316BB07D18F63B61AF62416BCD7A73B960D48DD",

"incident_mute": "https://cloud.zebrium.com /ap-

i/v2/incident/setstate/00000000-0000-0000-0000-

000000000000/muted/B316BB07D18F63B61AF62416BCD7A73B960D48DD",

"incident_spam": "https://cloud.zebrium.com /ap-

i/v2/incident/setstate/00000000-0000-0000-0000-

000000000000/spam/B316BB07D18F63B61AF62416BCD7A73B960D48DD",

"incident_desc_alt": "Notes let you document details of a report to help

colleagues understand your analysis in the future.",

"incident_hallmark_event": {

"root_cause": false,

"hallmark": true,

"epoch_ts": "2021-10-15T21:07:29.833156Z",

"epoch": 1634332049833,

"etype": "line",

"log_name": "logtype2",

"severity_num": 2,

"event_uuid": "00000000-0000-0000-0000-000000000008",

"event_text": "[2021-10-15 21:07:29.833156] CRITICAL: This is the

second of two events that are used to characterize the report in the list

view",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:29.833156Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 0,

"host": "host1",

"severity": "Critical",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

"incident_events": [

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:49.790742Z",

"epoch": 1634332009790,

"etype": "line",

"log_name": "logtype1",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000003",

"event_text": "[2021-10-15 21:06:49.790742] INFO: This is a sample

root cause report",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host2,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:06:49.790742Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:57.7982Z",

"epoch": 1634332017798,

129

130

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000004",

"event_text": "[2021-10-15 21:06:57.7982] INFO: Real Root Cause

Reports typically have 5-20 \"Core\" log events",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:06:57.7982Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:05.805105Z",

"epoch": 1634332025805,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000005",

"event_text": "[2021-10-15 21:07:05.805105] INFO: Core events con-

sist of mostly \"rare\" and high-severity events that are correlated

across multiple logs",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:05.805105Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": true,

"hallmark": true,

"epoch_ts": "2021-10-15T21:07:13.82029Z",

"epoch": 1634332033820,

"etype": "line",

"log_name": "logtype1",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000006",

"event_text": "[2021-10-15 21:07:13.82029] INFO: This is the first

of two events that are used to characterize the report in the list view",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:13.82029Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 0,

"host": "host1",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

131

132

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:21.826703Z",

"epoch": 1634332041826,

"etype": "line",

"log_name": "logtype1",

"severity_num": 3,

"event_uuid": "00000000-0000-0000-0000-000000000007",

"event_text": "[2021-10-15 21:07:21.826703] ERROR: Did you notice

this event has error severity?",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:21.826703Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Error",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": true,

"epoch_ts": "2021-10-15T21:07:29.833156Z",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"epoch": 1634332049833,

"etype": "line",

"log_name": "logtype2",

"severity_num": 2,

"event_uuid": "00000000-0000-0000-0000-000000000008",

"event_text": "[2021-10-15 21:07:29.833156] CRITICAL: This is the

second of two events that are used to characterize the report in the list

view",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:29.833156Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 0,

"host": "host1",

"severity": "Critical",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:37.840903Z",

"epoch": 1634332057840,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000009",

"event_text": "[2021-10-15 21:07:37.840903] INFO: Now try the filter

bar (above), and highlight bar (below)",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

133

134

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:37.840903Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:45.851986Z",

"epoch": 1634332065851,

"etype": "line",

"log_name": "logtype1",

"severity_num": 2,

"event_uuid": "00000000-0000-0000-0000-000000000010",

"event_text": "[2021-10-15 21:07:45.851986] CRITICAL: If you do not

see enough detail in the Core events, try these things:",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:45.851986Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Critical",

"app": null,

"container_name": "logtype1",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:53.858345Z",

"epoch": 1634332073858,

"etype": "line",

"log_name": "logtype1",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000011",

"event_text": "[2021-10-15 21:07:53.858345] INFO: Click the Peek

button (at the end of each log line) to see all available lines from just

this log stream",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host2,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:53.858345Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

135

136

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:01.864572Z",

"epoch": 1634332081864,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000012",

"event_text": "[2021-10-15 21:08:01.864572] INFO: Or zoom out beyond

the Core events by clicking a Zoom level in Related Events (at the top)",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:08:01.864572Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:09.871442Z",

"epoch": 1634332089871,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000013",

"event_text": "[2021-10-15 21:08:09.871442] INFO: Zooming is useful

when the Core events do not contain enough information",

"metadata_id": "ze_deployment_name=sample,zid_container_

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

name=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:08:09.871442Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:17.878258Z",

"epoch": 1634332097878,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000014",

"event_text": "[2021-10-15 21:08:17.878258] INFO: Enjoy using

Zebrium and let us know if you have any questions!",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:08:17.878258Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Informational",

"app": null,

137

138

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

}

],

"key_events": [

{

"root_cause": true,

"hallmark": true,

"epoch_ts": "2021-10-15T21:07:13.82029Z",

"epoch": 1634332033820,

"etype": "line",

"log_name": "logtype1",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000006",

"event_text": "[2021-10-15 21:07:13.82029] INFO: This is the first

of two events that are used to characterize the report in the list view",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:13.82029Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 0,

"host": "host1",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

{

"root_cause": false,

"hallmark": true,

"epoch_ts": "2021-10-15T21:07:29.833156Z",

"epoch": 1634332049833,

"etype": "line",

"log_name": "logtype2",

"severity_num": 2,

"event_uuid": "00000000-0000-0000-0000-000000000008",

"event_text": "[2021-10-15 21:07:29.833156] CRITICAL: This is the

second of two events that are used to characterize the report in the list

view",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:29.833156Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 0,

"host": "host1",

"severity": "Critical",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

}

],

"interesting_events": [

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:49.790742Z",

"epoch": 1634332009790,

"etype": "line",

"log_name": "logtype1",

139

140

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000003",

"event_text": "[2021-10-15 21:06:49.790742] INFO: This is a sample

root cause report",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host2,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:06:49.790742Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:57.7982Z",

"epoch": 1634332017798,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000004",

"event_text": "[2021-10-15 21:06:57.7982] INFO: Real Root Cause

Reports typically have 5-20 \"Core\" log events",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:06:57.7982Z",

"local_offset": "+0000",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:05.805105Z",

"epoch": 1634332025805,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000005",

"event_text": "[2021-10-15 21:07:05.805105] INFO: Core events con-

sist of mostly \"rare\" and high-severity events that are correlated

across multiple logs",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:05.805105Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

141

142

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:21.826703Z",

"epoch": 1634332041826,

"etype": "line",

"log_name": "logtype1",

"severity_num": 3,

"event_uuid": "00000000-0000-0000-0000-000000000007",

"event_text": "[2021-10-15 21:07:21.826703] ERROR: Did you notice

this event has error severity?",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:21.826703Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Error",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:37.840903Z",

"epoch": 1634332057840,

"etype": "line",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000009",

"event_text": "[2021-10-15 21:07:37.840903] INFO: Now try the filter

bar (above), and highlight bar (below)",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:37.840903Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:45.851986Z",

"epoch": 1634332065851,

"etype": "line",

"log_name": "logtype1",

"severity_num": 2,

"event_uuid": "00000000-0000-0000-0000-000000000010",

"event_text": "[2021-10-15 21:07:45.851986] CRITICAL: If you do not

see enough detail in the Core events, try these things:",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host1,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:07:45.851986Z",

143

144

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Critical",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:07:53.858345Z",

"epoch": 1634332073858,

"etype": "line",

"log_name": "logtype1",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000011",

"event_text": "[2021-10-15 21:07:53.858345] INFO: Click the Peek

button (at the end of each log line) to see all available lines from just

this log stream",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype1,zid_host=host2,zid_log=logtype1",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:07:53.858345Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype1",

"namespace_name": null,

"event_meta_data": {

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:01.864572Z",

"epoch": 1634332081864,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000012",

"event_text": "[2021-10-15 21:08:01.864572] INFO: Or zoom out beyond

the Core events by clicking a Zoom level in Related Events (at the top)",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host2,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host2.fqdm.com",

"local_timestamp": "2021-10-15T21:08:01.864572Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host2",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host2.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:09.871442Z",

"epoch": 1634332089871,

145

146

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000013",

"event_text": "[2021-10-15 21:08:09.871442] INFO: Zooming is useful

when the Core events do not contain enough information",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

"local_timestamp": "2021-10-15T21:08:09.871442Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:17.878258Z",

"epoch": 1634332097878,

"etype": "line",

"log_name": "logtype2",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000014",

"event_text": "[2021-10-15 21:08:17.878258] INFO: Enjoy using

Zebrium and let us know if you have any questions!",

"metadata_id": "ze_deployment_name=sample,zid_container_name-

e=logtype2,zid_host=host1,zid_log=logtype2",

"metadata_cfg": "ze_deployment_name=sample,container_name=logtype1-

359f02372109b4222880d1c7932b717f,hostname=host1.fqdm.com",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"local_timestamp": "2021-10-15T21:08:17.878258Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 1,

"host": "host1",

"severity": "Informational",

"app": null,

"container_name": "logtype2",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "logtype1-359f02372109b4222880d1c7932b717f",

"hostname": "host1.fqdm.com"

}

}

],

"nearby_events": [

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:25.77145Z",

"epoch": 1634331985771,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000000",

"event_text": "[2021-10-15 21:06:25.77145] INFO: You are seeing this

event because you zoomed into Related Events level 3 (or because you

Peeked)",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:06:25.77145Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 5,

"host": "host3",

"severity": "Informational",

"app": null,

147

148

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:33.778395Z",

"epoch": 1634331993778,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000001",

"event_text": "[2021-10-15 21:06:33.778395] INFO: You are seeing

this event because you zoomed into Related Events level 2 (or because you

Peeked)",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:06:33.778395Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 4,

"host": "host3",

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

},

{

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:06:41.784659Z",

"epoch": 1634332001784,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000002",

"event_text": "[2021-10-15 21:06:41.784659] INFO: You are seeing

this event because you zoomed into Related Events level 1 (or because you

Peeked)",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:06:41.784659Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 3,

"host": "host3",

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:25.885936Z",

"epoch": 1634332105885,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000015",

"event_text": "[2021-10-15 21:08:25.885936] INFO: This is the last

149

150

event in the Related Events level 1 zoom out",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:08:25.885936Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 3,

"host": "host3",

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:33.896882Z",

"epoch": 1634332113896,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000016",

"event_text": "[2021-10-15 21:08:33.896882] INFO: This is the last

event in the Related Events level 2 zoom out",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:08:33.896882Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 4,

"host": "host3",

Root Cause Report Outgoing Webhook Payload

Root Cause Report Outgoing Webhook Payload

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

},

{

"root_cause": false,

"hallmark": false,

"epoch_ts": "2021-10-15T21:08:41.903443Z",

"epoch": 1634332121903,

"etype": "line",

"log_name": "zoom_log",

"severity_num": 6,

"event_uuid": "00000000-0000-0000-0000-000000000017",

"event_text": "[2021-10-15 21:08:41.903443] INFO: This is the last

event in the Related Events level 3 zoom out",

"metadata_id": "ze_deployment_name=sample,zid_container_name=zoom_

log,zid_host=host3,zid_log=zoom_log",

"metadata_cfg": "ze_deployment_name=sample,container_name=zoom_log-

a32e129fccd92e3ab19e749655f152a7,hostname=host3.fqdm.com",

"local_timestamp": "2021-10-15T21:08:41.903443Z",

"local_offset": "+0000",

"ze_xid": "",

"event_context_level": 5,

"host": "host3",

"severity": "Informational",

"app": null,

"container_name": "zoom_log",

"namespace_name": null,

"event_meta_data": {

"ze_deployment_name": "sample",

"container_name": "zoom_log-a32e129fccd92e3ab19e749655f152a7",

"hostname": "host3.fqdm.com"

}

}

151

152

]

}

Root Cause Report Outgoing Webhook Payload

Root Cause Report Incoming Webhook

Root Cause Report Incoming Webhook

Features

l This section provides detailed information on webhook support provided by Zebrium so you can build your
own custom integrations.

l Root Cause report incoming webhooks provide a generic mechanism for requesting Root Cause analysis for
a specific time. This can be useful for integrating with third-party of custom solutions for which a specific
integration is not currently available from Zebrium.

STEP 1: Create a Root Cause Report Incoming Webhook Integration
in Zebrium

1. In the Zebrium user interface, go to the Integrations & Collectors page (Settings () > Integrations &
Collectors).

2. In theWebhooks section, click the [Incoming RCA] button.

3. Click [Create a New Integration] button. The Create Incoming RCA Webhook dialog appears.

4. On the [General] tab, enter an Integration Name for this integration.

5. In the Deployment drop-down, select a deployment for the integration.

6. In the Service Group(s) drop-down, select a service group for the integration.

7. On the [Receive Signals] tab, click [Enabled].

8. Click [Save].

9. Copy and save the contents of the Your URL text box for use in STEP 2, below.

STEP 2: Request a Root Cause Report from Zebrium

Send a POST request to the URL created in STEP 1 with the required payload:

curl -X POST -H 'Content-type: application/json' --data '<REQUEST_JSON_

PAYLOAD>' <URL_FROM_STEP_1>

Webhook Payload Format

See Root Cause Report Incoming Webhook Payload, below, for a detailed description of the webhook
payload.

Root Cause Report Incoming Webhook Payload

Method URL URL created for this integration

153

154

HTTP Method POST

Content Type application/json

Payload

Name Type Description Required

zebrium.incident_ts string UTC Timestamp to
perform RC Analysis, such
as "2022-03-
15T08:23:05Z"

Yes

zebrium.service_group string Zebrium service group to
perform RC Analysis or
‘All’

Yes

Example Payload

{

"zebrium" : {

"incident_ts" : "2022-03-15T08:23:05Z",

"service_group" : "production"

}

}

curl -X POST -H 'Content-type: application/json' --data '{ "zebrium" : {

"incident_ts" : "2022-03-15T08:23:05Z",

"service_group" : "production" } }' https://cloud.zebri-

um.com/api/v2/signal/E0D2C20624779984FADBE0D22E4125860A37299B

Root Cause Report Incoming Webhook Payload

Chapter

9
User Management

Overview

User Management provides features for Role Based Access Controls (RBAC) that you can use to create groups,
assign roles to users, and assign users to groups.

By default, nothing will change any user’s access or roles that you have today, so there is nothing you need to do
unless desired. This means that all users will be assigned the least restricted Owner role.

This chapter covers the following topics:

RBAC Component Definitions 156

Users 156

Groups 156

Roles 156

Permissions 157

155

156

RBAC Component Definitions

l Users. Each user is assigned a role that defines that user's permissions for accessing features and settings.
Users are members of one or more groups to control which deployments the users can access.

l Groups. Groups define which deployments are available to users in the group.

l Roles: Roles are pre-defined user types, including Owner, Admin, Editor, and Viewer, that define the user
permissions, such as Create, Read/View, Update, and Delete for each feature or application setting.

To access the user management pages in the Zebrium user interface, go to the Users & Groups page (Settings (
) > Users & Groups).

Users

l Each user is assigned a role that defines that user's permissions for accessing features and settings.

l Users are members of one or more groups to control which deployments they can access.

l Users can be added, edited, and deleted by the Owner role.

l For more information, see Roles and Permissions.

Groups

l Groups define which deployments are available to users in the group.

l The default group is "All" and has all deployments assigned to the group.

l Groups can be added, edited, and deleted by the Owner role (see Roles below).

Roles

The following role permissions are pre-defined and not configurable.

Owner

l Allows for billing and user management, including the creation and assignment of deployments in groups.

l Includes all permissions of the Admin and Editor roles.

l Owner is the default role for a new user during initial account creation.

l All existing users are Owner roles until changed by another Owner.

Admin

Day-to-day configuration including setting up integrations and various application customizations.

RBAC Component Definitions

Permissions

Editor

Users allowed to edit (create, update, delete) objects, particularly incident type metadata. This role will be
assigned to users of the role Member from previous releases.

Viewer

Users that are allowed read-only access to all but their own profile, such as changing their deployment selection
or password.

Permissions

Setting or Feature Owner Admin Editor Viewer

Report Notes and
Alerting

Edit Edit Edit View

Report Notes and
Alerting

Edit Edit None None

Report Notes and
Alerting

Edit Edit None None

Integrations Edit Edit None None

Root Cause Settings Edit Edit None None

User Management Edit Edit None None

Billing Edit None None None

157

Chapter

10
Security

Overview

This chapter explains Zebrium security and how Zebrium protects your data.

This chapter covers the following topics:

Culture Based on Data Security 159

Logical (and Optionally Physical) Separation of Customer Data 159

Encryption 159

Single Sign-On Support 159

Handling of Sensitive Data 160

Access by Zebrium Employees 160

Physical Security 160

Customer Data 160

Reports and Third-party Audits 161

158

159

Culture Based on Data Security

Securing customer data is a critical part of our promise to customers. We understand how important data security
and privacy are to our users.

The team behind Zebrium has decades of experience securely handling sensitive software logs and metrics for
market leading enterprise products that are used by some of the most security conscious enterprises and
government organizations. We have geared all aspects of our architecture, operations, and company culture to
meet these expectations.

The purpose of this writeup is to provide our customers with a "plain English" description of some of the security
protections we have in place. A more extensive, technical explanation is available in our infosec policy, which can
be provided upon request.

Logical (and Optionally Physical) Separation of Customer
Data

All customer data is tagged with a unique token identifier per organization, and each organization is assigned a
unique schema within the underlying database. All read/write operations rigorously enforce the mapping of
organization to assigned schema and data.

For customers with additional security restrictions, we offer the option of hosting your service in a dedicated
virtual private cloud (VPC) instance assigned exclusively to you. Since your data never leaves the dedicated VPC,
this provides an additional layer of protection over and above logical controls. Please contact us if you have
more specific requirements for the location of the service.

Encryption

All customer interactions with the Zebrium service, including data upload, download and UI operations are
encrypted using HTTPS and SSL.

All data at rest is encrypted using AES-256 encryption.

Single Sign-On Support

Zebrium supports most leading SSO providers via SAML including: Auth0, Azure, Duo, Jumpcloud, Okta.

Service Security

All inter-node communication within the Zebrium service is locked down by only allowing communication
between white listed nodes over a private subnet. SSH access to the service is only enabled for white-listed IP
addresses.

Culture Based on Data Security

Handling of Sensitive Data

Every code deployment automatically updates Zebrium nodes to include security updates from the latest version
of Ubuntu Linux currently available.

The service regularly undergoes penetration testing by 3rd parties, with no vulnerabilities unresolved.

All logs from software components of the Zebrium service are themselves fed into and analyzed by another
instance of the Zebrium service in order to uncover anomalous patterns.

Handling of Sensitive Data

The Zebriumservice supports the option of filtering out specific event types, for instance those containing sensitive
fields such as IP addresses. One of the unique advantages of the Zebrium solution is the fact that all events in
your logs are automatically and fully parsed, and all fields within them extracted and typed as variables. In the
event that you accidentally upload customer sensitive data into our service, this capability means that we can
support the clinical removal of such data.

Access by Zebrium Employees

Access to production systems running Zebrium software will be subject to the following conditions:

l Access to systems is only allowed by an explicitly defined group of Zebrium operations employees

l Access to systems is allowed only when there is a specific operational need

l SSH access to the Zebrium service is only enabled for an allow-listed set of IP addresses and ports

l Admin actions via management console, CLI, or access to underlying cloud services is audited, and audit
logs are retained for retroactive review.

Access to data will be subject to the same conditions as above, plus some additional restrictions:

l Access will only be permitted for the purposes of troubleshooting, technical support or testing, tuning and
quality assurance of our service.

l Additional access will only be permitted with customer consent and only on and as-needed basis.

Physical Security

l The Zebrium SaaS service is hosted in AWS datacenters with stringent security controls. Zebrium employees
do not have physical access to these data centers.

l AWS data centers comply with the most rigorous security certifications including SOC 1, 2 and 3, PCI DSS
3.2 Level 1, ISO 27001, as well as FedRamp (select locations).

Customer Data

The customer retains full ownership of all customer data stored in Zebrium systems. Upon termination of the
Zebrium service (or upon request), all copies of customer data will be deleted.

160

161

Reports and Third-party Audits

Extensive testing and auditing by internal and external security experts are part of our commitment to our
customers. Reports are available upon request.

l CAIQv4

l SOC 2 Attestation

l Most recent third-party penetration test report

Reports and Third-party Audits

Chapter

11
Zebrium On Prem

Overview

In additional to the standard option of a cloud configuration for Zebrium, you also have the option for a Zebrium
on-premises (On Prem) configuration that is not located in the cloud.

The following pages explain how to install a Zebrium On Prem configuration, how to contact Zebrium Support,
and how to use the various APIs that are available from Zebrium:

l Pre-installation

l Additional Configurations

l Installation

l Support

l Zebrium APIs

162

Pre-installation

Pre-installation

Before installation, there are several considerations to make when configuring your Kubernetes cluster for the
Zebrium application. For the Zebrium software to be fully functional, the following software requirements must be
met, and additional details and examples of these requirements are in the following topics:

l Kubernetes Version 1.19 or higher.

l Helm version 3 is required for installation of Zebrium.

l Kubernetes cluster availability meeting or exceeding the Zebrium sizing specifications. For more
information, see Sizing Considerations.

l Ability to provision block storage. For more information, see Storage Considerations.

l Ingress Controller with https support for a Fully Qualified Host Name (FQHN). For more information, see
Ingress Considerations.

l Access to the Zebrium registry. For more information, see Helm Chart and Image Repository Access.

l A Helm override file with your respective configurations.

After you have met these requirements, be sure to review the Additional Configurations topic. Otherwise, you
are ready to move onto the Installation topic.

Sizing Considerations

Zebrium provides a sizing calculator at https://sizing.zebrium.com/ to assist with determining the vCPU and
memory requirements of the destination Kubernetes Cluster. The sizing guide provides several key metrics for
different Zebrium ingest volumes, which are detailed below:

l Minimum Node Size (vCPU). Minimum node size for each node. This is based off the sizing of the Vertica
container, as it is the largest requester of resources.

l Minimum Node Size (Memory). Minimum node size for each node. This is based off the sizing of the
Vertica container, as it is the largest requester of resources.

l Total vCPUs required. Total number of CPUs that need to be available in the cluster specifically allocated
for the Zebrium deployment.

l Total Memory required. Total memory that needs to be available in the cluster specifically allocated for
the Zebrium deployment.

l Total SSD Storage required. Total amount of disk space that is required to be able to provisioned within
the cluster that is specifically allocated to the Zebrium deployment. While this is specified across the entire
cluster as a sum, the storage requirements per node will vary with the containers that are deployed.

The Zebrium sizing calculator also exposes information about the major components that are deployed into the
cluster, and their respective configurations are displayed under the [Show Advanced Info] button. You can use
this information with the metrics above to more effectively determine the necessary resource requirements.

163

#Helm_Chart_Access
https://sizing.zebrium.com/

164

Example 1

ABC Corp is looking to install a Zebrium deployment in their local cluster with the intention to ingest up to 50 GB
a day. After consulting the sizing guide, they provision a cluster that has 2 nodes attached to it. Each node has 12
vCPU and 24 GB of RAM attached to it. When installed, the Vertica pod is deployed to one node, requiring 280
GB of storage, while the zapi and core-engine pod was deployed to node 2, with 150 GB of storage required.

Example 2

CDE Corp is looking to install a Zebrium deployment in their local cluster with the intention to ingest up to 50 GB
a day. After consulting the sizing guide, they provision a cluster that has 2 nodes attached to it. One node has 12
vCPU and 24 GB, and the other node has 6 vCPU and 18 GB of RAM attached. When they installed the Zebrium
application, the Vertica and zapi pod is deployed to one node, requiring 380 GB of storage, 9 cores and 18 GB
of RAM. However, they noticed that the core engine logs container is pending and will not start. This is due to the
fact that while the node has 6 vCPU, the system pods deployed to that node has used 1.1 vCPUs. This left only
4.9 vCPUs available to core engine logs, which is requesting 5 vCPU.

NOTE: While it is possible to meet the total resource requirements while disregarding the minimum node
sizing, you run the risk of having pods being unable to schedule due to lack of resources. Please
consult the Advanced Info section of the sizing guideline to ensure that all pods will have sufficient
headroom to provision, while taking into account any other applications/pods deployed on the
node.

Storage Considerations

The Zebrium deployment is made up of several statefulsets, all of which will require persistent volumes. Due to the
constraints of our current database, Zebrium does not support NFS mounts, and all volumes provisioned will
need to be physical or block storage. While the Zebrium deployment provides several ways to define the
respective Kubernetes storage classes, it does not configure any external dependencies or permissions that may
be needed to ensure provisioning happens correctly. It is the responsibility of the cluster operator to ensure that
any and all external dependencies are met for your provisioner of choice.

The Zebrium application separates volumes into two different flavors: core and Vertica. This allows operators the
flexibility of defining different retention and drive configurations for volumes that are mounted onto our central
databases (Vertica), versus those used for our workers as buffers and working dir. Zebrium generally
recommends that you configure the reclaimPolicy for your Vertica storage class to Retain to prevent any
unintentional data loss if the corresponding statefulset or pvc is lost or deleted. This is not required on the core
storage classes, as as loss of data stored in these claims will not be detrimental to the system.

Our application has two different options for how cluster operators can provide storage to satisfy the needs of the
Zebrium Storage. Operators can bring their own storage classes, or use our Helm chart to define Zebrium
specific classes. Both of these options are explored in more detail below.

Storage Considerations

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/storage-classes/

Storage Considerations

Bring Your Own Storage Classes (BYOSC)

Cluster operators might choose to use existing storage classes instead of redefining these inside of the Zebrium
Helm charts. To bring your own storage class, you will need add the following section to your override file. In the
example below, we are using the StorageClass called gp2 instead of the Zebrium-created ones.

zebrium-core:

storageProvisioners:

vertica:

enabled: false

customStorageClass: "gp2"

core:

enabled: false

customStorageClass: "gp2"

This configuration disables the creation of the Zebrium storage classes, and instead instructs the pvcs to use the
class gp2.

Using Zebrium Storage Classes

By default, Zebrium will provision two storage classes to be used for the Zebrium application. Configurations for
these two storage classes are managed through the storageProvisioners section within the Helm chart.
The default options for this settings are represented below:

storageProvisioners:

vertica:

enabled: true

provisioner: kubernetes.io/no-provisioner

reclaimPolicy: Retain

parameters: {}

core:

enabled: true

provisioner: kubernetes.io/no-provisioner

reclaimPolicy: Retain

parameters: {}

As we can see in the example above, we have two separate declarations of a storage provisioner, vertica and
core. They both function the exact same way, so we will only focus on walking through core currently. As we
can see, we have 4 configuration options available for the core storage provisioner and will dive into what each
one does.

l enabled. Enables or disables the creation of the storage class within Helm. See BYOSC for an example of
disabling this.

l provisioner. This configures which underlying storage class provisioner. We support any provisioner
that is available to Kubernetes and that has been configured for your system.

165

https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner

166

l reclaimPolicy. Since these will be dynamically created volumes, we need to define a reclaim policy for
when the resource is deleted. The available options are Retain or Delete. Read more here.

l parameters. Every provisioner provides a series of additional parameters that help to describe the
volumes. These are unique to your selected provisioner. Read more here.

Dynamic vs Manual Volume Provisioning

While the Zebrium application will dynamically create persistent volume claims as the necessary pods are
scheduled, cluster operators may choose to use a provisioner that does not support dynamic provisioning. An
example of a provisioner that does not support dynamic provisioning would be the local. When using such
provisioners, it is the responsibility of the cluster operator to ensure that any needed persistent volumes are
created and available to the requesting persistent volume claims. A walkthrough of this can be found here.

Ingress Considerations

The Zebrium application leverages Kubernetes ingress as its preferred method for exposing its internal services
and user interfaces to external consumers. Ingress resources are automatically created for each necessary route,
and can be customized through the Helm chart parameters.

Helm Parameter Overrides

The Helm chart provides several level of configuration for modifying the ingress resources provisioned to tailor it
to your desired ingress controller’s requirements. Since ingress frequently uses annotations to configure some
options depending on the controller, our Helm chart provides two ways to customize the ingress controller:
through a global configuration or through application-level configurations. When the chart is templated, global
values will override the resource-level configurations when both are set.

Global Overrides

Below are the available global configurations for all ingress resources. For annotations and TLS, the Helm chart
will combine values defined in both the global and individual level. For the most update list of all options, please
see the values.yaml file of the current Helm chart.

global:

ingress:

-- Ingress Class to use for all objects.

className:

-- Hostname to expose all ingress objects on.

hostname: 'zebrium.example.com'

-- Global Annotations to add to all ingress objects

annotations: {}

tls: []

Ingress Considerations

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#reclaiming
https://kubernetes.io/docs/concepts/storage/storage-classes/#parameters
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/storage/storage-classes/#local
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-persistent-volume-storage/#create-a-persistentvolume
https://kubernetes.io/docs/concepts/services-networking/ingress/

Ingress Considerations

Resource Overrides

Below are the locations of the individual ingress resources, allowing you to modify only that particular ingress
resource, instead of all resources. For the most update list of all options, please see the values.yaml file of the
current Helm chart.

zebrium-core:

zapi:

ingress:

path: '/api/v2'

annotations: {}

tls: []

report:

ingress:

path: '/report/v1'

annotations: {}

tls: []

mwsd:

ingress:

path: '/mwsd/v1'

annotations: {}

tls: []

zebrium-ui:

ingress:

path: '/'

annotations: {}

tls: []

zebrium-auth:

ingress:

path: '/auth'

annotations: {}

tls: []

Ingress Controllers

In order to expose the ingress resources defined by the Zebrium deployment, an ingress controller must be
defined and configured by your cluster operator.

Packaged Ingress Controller

We do provide the option to install ingress-nginx as part of the Zebrium chart. If you wish to use the provided
ingress-nginx, you can use the following configuration to get started:

167

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.github.io/ingress-nginx/

168

ingress-nginx:

enabled: true

global:

ingress:

className: nginx

annotations:

nginx.ingress.kubernetes.io/proxy-body-size: '0'

Hostname and DNS Resolution

Currently, the Zebrium deployment requires a dns hostname that allows access to the ingress endpoints. This
endpoint needs to a be a fully qualified domain name (FQDN). Cluster operators should also ensure that this
FQDN is added as a record to their DNS server and is resolvable from all systems intending to access the
Zebrium installation. Network access from desired systems to the ingress endpoint should also be verified. To set
the FQDN in the Zebrium Helm chart, use the following override:

global:

ingress:

hostname: ""

TLS

Due to browser security configurations, the Zebrium user interface must be served over HTTPS with a backing TLS
certificate. Failure to do so will create a sign-in loop within the user interface, blocking the user from being able
to access the internal system.

There are several ways to secure the ingress endpoint with a TLS certificate, including through the ingress
resources themselves, through configuration of your ingress controller, using tools like cert-manager, a service
mesh, or attaching certificates directly to provisioned resources, like cloud load balancers. It is at the discretion of
the cluster operator to determine the best solution for their environment.

Helm Chart and Image Repository Access

Zebrium hosts its Helm charts and associated Docker images within its own registry. Zebrium will provide
credentials (username/password) to access these resources as part of the on-prem onboarding process. As part
of the installation process, you will create a Kubernetes image pull secret.

Helm Chart and Image Repository Access

https://en.wikipedia.org/wiki/Fully_qualified_domain_name
https://kubernetes.io/docs/concepts/services-networking/ingress/#tls
https://kubernetes.io/docs/concepts/services-networking/ingress/#tls
https://github.com/cert-manager/cert-manager
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/listener-update-certificates.html
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

Additional Configurations

Additional Configurations

Zebrium On Prem allows for additional configurations to enable advanced features. Below is a list of these
features and the necessary steps needed to configure them within the Zebrium Install Chart.

Enabling OpenAI Models

Zebrium supports leveraging OpenAI models to augment and enhance the summaries and titles of Zebrium Root
Cause reports. Currently Zebrium supports the following OpenAI model providers:

l OpenAI

l Microsoft Azure OpenAI Services

Zebrium supports the following OpenAI models:

l Davinci

l GPT 3.5 Turbo

l GPT 4

l GPT 4 32k

To leverage these models, you will need to create and set up OpenAI services from one of the above providers.
Zebrium supports multiple model configurations, using the following JSON format:

[

{

"name": "gpt-3-davinci",

"model": "gpt-3-davinci",

"key": "<KEY>",

"url": "<URL>",

"default": true,

"provider": "azure"

},

{

"name": "gpt-35-turbo",

"model": "gpt-35-turbo",

"key": "<KEY>",

"url": "<URL>",

"default": false,

"provider": "azure"

},

{

169

https://openai.com/
https://azure.microsoft.com/en-us/products/ai-services/openai-service-b

170

"name": "gpt-4",

"model": "gpt-4",

"key": "<KEY>",

"url": "<URL>",

"default": false,

"provider": "azure"

},

{

"name": "gpt-4-32k",

"model": "gpt-4-32k",

"key": "<KEY>",

"url": "<URL>",

"default": false,

"provider": "azure"

}

]

Prerequisites

l You have completed all assumptions and prerequisites from the installation.

l You have created an account in one of the supported OpenAI Providers.

l You have onboarded one or more supported models in your provider and have the appropriate URL and
API keys.

Installation

1. Save the above JSON configuration into a JSON file on a machine with access to your Kubernetes cluster.
For this example, we will be storing the file with the name of ai-nlp-models.json.

2. Create a configmap in the namespace that you are deploying your zebrium-onprem application into,
using the following command:

kubectl create configmap -n example ai-nlp-models --from-file ai-nlp-

models.json

In this example, we are naming our configmap ai-nlp-models and deploying it into the namespace
example. When we created the configmap above, the contents of the file was stored in the configmap
under a key corresponding to the filename. So in this example, the key of the configmap is ai-nlp-
models.json. You can verify this by running the following command:

kubectl describe configmap -n example ai-nlp-models

Enabling OpenAI Models

Enabling OpenAI Models

3. Update your helm override file and include the following section:

zebrium-core:

additionalEnvs:

- name: AI_NLP_MODELS

valueFrom:

configMapKeyRef:

name: ai-nlp-models

key: ai-nlp-models.json

In this section, we set the new environment variable AI_NLP_MODELS to the value of the configmap we
created in step 2. Be sure to update the name and key references to the appropriate values from step 2.

4. Add any more [configurations] (#additionalConfigurations) or continue with the installation process.

Setting NLP Provider Limits

NLP providers OpenAI and Azure provide Usage Limit settings that allow you to :

1. Set a monthly budget, such as $300 USD per month.

2. Set an email notification threshold, such as $150 USD per month.

It is strongly recommended that you set these values on the NLP provider account to ensure that you stay within a
well-defined and limited budget.

171

172

Installation

This section covers the steps for installing Zebrium On Prem.

Assumptions

1. All pre-installation steps have been completed.

2. Your Kubernetes cluster we will deploy to is sized to at least the minimum specification provided in our sizing
guideline chart on the Zebrium sizing guide page for the log volume you plan to test. Click Show
Advanced Info at the bottom of the sizing guideline chart for more details.

3. The cluster we will deploy to is running at minimum Kubernetes version 1.19.

4. Helm 3 can be configured and used with the cluster.

5. The cluster we will deploy to has local storage available (NFS is not supported).

6. A Fully Qualified Host Name is available for ingress with a SSL certificate (we only support https to our
application UI)

7. Images can be pulled from https://harbor.ops.zebrium.com/, or other arrangements can be made to
make the images available during install.

8. Any prerequisites for your preferred ingress controller have been gathered.

9. Any additional configurations have been made.

Installation Steps

Complete the following steps to install Zebrium On Prem.

STEP 1: Installing the Helm Chart

1. Create a secret using the Harbor repository that was setup for you by Zebrium. Zebrium will provide you
with your Harbor USERNAME and PASSWORD.

kubectl create secret docker-registry regcred --docker-

server=harbor.ops.zebrium.com --docker-username=<USERNAME> --docker-

password=<PASSWORD> --docker-email=<EMAIL> --namespace <NAMESPACE>

2. Update your Helm chart override.yaml file with the secret from Step 1.

global.imagePullSecret.Name="<SECRET>"

Installation

https://sizing.zebrium.com/

Installation Steps

3. Add the Harbor repository to your Kubernetes cluster:

helm repo add --username <USERNAME> --password <PASSWORD> <REPO_NAME>

https://harbor.ops.zebrium.com/chartrepo/onprem

helm repo update

4. Install the Zebrium On Prem Software:

helm upgrade <RELEASE_NAME> -i --namespace <NAMESPACE> <REPO_

NAME>/zebrium-onprem -f <override.yaml>

STEP 2: Configuring Your Account

Zebrium On Prem currently supports a single account where all data will be ingested. This account can have
multiple users and logins.

Create your account and the first user:

IMPORTANT: You should only do this once.

1. In a browser, use the following format to type the URL for creating the account and first user:

https://<Your_Zebrium_URL>/auth/sign-up?firstName=<first_

name>&lastName=<last_name>&companyName=<company_name>&email=<user_

email>

For example:

https://cloud.ze.com/auth/sign-

up?firstName=Jane&lastName=Doe&companyName=Acme&email=JDoe@acme.com

2. Complete the remaining fields on the form and click the right arrow to continue.

3. Invite other users to your account by going to the [User Management] tab from the Settingsmenu.

4. Click Add User and complete the form.

5. The next time you log in to your account, the Zebrium user interface will enable the Deployments feature.

STEP 3: Ingesting Data into your Zebrium On Prem Instance

After you have your Zebrium instance fully initialized, you can configure collectors to send data into your Zebrium
instance. Navigate to the Integrations & Collectors page from the Settings menu () and select the collector
you would like to set up from the list. For more information on how to configure each collector, see Configuring
Log Collectors and File Uploads.

173

174

Obtaining your ZAPI Token and Endpoint

Instructions and commands for sending data to your On Prem instance is available under Log Collector in the
settings menu.

Failure Domain Boundary

Because Zebrium On Prem currently supports a single account with only one deployment, if you intend to ingest
data from unrelated services/applications it is important to specify the ze_deployment_name label which
essentially defines a failure domain boundary for anomaly correlation.

You will see in the examples provided below, how to specify the ze_deployment_name label for each of the three
methods that can be used to ingest data.

NOTE: The ze_deployment_name must be a single word lowercase characters.

Using the Command-line Interface to Ingest Data

For instructions about downloading, configuring, and using the Zebrium command-line interface, see File
Upload (ze Command).

Here is an example that ingests a Jira log file into the atlassian failure domain (ze_deployment_name):

~/zapi/bin/ze up --file=jira.log --log=jira --ids=zid_host=jiraserver,ze_

deployment_name=atlassian --auth=97453627rDGSDE67FDCA77BCE44 --

url=http://34.72.193.228:443

Using the Kubernetes Log Collector to Ingest Data

If your application to be "monitored" is Kubernetes-based, this is the preferred method for sending logs to
Zebrium On Prem.

The log collector is deployed as a Kubernetes Helm chart as follows:

1. kubectl create namespace zebrium

2. helm install zlog-collector zlog-collector --namespace zebrium --repo
https://raw.githubusercontent.com/zebrium/ze-kubernetes-
collector/master/charts --set zebrium.collectorUrl=http://<ZAPI_
ENDPOINT>:443,zebrium.authToken=<ZAPI_TOKEN>,zebrium.deployment=<ZE_
DEPLOYMENT_NAME>,zebrium.timezone=<KUBERNETES_HOST_TIMEZONE>

Obtaining your ZAPI Token and Endpoint

Using Logstash to Ingest Data

NOTE: Remember to substitute <ZAPI_ENDPOINT>, <ZAPI_TOKEN>, <ZE_DEPLOYMENT_NAME>
and <KUBERNETES_HOST_TIMEZONE> with the relevant values for your system.

Using Logstash to Ingest Data

For instructions about configuring this integration, see Logstash Collector.

NOTE: Please contact Zebrium Support for assistance with configuration.

175

176

Zebrium On Prem: Support

This chapter covers how to contact Zebrium Support for additional help with Zebrium On Prem, when needed.

Sending Operational Data to Zebrium Support

Slack Notifications

There are two Slack webhooks that can be configured in the Helm chart. Zebrium recommends configuring these
two channels in your Slack instance and inviting Zebrium to the channels:

1. ZE_SLACK_WEBHOOK. This channel will receive a summary of all Root Cause reports.

2. ZE_SLACK_DEBUG_WEBHOOK. This channel will receive debug alerts on the operation of the Zebrium
software. It is strongly recommended that Zebrium be invited to this Slack channel.

Log Data

When you register for Zebrium On Prem, Zebrium will provide a secure authentication token that can be used to
send logs from the Zebrium On Prem software to Zebrium for remote monitoring (similar to Zebrium
AutoSupport).

NOTE: Installing the Zebrium Kubernetes Log Collector will send logs from all namespaces in you
Kubernetes cluster.

The log collector is deployed as a Kubernetes Helm chart as follows:

1. kubectl create namespace zebrium

2. helm install zlog-collector zlog-collector --namespace zebrium --repo
https://raw.githubusercontent.com/zebrium/ze-kubernetes-
collector/master/charts --set
zebrium.collectorUrl=https://zapi03.zebrium.com,zebrium.authToken=<AUTH_
TOKEN_FROM_ZEBRIUM>,zebrium.timezone=<KUBERNETES_HOST_TIMEZONE>

Contacting Zebrium Support

Slack (preferred)

If your company uses Slack, Zebrium will create a shared Slack channel and invite members of your company
and team to join.

Sending Operational Data to Zebrium Support

Contacting Zebrium Support

Email

Send email to: support@zebrium.com.

Support Hours

Day Hours Time Zone

Monday to Friday 6:00am - 6:00pm Pacific

Saturday and Sunday Limited Pacific

Support SLAs

Contact Zebrium at support@zebrium.com.

177

mailto:support@zebrium.com
mailto:support@zebrium.com

178

Zebrium On Prem: API

The following pages describe the endpoints and APIs that are available from Zebrium, along with example
request and response payloads:

l Incident API

o Create Incident Type

o Read Incident

l Signal API

o Create Signal

o Read Signal

l Batch Upload API

o Begin Batch

o End Batch

o Cancel Batch

o Get Batch

o List Batch

o Listing Incidents for a Batch Upload

o Usage

l Etroot Vector API

o Get Etroot Vector

Zebrium On Prem: API

Create Incident Type

Create Incident Type

Use this request to set attributes of an Incident Type.

Method URL URL created for this integration

HTTP Method POST

Content Type application/json

Request Arguments

Required Arguments Data Type How To Use Default

itype_id string Incident Type ID None

Optional Arguments Data Type How To Use Default

itype_title string Short title of the incident as seen
in the RCA list and RCA report
Notes section

None

itype_desc string Long description of the incident
as seen in the RCA report Notes
section

None

itype_tracking_url string URL pointing to additional
information for the Incident as
seen in the RCA report Notes
section

None

Example Request Payload

{

"itype_id": "00000000-0000-0000-0000-000000000000",

"itype_title": "This is a short title",

"itype_desc": "This is a longer description seen when viewing the RCA

report Notes",

"itype_tracking_url": "https://sup-

port.acme.com/kb012345/instructions.html"

}

Example Response Payload

{

"data": [

179

180

{

"itype_desc": "This is a longer description seen when viewing the

RCA report Notes",

"itype_feedback_incident": 5,

"itype_id": "00000000-0000-0000-0000-000000000000",

"itype_keys": "",

"itype_outbound_integration_ids": [

"3ca42ef0-1510-4a61-aee3-9763bf008acf",

"8a0d216e-ccbd-4cbf-9f16-c99b6701ffd4",

"85b92f12-97f3-43d4-7d94-5ff9784a1a92"

],

"itype_owner": "",

"itype_priority_ts": "0001-01-01T00:00:00Z",

"itype_title": "This is a short title",

"itype_tracking_url": "https://sup-

port.acme.com/kb012345/instructions.html",

"modify_user_name": "Zebrium",

"ts": "2021-09-15T15:50:16.726916Z",

"itype_outbound_priority": "P3"

}

],

"error": {

"code": 200,

"message": "200 OK"

}

"op": "create",

"softwareRelease": "20210915074109"

}

Read Incident

Use this request to get attributes of an Incident based on specified filters.

Method URL http://<mwsd_container_url>:<mwsd_container_
port>/mwsd/v1/incident/read/list

HTTP Method POST

Content Type application/json

Read Incident

Read Incident

Request Arguments

Required Arguments Data Type How To Use Default

time_from integer Include Incidents created after
this epoch time (use 1 as
beginning of time)

None

time_to integer Include Incidents created before
this epoch time (use
999999999999 as all time)

None

timezone string Time zone name for time_from -
time_to specification. Typically
use “UTC”

None

repeating_incidents string Include “first” or “all”
occurrence(s) of an Incident Type

None

occurrences string Always specify “none” None

time_buckets string Always specify “none” None

Optional Arguments Data Type How To Use Default

inci_id string Return the Incident with this
Incident ID

None

itype_id string Include only incidents of this
Incident Type

None

itype_id string Return all Incidents created as a
result of a signal with this SRID.
Use the SRID returned from the
Signal Create API

None

batch_ids stringSlice Return all Incidents associated
with the Transactional Batch
Upload. Use the Batch ID
returned from the Begin Batch
API

None

Example Request Payload

{

"time_from": 1,

"time_to": 999999999999,

"repeating_incidents": "first",

"occurrences": "none",

"time_buckets": "none",

"timezone": "UTC",

181

182

"inci_signal": "000615d0-39a0-0000-0000-00fffff00004"

}

Example Response Payload

{

"data": [

{

"inci_code": "5nDZv",

"inci_fevt_etext": "Oct 5 18:50:17 ip-172-31-62-10 kernel:

[11128469.531293] nvme nvme2: rescanning",

"inci_fevt_gen": "1ab751d74131e92b12ea357418a53d6ed4753583",

"inci_fevt_host": "ip-172-31-62-10",

"inci_fevt_log": "kern",

"inci_fevt_ts": "2021-10-06T01:50:17.487Z",

"inci_has_signal": true,

"inci_hosts": "ip-172-31-59-106,ip-172-31-62-10,ip-172-31-62-236,ip-

172-91-93-128",

"inci_id": "000615d0-0d97-6e58-0000-2f9000000c89",

"inci_itype_occ": 1,

"inci_itype_ttl": 1,

"inci_logs": "kern,network,vertica",

"inci_signal": "000615d0-39a0-0000-0000-00fffff00004",

"inci_svc_grps": "portal03,qa-blue",

"inci_ts": "2021-10-06T01:50:17.487Z",

"inci_wevt_etext": "Oct 5 18:50:17 ip-172-31-62-10 kernel:

[11128469.531293] Permission expired : rescanning and calculating for

brady",

"inci_wevt_gen": "1ab751d74131e92b12ea357418a53d6ed4753583",

"inci_wevt_host": "ip-172-31-62-10",

"inci_wevt_log": "kern",

"inci_wevt_ts": "2021-10-06T01:50:17.487Z",

"itype_code": "5nDZv",

"itype_desc": "The first log message is a warning that the per-

mission voter for user brady has expired and will be recalculated.",

"itype_feedback_incident": 0,

"itype_id": "000615d0-0d97-6e58-0000-2f9000000c89",

"itype_outbound_integration_ids": [],

"itype_owner": "",

"itype_title": "The first log message is a warning that the

Read Incident

Create Signal

permission voter for user brady has expired and will be recalculated.",

"itype_tracking_url": ""

}

],

"error": {

"code": 200,

"data": null,

"message": ""

},

"op": "read",

"softwareRelease": "release-ea58_20211005201105"

}

Create Signal

Use this request to enter a time around which to search for interesting events to create a Root Cause report.

Method URL http://<mwsd_container_url>:<mwsd_
port>/mwsd/v1/incident/create/signal

HTTP Method POST

Content Type application/json

Request Arguments

Required Arguments Data Type How To Use

timestamp string Timestamp in RFC3339

Optional Arguments Data Type How To Use

service_group string Service group to scan for creating Root Cause Report.
Default is all if not specified.

Example Request Payload

{

"timestamp": "2020-12-11T00:53:04.451035Z",

"service_group": "staging"

}

183

184

Example Response Payload

{

"data": [

{

"customer": "zebrium466",

"db_schema": "zebrium466_trial",

"service_group": "ops-blue",

"srid": "000615d0-39a0-0000-0000-00fffff00004"

}

],

"error": {

"code": 200,

"data": null,

"message": ""

},

"op": "create",

"softwareRelease": "20210412141334"

}

Read Signal

Use this request to get the status of a signal.

Method URL http://<mwsd_container_url>:<mwsd_port>/mwsd/v1/signal/read

HTTP Method POST

Content Type application/json

Request Arguments

Required Arguments Data Type How To Use

filter list List of SRID filter strings of the format “srid=<SRID>”
where SRID is the srid returned from
incident/create/signal API call.

Optional Arguments Data Type How To Use

None

Read Signal

Read Signal

Example Request Payload

{

"filter": ["srid=000615d0-39a0-0000-0000-00fffff00004"]

}

Example Response Payload

l bake_ct. Number of bakes that have run since signal created.

l expired. Set to True after three bakes have run.

l created_incident. Set to True if an incident was created as a result of this signal request

l Use the incident/read/list API with the inci_signal filter set to the <SRID> to get the list of incidents
created as result of this signal request.

{

"data": [

{

"bake_ct": 1,

"create_time": "2021-10-06T04:21:32.472795Z",

"created_incident": true,

"epoch": 1633485722000,

"event_type": "zebrium_incident",

"expired": false,

"integration": "zebrium",

"local_time": "Tue Oct 5 19:02:02 PDT 2021",

"modify_time": "2021-10-06T04:22:35.043531Z",

"payload_data": "{\"zebrium\": {\"epoch_ts\": \"2021-10-

06T02:02:02Z\", \"epoch_msec\": 1633485722000, \"epoch_local\": \"Tue Oct

5 19:02:02 PDT 2021\", \"deployment\": \"trial\", \"service_group\":

\"ops-blue\"}, \"slack\": null}",

"service_group": "ops-blue",

"siid": "765afdaa-e85b-43e5-baa4-16214de10296",

"srid": "000615d0-39a0-0000-0000-00fffff00004",

"ssid": "a3593b9e-7858-429e-981e-2d9e50dab43a",

"ts": "2021-10-06T02:02:02Z"

}

],

"error": {

"code": 200,

"data": null,

185

186

"message": ""

},

"op": "create",

"softwareRelease": "20210412141334"

}

Begin Batch

The Begin Batch API is called to begin a new batch upload. It is called as the first step in performing a batch
upload. See the Usage page for more information on batch uploads.

Method URL POST http://<zapi_url>:<zapi_port>/api/v2/batch/

HTTP Method POST

Content Type application/json

Required Headers Authorization (set to ZAPI token)

Request Arguments

Optional Arguments Data Type How To Use

processing_method string Set to delay or opportunistic

retention_hours retention_hours Minimum time to retain batch status after processing
completes, in hours.

batch_id string Optional user specified batch Id. Must be unique.

Response Payload

Optional Arguments Data Type How To Use

batch_id string Upload id, use as ze_batch_id.

Example Request Payload

{

"processing_method": "delay",

"retention_hours" : 8

}

Example Response Payload

{

"batch_id": "b1cc71aef9989ead80012ac"

Begin Batch

End Batch

}

End Batch

The End Batch API should be used when all files have been uploaded to ZAP for a batch upload. On success the
batch upload will move into the Processing state.

Method URL PUT http://<zapi_url>:<zapi_port>/api/v2/batch/<batch_id>

HTTP Method PUT

Content Type application/json

Required Headers Authorization (set to ZAPI token)

Request Arguments

Arguments Data Type How To Use

uploads_complete bool Set to true

Response Payload

Optional Arguments Data Type How To Use

batch_id string

state state The new state

Example Request Payload

{

"uploads_complete" : true

}

Example Response Payload

{

"batch_id" : "b1cc71aef9989ead80012ac",

"state" : "Processing"

}

Cancel Batch

The Cancel Batch API is called while uploading files to cancel a batch upload. Note that in some cases it may not
be possible to cancel a batch upload. Use the returned state to check the new batch state.

187

188

Method URL PUT http://<zapi_url>:<zapi_port>/api/v2/batch/<batch_id>

HTTP Method PUT

Content Type application/json

Required Headers Authorization (set to ZAPI token)

Request Arguments

Arguments Data Type How To Use

cancel bool Set to true

Response Payload

Optional Arguments Data Type How To Use

batch_id string

state state The new state

Example Request Payload

{

"cancel" : true

}

Example Response Payload

{

"batch_id" : "b1cc71aef9989ead80012ac",

"state" : "Cancelled"

}

Get Batch

The Get Batch API is called to get the status of a batch upload.

Method URL GET http://<zapi_url>:<zapi_port>/api/v2/batch/<batch_id>

HTTP Method GET

Content Type application/json

Required Headers Authorization (set to ZAPI token)

Get Batch

List Batches

Example Response Payload

{

"batch_id": "b1cc71aef9989ead80012ac",

"state": "Done",

"lines": 22000,

"bundles": 3,

"bundles_completed": 3,

"created": "2022-10-12T07:20:50",

"upload_time_secs": 250,

"processing_time_secs": 45,

"processing_method": "delay",

"completion_time" : "2022-10-12T0755:17",

"retention_hours" : 8,

"expiration_time": "2022-10-12T15:55:17",

"reason":""

}

List Batches

The List Batches API is called to list current batch uploads. See the get_batch API to list a specific batch.

Method URL GET http://<zapi_url>:<zapi_port>/api/v2/batch

HTTP Method GET

Content Type application/json

Required Headers Authorization (set to ZAPI token)

HTTP Method GET

"batches" : [{

"batch_id": "b1cc71aef9989ead80012ac",

"state": "Done",

"lines": 22000,

"bundles": 3,

"bundles_completed": 3,

"created": "2022-10-12T07:20:50",

"upload_time_secs": 250,

"processing_time_secs": 45,

"processing_method": "delay",

189

190

"completion_time" : "2022-10-12T0755:17",

"retention_hours" : 8,

"expiration_time": "2022-10-12T15:55:17",

"reason" :""

},

{

"batch_id": "b2ef71aef9226ead80012ac",

"state": "Uploading",

"lines": 0,

"bundles": 0,

"bundles_bundles": 0,

"created": "2022-10-14T08:23:34",

"upload_time_secs": 10,

"processing_time_secs": 0,

"processing_method": "delay"

"completion_time" : "",

"retention_hours" : 8,

"expiration_time": "2022-10-14T16:23:34",

"reason" :""

}

]

Listing Incidents for Batch Uploads

Listing Incidents for Batch Uploads

Incidents associated with batch uploads may be queried using the existing read incident and find incident
MWSD APIs. The optional query parameter batch_ids will return only incidents for the specified batch ID(s).

For example, to query the incidents for batch id bazo3aabb123ff, the query would have the optional parameter:

...

"batch_ids" : ["bazo3aabb123ff"],

...

If this batch had three incidents, then these would be reported as (using the find API):

{

"data": [

{

"inci_code": "OdmrA",

"inci_id": "0006266a-f550-0000-0000-01700000376e",

Listing Incidents for Batch Uploads

Usage

"inci_ts": "2022-04-25T14:25:25Z",

"itype_id": "ae64766d-36dd-419b-e62a-826675ec4a0d"

},

{

"inci_code": "fI7GX",

"inci_id": "0006266a-f550-0000-0000-1d800000ca3a",

"inci_ts": "2022-04-25T14:25:25Z",

"itype_id": "a1599bb9-ed24-d2ea-6a50-f624508a7423"

},

{

"inci_code": "8ho3P",

"inci_id": "0006266a-f550-0000-0000-84000004e23d",

"inci_ts": "2022-04-25T14:25:25Z",

"itype_id": "107d4f27-96d8-41ac-3528-9269bbe670da"

}

],

"error": {

"code": 200,

"data": null,

"message": ""

},

"op": "read",

"softwareRelease": "release-ea72_20220425101422"

}

Usage

The Batch Upload API allows a set of related logs to be grouped together when uploading to Zebrium. When
compared to single file uploads, or the upload-status APIs, batch uplobegin_batch.htmlads provide a more
controlled and organized way to send groups of information to Zebrium. There can be multiple batch uploads
concurrently underway.

The operational flow for batch uploads is:

1. Make an API call to Zebrium to begin a batch (begin_batch). A unique batch ID is returned on success that
is used in subsequent steps while working with a batch. This API call creates the required Zebrium state for a
batch and must be the first operation for each new batch.

2. The logs associated with a batch are uploaded, such as using ze or curl. These use the configuration
variable ze_batch_id to notify Zebrium that the logs are part of a batch. This must be set to the batch_id
used in step 1.

191

192

3. When all files have been uploaded make another API call to Zebrium to end the batch upload phase (end_
batch). This tells Zeberium that all files for a batch are uploaded and processing can begin on the batch.

4. Check the state of a batch periodically (using the get_batch API) until processing has completed.

See the Example below for more information.

Additional operations that can be performed are:

l List Batches and their states.

l Get batch metrics.

l Cancel a non-finished batch.

l List incidents associated with a batch.

Batch IDs and Scope of Batches

Each batch upload is identified by a unique string, the batch ID. This is defined when the begin_batch API is
called, and is valid for the lifetime of the batch upload.

Zebrium automaticaly returns a new batch ID from the begin_batch API by default. Alternatively, a user-defined
batch ID may be supplied on the begin_batch API call. However, note that this cannot be reused until the batch
has expired and been removed. Batch IDs are formed using 1-36 alphanumeric characters, plus ‘_’ (underscore)
and ‘-‘ (dash).

Batch ids are used as part of ZAPI uploads, along with a ZAPI token. They are associated with that ZAPI token at
creation time, and may only be used with the same token in later upload calls.

The lifetime of a batch, or retention period, is set in hours. By default this is 8 hours. This can be overridden in the
begin_batch API if desired. The retention period is used to extend the lifetime as a batch successfully proceeds
through each state.

Batch States

Each batch upload exists in one of the following states:

State Interpretation

Uploading Files are being uploaded to the batch (step 1, 2 above)

Processing All files have completed upload and are being processed. (triggered by step 3 above)

Done Ingest and bake has completed on all uploads

Failed The batch could not be uploaded and/or processed

Cancelled The batch was cancelled by the user prior to step 3

Opportunist ic or Delayed Batch Processing

When starting a new batch the API (step 1) allows the user to specify how to stage and process the batch, either
delayed or opportunistic. The default is delay.

In both cases uploaded files for a batch are processed together in one or more bundles, with no other logs
included in the bundles.

Usage

Usage

Type Interpretation

Opportunistic Zebrium may start processing uploaded files before the final commit (step 3). This can reduce the
amount of temporary space needed for a batch, and spreads work out over a longer time.

Delayed Zebrium will delay processing uploaded files until the final commit (step 3) occurs. This
guarantees the batch is processed as a unit, although it may consume more temporary space
and cause a burst of work when the batch ends.

If batches are typically small then using delay is appropriate. If batches are very large then using opportunistic
may be appropriate.

Example

This example uses Curl to get a batch ID, uses the ze CLI to upload several files with the same batch ID, then uses
Curl to advise Zebrium that all data for the upload has been sent. Finally, a check is made whether or not all the
data in the upload has been processed.

Begin batch, get a batch ID:

curl --silent --insecure -H "Authorization: Token <authToken> " -H

"Content-Type: application/json" -X POST https://<ZapiHost>/api/v2/batch

BATCH_ID=<newBatchId>

Upload logs using ze CLI

ze up --url=https://mysite.example.com --auth=<authToken>--

file=syslog.syslog.log --log=syslog --ids=ze_deployment_name=case1 --

cfgs=ze_batch_id=$BATCH_ID

ze up --url=https://mysite.example.com --auth=<authToken> --

file=jira.jira.log --log=jira --ids=ze_deployment_name=case1 --cfgs=ze_

batch_id=$BATCH_ID

ze up --url=https://mysite.example.com --auth=<authToken> --

file=conflnc.conflnc.log --log=conflnc --ids=ze_deployment_name=case1 --

cfgs=ze_batch_id=$BATCH_ID

Indicate end of uploads:

curl --silent --insecure -H "Authorization: Token <authToken" -H "Content-

Type: application/json" -X PUT --data '{ "uploads_complete" : true }'

https://<zapi_host>/api/v2/batch/$BATCH_ID

Check the status of uploads is complete via the state that is returned in the response payload:

curl --silent --insecure -H "Authorization: Token <authToken" -H "Content-

Type: application/json" https://<zapi_host>/api/v2/batch/$BATCH_ID | grep

state

193

194

When the state becomes Done, the batch is successfully processed. While processing is underway other
information from the get_batch API can be used to monitor progress, for example the number of bundles created
for the batch, and completed so far:

...

"bundles": 8,

"bundles_completed": 3,

...

Note on Canceled and Failed Batches

A batch can be canceled while still performing uploads using the cancel_batch API. This causes the batch to
transition to the Canceled state. Any uploaded files staged on Zebrium will be removed.

If a batch fails processing it transitions to the Failed state. The reason for the failure, if known, is available in the
reason attribute. For example:

"state": "Failed",

...

"reason": "write bundle files failed"

would indicate insufficient temporary storage to process the batch.

Get Etroot Vector

Method URL POST http://<mwsd_container_url>:<mwsd_container_
port>/mwsd/v1/incidentevent/read/etroots

HTTP Method POST

Content Type application/json

Request Arguments

Required Arguments Data Type How To Use

inci_id string Incident ID to get etroot vector

ievt_level integer 0 (first/worst), 1 (0 + other root cause events), 2 (0 + 1
+ other core events)

Optional Arguments Data Type How To Use

None

Get Etroot Vector

Get Etroot Vector

Example Request Payload

{

"inci_id": "00061279-e560-0000-0000-013000000895",

"ievt_level": 2

}

Example Response Payload

{

"data": [

{

"ievt_etroot": "received_sigterm_from_systemd"

},

{

"ievt_etroot": "read_domainname_sysconfig_network"

},

{

"ievt_etroot": "mounted_message_queue_system"

},

{

"ievt_etroot": "remount_root_kernel_systems"

},

{

"ievt_etroot": "http_named_cookie_not_present"

}

],

"error": {

"code": 200,

"data": null,

"message": ""

},

"op": "read",

"softwareRelease": "20210903100945"

}

195

© 2003 - 2024, ScienceLogic, Inc.

All rights reserved.

LIMITATION OF LIABILITY AND GENERAL DISCLAIMER

ALL INFORMATION AVAILABLE IN THIS GUIDE IS PROVIDED "AS IS," WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESS OR IMPLIED. SCIENCELOGIC™ AND ITS SUPPLIERS DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT.

Although ScienceLogic™ has attempted to provide accurate information on this Site, information on this Site
may contain inadvertent technical inaccuracies or typographical errors, and ScienceLogic™ assumes no
responsibility for the accuracy of the information. Information may be changed or updated without notice.
ScienceLogic™ may also make improvements and / or changes in the products or services described in this
Site at any time without notice.

Copyrights and Trademarks

ScienceLogic, the ScienceLogic logo, and EM7 are trademarks of ScienceLogic, Inc. in the United States,
other countries, or both.

Below is a list of trademarks and service marks that should be credited to ScienceLogic, Inc. The ® and ™
symbols reflect the trademark registration status in the U.S. Patent and Trademark Office and may not be
appropriate for materials to be distributed outside the United States.

l ScienceLogic™
l EM7™ and em7™
l Simplify IT™
l Dynamic Application™
l Relational Infrastructure Management™

The absence of a product or service name, slogan or logo from this list does not constitute a waiver of
ScienceLogic’s trademark or other intellectual property rights concerning that name, slogan, or logo.

Please note that laws concerning use of trademarks or product names vary by country. Always consult a
local attorney for additional guidance.

Other

If any provision of this agreement shall be unlawful, void, or for any reason unenforceable, then that
provision shall be deemed severable from this agreement and shall not affect the validity and enforceability
of any remaining provisions. This is the entire agreement between the parties relating to the matters
contained herein.

In the U.S. and other jurisdictions, trademark owners have a duty to police the use of their marks. Therefore,
if you become aware of any improper use of ScienceLogic Trademarks, including infringement or
counterfeiting by third parties, report them to Science Logic’s legal department immediately. Report as much
detail as possible about the misuse, including the name of the party, contact information, and copies or
photographs of the potential misuse to: legal@sciencelogic.com. For more information, see
https://sciencelogic.com/company/legal.

mailto:legal@sciencelogic.com
https://sciencelogic.com/company/legal

800-SCI-LOGIC (1-800-724-5644)

International: +1-703-354-1010

	Key Concepts
	Zebrium Root Cause as a Service (RCaaS)
	Root Cause Reports (RCA Reports)
	Alert Rules and Alert Keys
	Log Collectors
	Service Groups
	Notification Channels
	ScienceLogic Integrations
	Incident Management Integrations
	Integrations Using Webhooks
	Zebrium On Prem

	Getting Started
	How Zebrium Works
	Consuming Root Cause Reports
	Customizing Your ZebriumResults
	Evaluating Zebrium
	Signing Up for a New Account
	What does Zebrium Do with Your Logs?

	Log Collectors and File Uploads
	AWS CloudWatch Collector (Beta)
	Legal
	Overview
	Preparation
	Installation
	Configuration
	Setup

	Testing Your Installation

	Azure Monitor OTel Collector (Beta)
	Legal

	Docker Container Log Collector
	Getting Started
	Deploying the Collector
	Configuring the Docker Daemon
	Environment Variables
	Testing your Installation

	File Upload (ze Tool)
	Getting Started
	Prerequisites
	Installing ze

	Configuration
	Configuration File
	Environment Variables

	Commands and Help
	Examples

	Batch Uploads
	Migrating from the Perl-based ze Tool (version 1.0.0)
	Replacing the .zerc File
	Environment Variables

	Zebrium Batch Uploads and ze Command-line Interface
	Batch Uploads vs Service Groups
	Integrating Batch Uploads into the ze Tool
	ze batch Subcommand
	Examples
	Uploading a Large Log and Monitoring its Progress

	Uploading Multiple Logs to be Processed Together

	Kubernetes Collector
	Installing the Helm Chart
	Uninstalling the Helm Chart
	Additional Information
	Log Path Mapping
	Custom Namespace to Service Group Mapping

	Values

	Linux Collector
	System Requirements
	Installing the Collector
	Upgrading the Collector
	Uninstalling the Collector
	Installing on Hosts with Existing td-agent Configuration
	Configuration for td-agent
	User Log Paths
	Filtering Specific Log Events
	Example

	Log Path Mapping
	Configuring Multiple Zebrium Service Groups Within a Single Collector
	Usage
	Start and Stop Fluentd

	Testing Your Installation
	Troubleshooting
	Environment Variables
	Operating with a Proxy Server
	Setting the Proxy Server in a systemd Environment

	Logstash Collector
	Configuring Logstash to Send Log Data to Zebrium
	Service Groups
	Configuring Logstash Filters for Zebrium Required Fields (in Logstash)
	Configuring Log Event Output to Zebrium (in Logstash)
	Reload Logstash Configuration
	Complete Example for filebeat and winlogbeat Data

	Syslog Forwarder
	Preparation
	Forward Syslog
	Installation
	Client Configuration
	Setup

	Forward Log via TCP
	Installation
	Setup

	Testing your installation

	VMware vSphere Collector (Beta)
	Legal
	Overview
	Prerequisites
	Installation and Configuration
	Installing the Zebrium Syslog Forwarder
	Configuring vCenter Syslog Collection
	Configuring ESXi Host Syslog Collection
	Collecting VM Logs

	Windows OTel Collector (Beta)
	Legal
	Overview
	Prerequisite
	Zebrium Windows OTel Collector Installation
	Uninstalling Zebrium Windows OTel Collector

	Suggestions and Root Cause Reports
	Suggestions in Zebrium
	Managing Suggestions in the Zebrium User Interface
	Using the Filters on the Alerts Page in Zebrium
	Using the Timeline Widget on the Alerts Page
	Root Cause Reports
	Additional Actions on the Root Cause Report Page

	Assessing Suggestions
	Accepting a Suggestion
	Rejecting a Suggestion

	Key Use Cases for Suggestions and Root Cause Reports
	Automated Root Cause Analysis Only
	Proactive Detection and Root Cause Analysis
	Deterministic Detection of Known Problems
	Getting the Best Results from Zebrium
	Ingest Complete Logs That Contain a Real Problem
	Be Mindful of Elapsed Time
	Review Service Group Setup
	Review RCA Settings
	Use Integrations to Separate High-priority Alerts
	Manage Alert Destinations
	Use Routing Rules to Classify and Route Alerts
	Example: Ensure that the AI/ML Engine Highlights Significant Events When They...
	Example: Ensure the AI/ML Engine Ignores Spam Events When They Happen Nearby

	Defining Rules
	Service Groups
	Event Labels
	Event Text

	Notification Channels
	Email Notifications
	Features
	Integration Details

	Slack Notifications
	Features
	Integration Details

	Microsoft Teams Notifications
	Features
	Integration Details

	Webex Teams Notifications
	Features
	Integration Details

	ScienceLogic Integrations
	ScienceLogic Root Cause Timeline Widget
	Features
	How It Works

	Configuring the Root Cause Timeline Widget in SL1
	Configuring a Zebrium Connection for the Root Cause Timeline Widget in SL1
	Connecting Your Zebrium Instance to the Root Cause Timeline Widget
	Creating a Dashboard Widget Integration in Zebrium
	Creating a Service Connection in SL1
	Creating a Sample Alert for the Widget

	Using the Root Cause Timeline Widget
	Working with Suggestions in the Zebrium User Interface

	ScienceLogic Events (Zebrium Connector for SL1)
	Workflow for Configuring the Connector
	Creating an Authentication Token in Zebrium
	Configuring SL1
	Create a Service Connection in SL1
	Create an SL1 Authentication Token
	Create a Default Virtual Device (optional)
	Install the Zebrium Event Policies PowerPack

	Configuring the Zebrium Connector
	System Requirements
	Download and Install the RPM file for the Connector
	Configure the config.yaml file
	Configuration Schema
	Example Configuration

	ScienceLogic SL1 API Integration
	Features
	How It Works
	Auto-Detect (recommended): Send Root Cause Detections to your SL1 Events Page

	Sending Root Cause Suggestions to the SL1 Events Page
	Integration Overview
	Integration Details
	STEP 1: Choose an Existing Device or Create a New Device
	STEP 2: Create a User with Restricted API Access
	STEP 3: Create an Event Policy for the Zebrium Alert
	STEP 4: Create a ScienceLogic SL1 API Integration in Zebrium

	Incident Management Integrations
	Opsgenie Incident Management Integrations
	Features
	How it Works
	Augment: Receive Signals from Opsgenie Incidents
	Auto-Detect: Send Root Cause Detections to Opsgenie as Incidents

	Sending Root Cause Detections to Opsgenie as Incidents
	STEP 1: Add the Zebrium Integration to your Opsgenie Team
	STEP 2: Create an Opsgenie Integration in Zebrium to Send Root Cause Detectio...

	PagerDuty Event Management Integrations
	Features
	How it Works
	Augment: Receive Signals from PagerDuty Events
	Auto-Detect: Send Root Cause Detections to PagerDuty as Events

	Receiving Signals from PagerDuty
	STEP 1: Configure API Access for Zebrium in PagerDuty
	STEP 2: Create a PagerDuty Integration in Zebrium to Receive Signals from Pag...
	STEP 3: Add the Zebrium Webhook to PagerDuty
	How to Uninstall
	Disable API Access in PagerDuty
	Delete the Zebrium Integration

	Sending Root Cause Detections to PagerDuty as Events
	STEP 1: Create an Integration Key in PagerDuty
	STEP 2: Create a PagerDuty Integration in Zebrium

	Using Webhooks to Create Integrations
	Root Cause Report Outgoing Webhook
	Root Cause Report Incoming Webhook
	Root Cause Report Outgoing Webhook
	Features
	STEP 1: Determine the Destination Endpoint
	STEP 2: Create a Root Cause Report Outgoing Webhook Integration in Zebrium.

	Root Cause Report Outgoing Webhook Payload
	Payload
	Event Object
	Example Payload

	Root Cause Report Incoming Webhook
	Features
	STEP 1: Create a Root Cause Report Incoming Webhook Integration in Zebrium
	STEP 2: Request a Root Cause Report from Zebrium
	Webhook Payload Format

	Root Cause Report Incoming Webhook Payload
	Payload
	Example Payload

	User Management
	RBAC Component Definitions
	Users
	Groups
	Roles
	Owner
	Admin
	Editor
	Viewer

	Permissions

	Security
	Culture Based on Data Security
	Logical (and Optionally Physical) Separation of Customer Data
	Encryption
	Single Sign-On Support
	Service Security

	Handling of Sensitive Data
	Access by Zebrium Employees
	Physical Security
	Customer Data
	Reports and Third-party Audits

	Zebrium On Prem
	Pre-installation
	Sizing Considerations
	Example 1
	Example 2

	Storage Considerations
	Bring Your Own Storage Classes (BYOSC)
	Using Zebrium Storage Classes
	Dynamic vs Manual Volume Provisioning

	Ingress Considerations
	Helm Parameter Overrides
	Global Overrides
	Resource Overrides

	Ingress Controllers
	Packaged Ingress Controller

	Hostname and DNS Resolution
	TLS

	Helm Chart and Image Repository Access
	Additional Configurations
	Enabling OpenAI Models
	Prerequisites
	Installation
	Setting NLP Provider Limits

	Installation
	Assumptions
	Installation Steps
	STEP 1: Installing the Helm Chart
	STEP 2: Configuring Your Account
	STEP 3: Ingesting Data into your Zebrium On Prem Instance

	Obtaining your ZAPI Token and Endpoint
	Failure Domain Boundary
	Using the Command-line Interface to Ingest Data
	Using the Kubernetes Log Collector to Ingest Data
	Using Logstash to Ingest Data
	Sending Operational Data to Zebrium Support
	Slack Notifications
	Log Data

	Contacting Zebrium Support
	Slack (preferred)
	Email
	Support Hours
	Support SLAs

	Zebrium On Prem: API
	Create Incident Type
	Request Arguments
	Example Request Payload
	Example Response Payload

	Read Incident
	Request Arguments
	Example Request Payload
	Example Response Payload

	Create Signal
	Request Arguments
	Example Request Payload
	Example Response Payload

	Read Signal
	Request Arguments
	Example Request Payload
	Example Response Payload

	Begin Batch
	Request Arguments
	Response Payload
	Example Request Payload
	Example Response Payload

	End Batch
	Request Arguments
	Response Payload
	Example Request Payload
	Example Response Payload

	Cancel Batch
	Request Arguments
	Response Payload
	Example Request Payload

	Get Batch
	Example Response Payload

	List Batches
	HTTP Method GET

	Listing Incidents for Batch Uploads
	Listing Incidents for Batch Uploads

	Usage
	Batch IDs and Scope of Batches
	Batch States
	Opportunistic or Delayed Batch Processing

	Example
	Note on Canceled and Failed Batches

	Get Etroot Vector
	Request Arguments
	Example Request Payload
	Example Response Payload

